Files

522 lines
14 KiB
Markdown
Raw Permalink Normal View History

2025-12-01 17:21:38 +08:00
# Dify Stress Test Suite
A high-performance stress test suite for Dify workflow execution using **Locust** - optimized for measuring Server-Sent Events (SSE) streaming performance.
## Key Metrics Tracked
The stress test focuses on four critical SSE performance indicators:
1. **Active SSE Connections** - Real-time count of open SSE connections
1. **New Connection Rate** - Connections per second (conn/sec)
1. **Time to First Event (TTFE)** - Latency until first SSE event arrives
1. **Event Throughput** - Events per second (events/sec)
## Features
- **True SSE Support**: Properly handles Server-Sent Events streaming without premature connection closure
- **Real-time Metrics**: Live reporting every 5 seconds during tests
- **Comprehensive Tracking**:
- Active connection monitoring
- Connection establishment rate
- Event processing throughput
- TTFE distribution analysis
- **Multiple Interfaces**:
- Web UI for real-time monitoring (<http://localhost:8089>)
- Headless mode with periodic console updates
- **Detailed Reports**: Final statistics with overall rates and averages
- **Easy Configuration**: Uses existing API key configuration from setup
## What Gets Measured
The stress test focuses on SSE streaming performance with these key metrics:
### Primary Endpoint: `/v1/workflows/run`
The stress test tests a single endpoint with comprehensive SSE metrics tracking:
- **Request Type**: POST request to workflow execution API
- **Response Type**: Server-Sent Events (SSE) stream
- **Payload**: Random questions from a configurable pool
- **Concurrency**: Configurable from 1 to 1000+ simultaneous users
### Key Performance Metrics
#### 1. **Active Connections**
- **What it measures**: Number of concurrent SSE connections open at any moment
- **Why it matters**: Shows system's ability to handle parallel streams
- **Good values**: Should remain stable under load without drops
#### 2. **Connection Rate (conn/sec)**
- **What it measures**: How fast new SSE connections are established
- **Why it matters**: Indicates system's ability to handle connection spikes
- **Good values**:
- Light load: 5-10 conn/sec
- Medium load: 20-50 conn/sec
- Heavy load: 100+ conn/sec
#### 3. **Time to First Event (TTFE)**
- **What it measures**: Latency from request sent to first SSE event received
- **Why it matters**: Critical for user experience - faster TTFE = better perceived performance
- **Good values**:
- Excellent: < 50ms
- Good: 50-100ms
- Acceptable: 100-500ms
- Poor: > 500ms
#### 4. **Event Throughput (events/sec)**
- **What it measures**: Rate of SSE events being delivered across all connections
- **Why it matters**: Shows actual data delivery performance
- **Expected values**: Depends on workflow complexity and number of connections
- Single connection: 10-20 events/sec
- 10 connections: 50-100 events/sec
- 100 connections: 200-500 events/sec
#### 5. **Request/Response Times**
- **P50 (Median)**: 50% of requests complete within this time
- **P95**: 95% of requests complete within this time
- **P99**: 99% of requests complete within this time
- **Min/Max**: Best and worst case response times
## Prerequisites
1. **Dependencies are automatically installed** when running setup:
- Locust (load testing framework)
- sseclient-py (SSE client library)
1. **Complete Dify setup**:
```bash
# Run the complete setup
python scripts/stress-test/setup_all.py
```
1. **Ensure services are running**:
**IMPORTANT**: For accurate stress testing, run the API server with Gunicorn in production mode:
```bash
# Run from the api directory
cd api
uv run gunicorn \
--bind 0.0.0.0:5001 \
--workers 4 \
--worker-class gevent \
--timeout 120 \
--keep-alive 5 \
--log-level info \
--access-logfile - \
--error-logfile - \
app:app
```
**Configuration options explained**:
- `--workers 4`: Number of worker processes (adjust based on CPU cores)
- `--worker-class gevent`: Async worker for handling concurrent connections
- `--timeout 120`: Worker timeout for long-running requests
- `--keep-alive 5`: Keep connections alive for SSE streaming
**NOT RECOMMENDED for stress testing**:
```bash
# Debug mode - DO NOT use for stress testing (slow performance)
./dev/start-api # This runs Flask in debug mode with single-threaded execution
```
**Also start the Mock OpenAI server**:
```bash
python scripts/stress-test/setup/mock_openai_server.py
```
## Running the Stress Test
```bash
# Run with default configuration (headless mode)
./scripts/stress-test/run_locust_stress_test.sh
# Or run directly with uv
uv run --project api python -m locust -f scripts/stress-test/sse_benchmark.py --host http://localhost:5001
# Run with Web UI (access at http://localhost:8089)
uv run --project api python -m locust -f scripts/stress-test/sse_benchmark.py --host http://localhost:5001 --web-port 8089
```
The script will:
1. Validate that all required services are running
1. Check API token availability
1. Execute the Locust stress test with SSE support
1. Generate comprehensive reports in the `reports/` directory
## Configuration
The stress test configuration is in `locust.conf`:
```ini
users = 10 # Number of concurrent users
spawn-rate = 2 # Users spawned per second
run-time = 1m # Test duration (30s, 5m, 1h)
headless = true # Run without web UI
```
### Custom Question Sets
Modify the questions list in `sse_benchmark.py`:
