This commit is contained in:
2025-12-01 17:21:38 +08:00
parent 32fee2b8ab
commit fab8c13cb3
7511 changed files with 996300 additions and 0 deletions

View File

View File

View File

@@ -0,0 +1,528 @@
import json
import logging
import uuid
from typing import Union, cast
from sqlalchemy import select
from core.agent.entities import AgentEntity, AgentToolEntity
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfig
from core.app.apps.base_app_queue_manager import AppQueueManager
from core.app.apps.base_app_runner import AppRunner
from core.app.entities.app_invoke_entities import (
AgentChatAppGenerateEntity,
ModelConfigWithCredentialsEntity,
)
from core.callback_handler.agent_tool_callback_handler import DifyAgentCallbackHandler
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
from core.file import file_manager
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance
from core.model_runtime.entities import (
AssistantPromptMessage,
LLMUsage,
PromptMessage,
PromptMessageTool,
SystemPromptMessage,
TextPromptMessageContent,
ToolPromptMessage,
UserPromptMessage,
)
from core.model_runtime.entities.message_entities import ImagePromptMessageContent, PromptMessageContentUnionTypes
from core.model_runtime.entities.model_entities import ModelFeature
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.prompt.utils.extract_thread_messages import extract_thread_messages
from core.tools.__base.tool import Tool
from core.tools.entities.tool_entities import (
ToolParameter,
)
from core.tools.tool_manager import ToolManager
from core.tools.utils.dataset_retriever_tool import DatasetRetrieverTool
from extensions.ext_database import db
from factories import file_factory
from models.model import Conversation, Message, MessageAgentThought, MessageFile
logger = logging.getLogger(__name__)
class BaseAgentRunner(AppRunner):
def __init__(
self,
*,
tenant_id: str,
application_generate_entity: AgentChatAppGenerateEntity,
conversation: Conversation,
app_config: AgentChatAppConfig,
model_config: ModelConfigWithCredentialsEntity,
config: AgentEntity,
queue_manager: AppQueueManager,
message: Message,
user_id: str,
model_instance: ModelInstance,
memory: TokenBufferMemory | None = None,
prompt_messages: list[PromptMessage] | None = None,
):
self.tenant_id = tenant_id
self.application_generate_entity = application_generate_entity
self.conversation = conversation
self.app_config = app_config
self.model_config = model_config
self.config = config
self.queue_manager = queue_manager
self.message = message
self.user_id = user_id
self.memory = memory
self.history_prompt_messages = self.organize_agent_history(prompt_messages=prompt_messages or [])
self.model_instance = model_instance
# init callback
self.agent_callback = DifyAgentCallbackHandler()
# init dataset tools
hit_callback = DatasetIndexToolCallbackHandler(
queue_manager=queue_manager,
app_id=self.app_config.app_id,
message_id=message.id,
user_id=user_id,
invoke_from=self.application_generate_entity.invoke_from,
)
self.dataset_tools = DatasetRetrieverTool.get_dataset_tools(
tenant_id=tenant_id,
dataset_ids=app_config.dataset.dataset_ids if app_config.dataset else [],
retrieve_config=app_config.dataset.retrieve_config if app_config.dataset else None,
return_resource=(
app_config.additional_features.show_retrieve_source if app_config.additional_features else False
),
invoke_from=application_generate_entity.invoke_from,
hit_callback=hit_callback,
user_id=user_id,
inputs=cast(dict, application_generate_entity.inputs),
)
# get how many agent thoughts have been created
self.agent_thought_count = (
db.session.query(MessageAgentThought)
.where(
MessageAgentThought.message_id == self.message.id,
)
.count()
)
db.session.close()
# check if model supports stream tool call
llm_model = cast(LargeLanguageModel, model_instance.model_type_instance)
