Files
urbanLifeline/dify/api/services/feedback_service.py

186 lines
6.8 KiB
Python
Raw Normal View History

2025-12-01 17:21:38 +08:00
import csv
import io
import json
from datetime import datetime
from flask import Response
from sqlalchemy import or_
from extensions.ext_database import db
from models.model import Account, App, Conversation, Message, MessageFeedback
class FeedbackService:
@staticmethod
def export_feedbacks(
app_id: str,
from_source: str | None = None,
rating: str | None = None,
has_comment: bool | None = None,
start_date: str | None = None,
end_date: str | None = None,
format_type: str = "csv",
):
"""
Export feedback data with message details for analysis
Args:
app_id: Application ID
from_source: Filter by feedback source ('user' or 'admin')
rating: Filter by rating ('like' or 'dislike')
has_comment: Only include feedback with comments
start_date: Start date filter (YYYY-MM-DD)
end_date: End date filter (YYYY-MM-DD)
format_type: Export format ('csv' or 'json')
"""
# Validate format early to avoid hitting DB when unnecessary
fmt = (format_type or "csv").lower()
if fmt not in {"csv", "json"}:
raise ValueError(f"Unsupported format: {format_type}")
# Build base query
query = (
db.session.query(MessageFeedback, Message, Conversation, App, Account)
.join(Message, MessageFeedback.message_id == Message.id)
.join(Conversation, MessageFeedback.conversation_id == Conversation.id)
.join(App, MessageFeedback.app_id == App.id)
.outerjoin(Account, MessageFeedback.from_account_id == Account.id)
.where(MessageFeedback.app_id == app_id)
)
# Apply filters
if from_source:
query = query.filter(MessageFeedback.from_source == from_source)
if rating:
query = query.filter(MessageFeedback.rating == rating)
if has_comment is not None:
if has_comment:
query = query.filter(MessageFeedback.content.isnot(None), MessageFeedback.content != "")
else:
query = query.filter(or_(MessageFeedback.content.is_(None), MessageFeedback.content == ""))
if start_date:
try:
start_dt = datetime.strptime(start_date, "%Y-%m-%d")
query = query.filter(MessageFeedback.created_at >= start_dt)
except ValueError:
raise ValueError(f"Invalid start_date format: {start_date}. Use YYYY-MM-DD")
if end_date:
try:
end_dt = datetime.strptime(end_date, "%Y-%m-%d")
query = query.filter(MessageFeedback.created_at <= end_dt)
except ValueError:
raise ValueError(f"Invalid end_date format: {end_date}. Use YYYY-MM-DD")
# Order by creation date (newest first)
query = query.order_by(MessageFeedback.created_at.desc())
# Execute query
results = query.all()
# Prepare data for export
export_data = []
for feedback, message, conversation, app, account in results:
# Get the user query from the message
user_query = message.query or message.inputs.get("query", "") if message.inputs else ""
# Format the feedback data
feedback_record = {
"feedback_id": str(feedback.id),
"app_name": app.name,
"app_id": str(app.id),
"conversation_id": str(conversation.id),
"conversation_name": conversation.name or "",
"message_id": str(message.id),
"user_query": user_query,
"ai_response": message.answer[:500] + "..."
if len(message.answer) > 500
else message.answer, # Truncate long responses
"feedback_rating": "👍" if feedback.rating == "like" else "👎",
"feedback_rating_raw": feedback.rating,
"feedback_comment": feedback.content or "",
"feedback_source": feedback.from_source,
"feedback_date": feedback.created_at.strftime("%Y-%m-%d %H:%M:%S"),
"message_date": message.created_at.strftime("%Y-%m-%d %H:%M:%S"),
"from_account_name": account.name if account else "",
"from_end_user_id": str(feedback.from_end_user_id) if feedback.from_end_user_id else "",
"has_comment": "Yes" if feedback.content and feedback.content.strip() else "No",
}
export_data.append(feedback_record)
# Export based on format
if fmt == "csv":
return FeedbackService._export_csv(export_data, app_id)
else: # fmt == "json"
return FeedbackService._export_json(export_data, app_id)
@staticmethod
def _export_csv(data, app_id):
"""Export data as CSV"""
if not data:
pass # allow empty CSV with headers only
# Create CSV in memory
output = io.StringIO()
# Define headers
headers = [
"feedback_id",
"app_name",
"app_id",
"conversation_id",
"conversation_name",
"message_id",
"user_query",
"ai_response",
"feedback_rating",
"feedback_rating_raw",
"feedback_comment",
"feedback_source",
"feedback_date",
"message_date",
"from_account_name",
"from_end_user_id",
"has_comment",
]
writer = csv.DictWriter(output, fieldnames=headers)
writer.writeheader()
writer.writerows(data)
# Create response without requiring app context
response = Response(output.getvalue(), mimetype="text/csv; charset=utf-8-sig")
response.headers["Content-Disposition"] = (
f"attachment; filename=dify_feedback_export_{app_id}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv"
)
return response
@staticmethod
def _export_json(data, app_id):
"""Export data as JSON"""
response_data = {
"export_info": {
"app_id": app_id,
"export_date": datetime.now().isoformat(),
"total_records": len(data),
"data_source": "dify_feedback_export",
},
"feedback_data": data,
}
# Create response without requiring app context
response = Response(
json.dumps(response_data, ensure_ascii=False, indent=2),
mimetype="application/json; charset=utf-8",
)
response.headers["Content-Disposition"] = (
f"attachment; filename=dify_feedback_export_{app_id}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
)
return response