```python
self.questions = [
"Your custom question 1",
"Your custom question 2",
# Add more questions...
]
```
## Understanding the Results
### Report Structure
After running the stress test, you'll find these files in the `reports/` directory:
- `locust_summary_YYYYMMDD_HHMMSS.txt` - Complete console output with metrics
- `locust_report_YYYYMMDD_HHMMSS.html` - Interactive HTML report with charts
- `locust_YYYYMMDD_HHMMSS_stats.csv` - CSV with detailed statistics
- `locust_YYYYMMDD_HHMMSS_stats_history.csv` - Time-series data
### Key Metrics
**Requests Per Second (RPS)**:
- **Excellent**: > 50 RPS
- **Good**: 20-50 RPS
- **Acceptable**: 10-20 RPS
- **Needs Improvement**: < 10 RPS
**Response Time Percentiles**:
- **P50 (Median)**: 50% of requests complete within this time
- **P95**: 95% of requests complete within this time
- **P99**: 99% of requests complete within this time
**Success Rate**:
- Should be > 99% for production readiness
- Lower rates indicate errors or timeouts
### Example Output
```text
============================================================
DIFY SSE STRESS TEST
============================================================
[2025-09-12 15:45:44,468] Starting test run with 10 users at 2 users/sec
============================================================
SSE Metrics | Active: 8 | Total Conn: 142 | Events: 2841
Rates: 2.4 conn/s | 47.3 events/s | TTFE: 43ms
============================================================
Type Name # reqs # fails | Avg Min Max Med | req/s failures/s
---------|------------------------------|--------|--------|--------|--------|--------|--------|--------|-----------
POST /v1/workflows/run 142 0(0.00%) | 41 18 192 38 | 2.37 0.00
---------|------------------------------|--------|--------|--------|--------|--------|--------|--------|-----------
Aggregated 142 0(0.00%) | 41 18 192 38 | 2.37 0.00
============================================================
FINAL RESULTS
============================================================
Total Connections: 142
Total Events: 2841
Average TTFE: 43 ms
============================================================
```
### How to Read the Results
**Live SSE Metrics Box (Updates every 10 seconds):**
```text
SSE Metrics | Active: 8 | Total Conn: 142 | Events: 2841
Rates: 2.4 conn/s | 47.3 events/s | TTFE: 43ms
```
- **Active**: Current number of open SSE connections
- **Total Conn**: Cumulative connections established
- **Events**: Total SSE events received
- **conn/s**: Connection establishment rate
- **events/s**: Event delivery rate
- **TTFE**: Average time to first event
**Standard Locust Table:**
```text
Type Name # reqs # fails | Avg Min Max Med | req/s
POST /v1/workflows/run 142 0(0.00%) | 41 18 192 38 | 2.37
```
- **Type**: Always POST for our SSE requests
- **Name**: The API endpoint being tested
- **# reqs**: Total requests made
- **# fails**: Failed requests (should be 0)
- **Avg/Min/Max/Med**: Response time percentiles (ms)
- **req/s**: Request throughput
**Performance Targets:**
**Good Performance**:
- Zero failures (0.00%)
- TTFE < 100ms
- Stable active connections
- Consistent event throughput
⚠️ **Warning Signs**:
- Failures > 1%
- TTFE > 500ms
- Dropping active connections
- Declining event rate over time
## Test Scenarios
### Light Load
```yaml
concurrency: 10
iterations: 100
```
### Normal Load
```yaml
concurrency: 100
iterations: 1000
```
### Heavy Load
```yaml
concurrency: 500
iterations: 5000
```
### Stress Test
```yaml
concurrency: 1000
iterations: 10000
```
## Performance Tuning
### API Server Optimization
**Gunicorn Tuning for Different Load Levels**:
```bash
# Light load (10-50 concurrent users)
uv run gunicorn --bind 0.0.0.0:5001 --workers 2 --worker-class gevent app:app
# Medium load (50-200 concurrent users)
uv run gunicorn --bind 0.0.0.0:5001 --workers 4 --worker-class gevent --worker-connections 1000 app:app
# Heavy load (200-1000 concurrent users)
uv run gunicorn --bind 0.0.0.0:5001 --workers 8 --worker-class gevent --worker-connections 2000 --max-requests 1000 app:app
```
**Worker calculation formula**:
- Workers = (2 × CPU cores) + 1