model_schema = llm_model.get_model_schema(model_instance.model, model_instance.credentials)
features = model_schema.features if model_schema and model_schema.features else []
self.stream_tool_call = ModelFeature.STREAM_TOOL_CALL in features
self.files = application_generate_entity.files if ModelFeature.VISION in features else []
self.query: str | None = ""
self._current_thoughts: list[PromptMessage] = []
def _repack_app_generate_entity(
self, app_generate_entity: AgentChatAppGenerateEntity
) -> AgentChatAppGenerateEntity:
"""
Repack app generate entity
"""
if app_generate_entity.app_config.prompt_template.simple_prompt_template is None:
app_generate_entity.app_config.prompt_template.simple_prompt_template = ""
return app_generate_entity
def _convert_tool_to_prompt_message_tool(self, tool: AgentToolEntity) -> tuple[PromptMessageTool, Tool]:
"""
convert tool to prompt message tool
"""
tool_entity = ToolManager.get_agent_tool_runtime(
tenant_id=self.tenant_id,
app_id=self.app_config.app_id,
agent_tool=tool,
invoke_from=self.application_generate_entity.invoke_from,
)
assert tool_entity.entity.description
message_tool = PromptMessageTool(
name=tool.tool_name,
description=tool_entity.entity.description.llm,
parameters={
"type": "object",
"properties": {},
"required": [],
},
)
parameters = tool_entity.get_merged_runtime_parameters()
for parameter in parameters:
if parameter.form != ToolParameter.ToolParameterForm.LLM:
continue
parameter_type = parameter.type.as_normal_type()
if parameter.type in {
ToolParameter.ToolParameterType.SYSTEM_FILES,
ToolParameter.ToolParameterType.FILE,
ToolParameter.ToolParameterType.FILES,
}:
continue
enum = []
if parameter.type == ToolParameter.ToolParameterType.SELECT:
enum = [option.value for option in parameter.options] if parameter.options else []
message_tool.parameters["properties"][parameter.name] = (
{
"type": parameter_type,
"description": parameter.llm_description or "",
}
if parameter.input_schema is None
else parameter.input_schema
)
if len(enum) > 0:
message_tool.parameters["properties"][parameter.name]["enum"] = enum
if parameter.required:
message_tool.parameters["required"].append(parameter.name)
return message_tool, tool_entity
def _convert_dataset_retriever_tool_to_prompt_message_tool(self, tool: DatasetRetrieverTool) -> PromptMessageTool:
"""
convert dataset retriever tool to prompt message tool
"""
assert tool.entity.description
prompt_tool = PromptMessageTool(
name=tool.entity.identity.name,
description=tool.entity.description.llm,
parameters={
"type": "object",
"properties": {},
"required": [],
},
)
for parameter in tool.get_runtime_parameters():
parameter_type = "string"
prompt_tool.parameters["properties"][parameter.name] = {
"type": parameter_type,
"description": parameter.llm_description or "",
}
if parameter.required:
if parameter.name not in prompt_tool.parameters["required"]:
prompt_tool.parameters["required"].append(parameter.name)
return prompt_tool
def _init_prompt_tools(self) -> tuple[dict[str, Tool], list[PromptMessageTool]]:
"""
Init tools
"""
tool_instances = {}
prompt_messages_tools = []
for tool in self.app_config.agent.tools or [] if self.app_config.agent else []:
try:
prompt_tool, tool_entity = self._convert_tool_to_prompt_message_tool(tool)
except Exception:
# api tool may be deleted
continue
# save tool entity
tool_instances[tool.tool_name] = tool_entity
# save prompt tool
prompt_messages_tools.append(prompt_tool)
# convert dataset tools into ModelRuntime Tool format
for dataset_tool in self.dataset_tools:
prompt_tool = self._convert_dataset_retriever_tool_to_prompt_message_tool(dataset_tool)
# save prompt tool
prompt_messages_tools.append(prompt_tool)
# save tool entity
tool_instances[dataset_tool.entity.identity.name] = dataset_tool
return tool_instances, prompt_messages_tools
def update_prompt_message_tool(self, tool: Tool, prompt_tool: PromptMessageTool) -> PromptMessageTool:
"""
update prompt message tool
"""
# try to get tool runtime parameters
tool_runtime_parameters = tool.get_runtime_parameters()
for parameter in tool_runtime_parameters:
if parameter.form != ToolParameter.ToolParameterForm.LLM:
continue
parameter_type = parameter.type.as_normal_type()
if parameter.type in {
ToolParameter.ToolParameterType.SYSTEM_FILES,
ToolParameter.ToolParameterType.FILE,
ToolParameter.ToolParameterType.FILES,
}:
continue
enum = []
if parameter.type == ToolParameter.ToolParameterType.SELECT:
enum = [option.value for option in parameter.options] if parameter.options else []
prompt_tool.parameters["properties"][parameter.name] = (
{
"type": parameter_type,
"description": parameter.llm_description or "",
}
if parameter.input_schema is None
else parameter.input_schema
)
if len(enum) > 0:
prompt_tool.parameters["properties"][parameter.name]["enum"] = enum
if parameter.required:
if parameter.name not in prompt_tool.parameters["required"]:
prompt_tool.parameters["required"].append(parameter.name)
return prompt_tool
def create_agent_thought(
self, message_id: str, message: str, tool_name: str, tool_input: str, messages_ids: list[str]
) -> str:
"""
Create agent thought
"""
thought = MessageAgentThought(
message_id=message_id,
message_chain_id=None,
thought="",
tool=tool_name,
tool_labels_str="{}",
tool_meta_str="{}",
tool_input=tool_input,
message=message,
message_token=0,
message_unit_price=0,
message_price_unit=0,
message_files=json.dumps(messages_ids) if messages_ids else "",
answer="",
observation="",
answer_token=0,
answer_unit_price=0,
answer_price_unit=0,
tokens=0,
total_price=0,
position=self.agent_thought_count + 1,
currency="USD",
latency=0,
created_by_role="account",
created_by=self.user_id,
)
db.session.add(thought)
db.session.commit()
agent_thought_id = str(thought.id)
self.agent_thought_count += 1
db.session.close()
return agent_thought_id
def save_agent_thought(
self,
agent_thought_id: str,
tool_name: str | None,
tool_input: Union[str, dict, None],
thought: str | None,
observation: Union[str, dict, None],
tool_invoke_meta: Union[str, dict, None],
answer: str | None,
messages_ids: list[str],
llm_usage: LLMUsage | None = None,
):
"""
Save agent thought
"""
stmt = select(MessageAgentThought).where(MessageAgentThought.id == agent_thought_id)
agent_thought = db.session.scalar(stmt)
if not agent_thought:
raise ValueError("agent thought not found")
if thought:
agent_thought.thought += thought
if tool_name:
agent_thought.tool = tool_name
if tool_input:
if isinstance(tool_input, dict):
try:
tool_input = json.dumps(tool_input, ensure_ascii=False)
except Exception:
tool_input = json.dumps(tool_input)
agent_thought.tool_input = tool_input
if observation:
if isinstance(observation, dict):
try:
observation = json.dumps(observation, ensure_ascii=False)
except Exception:
observation = json.dumps(observation)
agent_thought.observation = observation
if answer:
agent_thought.answer = answer
if messages_ids is not None and len(messages_ids) > 0:
agent_thought.message_files = json.dumps(messages_ids)
if llm_usage:
agent_thought.message_token = llm_usage.prompt_tokens
agent_thought.message_price_unit = llm_usage.prompt_price_unit
agent_thought.message_unit_price = llm_usage.prompt_unit_price
agent_thought.answer_token = llm_usage.completion_tokens
agent_thought.answer_price_unit = llm_usage.completion_price_unit
agent_thought.answer_unit_price = llm_usage.completion_unit_price
agent_thought.tokens = llm_usage.total_tokens
agent_thought.total_price = llm_usage.total_price
# check if tool labels is not empty
labels = agent_thought.tool_labels or {}
tools = agent_thought.tool.split(";") if agent_thought.tool else []
for tool in tools:
if not tool:
continue