- For SSE/WebSocket: Use gevent worker class
- For CPU-bound tasks: Use sync workers
### Database Optimization
**PostgreSQL Connection Pool Tuning**:
For high-concurrency stress testing, increase the PostgreSQL max connections in `docker/middleware.env`:
```bash
# Edit docker/middleware.env
POSTGRES_MAX_CONNECTIONS=200 # Default is 100
# Recommended values for different load levels:
# Light load (10-50 users): 100 (default)
# Medium load (50-200 users): 200
# Heavy load (200-1000 users): 500
```
After changing, restart the PostgreSQL container:
```bash
docker compose -f docker/docker-compose.middleware.yaml down db
docker compose -f docker/docker-compose.middleware.yaml up -d db
```
**Note**: Each connection uses ~10MB of RAM. Ensure your database server has sufficient memory:
- 100 connections: ~1GB RAM
- 200 connections: ~2GB RAM
- 500 connections: ~5GB RAM
### System Optimizations
1. **Increase file descriptor limits**:
```bash
ulimit -n 65536
```
1. **TCP tuning for high concurrency** (Linux):
```bash
# Increase TCP buffer sizes
sudo sysctl -w net.core.rmem_max=134217728
sudo sysctl -w net.core.wmem_max=134217728
# Enable TCP fast open
sudo sysctl -w net.ipv4.tcp_fastopen=3
```
1. **macOS specific**:
```bash
# Increase maximum connections
sudo sysctl -w kern.ipc.somaxconn=2048
```
## Troubleshooting
### Common Issues
1. **"ModuleNotFoundError: No module named 'locust'"**:
```bash
# Dependencies are installed automatically, but if needed:
uv --project api add --dev locust sseclient-py
```
1. **"API key configuration not found"**:
```bash
# Run setup
python scripts/stress-test/setup_all.py
```
1. **Services not running**:
```bash
# Start Dify API with Gunicorn (production mode)
cd api
uv run gunicorn --bind 0.0.0.0:5001 --workers 4 --worker-class gevent app:app
# Start Mock OpenAI server
python scripts/stress-test/setup/mock_openai_server.py
```
1. **High error rate**:
- Reduce concurrency level
- Check system resources (CPU, memory)
- Review API server logs for errors
- Increase timeout values if needed
1. **Permission denied running script**:
```bash
chmod +x run_benchmark.sh
```
## Advanced Usage
### Running Multiple Iterations
```bash
# Run stress test 3 times with 60-second intervals
for i in {1..3}; do
echo "Run $i of 3"
./run_locust_stress_test.sh
sleep 60
done
```
### Custom Locust Options
Run Locust directly with custom options:
```bash
# With specific user count and spawn rate
uv run --project api python -m locust -f scripts/stress-test/sse_benchmark.py \
--host http://localhost:5001 --users 50 --spawn-rate 5
# Generate CSV reports
uv run --project api python -m locust -f scripts/stress-test/sse_benchmark.py \
--host http://localhost:5001 --csv reports/results
# Run for specific duration
uv run --project api python -m locust -f scripts/stress-test/sse_benchmark.py \
--host http://localhost:5001 --run-time 5m --headless
```
### Comparing Results
```bash
# Compare multiple stress test runs
ls -la reports/stress_test_*.txt | tail -5
```
## Interpreting Performance Issues
### High Response Times
Possible causes:
- Database query performance
- External API latency
- Insufficient server resources
- Network congestion
### Low Throughput (RPS < 10)
Check for:
- CPU bottlenecks
- Memory constraints
- Database connection pooling
- API rate limiting
### High Error Rate
Investigate:
- Server error logs
- Resource exhaustion
- Timeout configurations
- Connection limits
## Why Locust?
Locust was chosen over Drill for this stress test because:
1. **Proper SSE Support**: Correctly handles streaming responses without premature closure
1. **Custom Metrics**: Can track SSE-specific metrics like TTFE and stream duration
1. **Web UI**: Real-time monitoring and control via web interface
1. **Python Integration**: Seamlessly integrates with existing Python setup code
1. **Extensibility**: Easy to customize for specific testing scenarios
## Contributing
To improve the stress test suite:
1. Edit `stress_test.yml` for configuration changes
1. Modify `run_locust_stress_test.sh` for workflow improvements
1. Update question sets for better coverage
1. Add new metrics or analysis features