if tool not in labels:
tool_label = ToolManager.get_tool_label(tool)
if tool_label:
labels[tool] = tool_label.to_dict()
else:
labels[tool] = {"en_US": tool, "zh_Hans": tool}
agent_thought.tool_labels_str = json.dumps(labels)
if tool_invoke_meta is not None:
if isinstance(tool_invoke_meta, dict):
try:
tool_invoke_meta = json.dumps(tool_invoke_meta, ensure_ascii=False)
except Exception:
tool_invoke_meta = json.dumps(tool_invoke_meta)
agent_thought.tool_meta_str = tool_invoke_meta
db.session.commit()
db.session.close()
def organize_agent_history(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
Organize agent history
"""
result: list[PromptMessage] = []
# check if there is a system message in the beginning of the conversation
for prompt_message in prompt_messages:
if isinstance(prompt_message, SystemPromptMessage):
result.append(prompt_message)
messages = (
(
db.session.execute(
select(Message)
.where(Message.conversation_id == self.message.conversation_id)
.order_by(Message.created_at.desc())
)
)
.scalars()
.all()
)
messages = list(reversed(extract_thread_messages(messages)))
for message in messages:
if message.id == self.message.id:
continue
result.append(self.organize_agent_user_prompt(message))
agent_thoughts: list[MessageAgentThought] = message.agent_thoughts
if agent_thoughts:
for agent_thought in agent_thoughts:
tools = agent_thought.tool
if tools:
tools = tools.split(";")
tool_calls: list[AssistantPromptMessage.ToolCall] = []
tool_call_response: list[ToolPromptMessage] = []
try:
tool_inputs = json.loads(agent_thought.tool_input)
except Exception:
tool_inputs = {tool: {} for tool in tools}
try:
tool_responses = json.loads(agent_thought.observation)
except Exception:
tool_responses = dict.fromkeys(tools, agent_thought.observation)
for tool in tools:
# generate a uuid for tool call
tool_call_id = str(uuid.uuid4())
tool_calls.append(
AssistantPromptMessage.ToolCall(
id=tool_call_id,
type="function",
function=AssistantPromptMessage.ToolCall.ToolCallFunction(
name=tool,
arguments=json.dumps(tool_inputs.get(tool, {})),
),
)
)
tool_call_response.append(
ToolPromptMessage(
content=tool_responses.get(tool, agent_thought.observation),
name=tool,
tool_call_id=tool_call_id,
)
)
result.extend(
[
AssistantPromptMessage(
content=agent_thought.thought,
tool_calls=tool_calls,
),
*tool_call_response,
]
)
if not tools:
result.append(AssistantPromptMessage(content=agent_thought.thought))
else:
if message.answer:
result.append(AssistantPromptMessage(content=message.answer))
db.session.close()
return result
def organize_agent_user_prompt(self, message: Message) -> UserPromptMessage:
stmt = select(MessageFile).where(MessageFile.message_id == message.id)
files = db.session.scalars(stmt).all()
if not files:
return UserPromptMessage(content=message.query)
if message.app_model_config:
file_extra_config = FileUploadConfigManager.convert(message.app_model_config.to_dict())
else:
file_extra_config = None
if not file_extra_config:
return UserPromptMessage(content=message.query)
image_detail_config = file_extra_config.image_config.detail if file_extra_config.image_config else None
image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
file_objs = file_factory.build_from_message_files(
message_files=files, tenant_id=self.tenant_id, config=file_extra_config
)
if not file_objs:
return UserPromptMessage(content=message.query)
prompt_message_contents: list[PromptMessageContentUnionTypes] = []
for file in file_objs:
prompt_message_contents.append(
file_manager.to_prompt_message_content(
file,
image_detail_config=image_detail_config,
)
)
prompt_message_contents.append(TextPromptMessageContent(data=message.query))
return UserPromptMessage(content=prompt_message_contents)

View File

@@ -0,0 +1,428 @@
import json
from abc import ABC, abstractmethod
from collections.abc import Generator, Mapping, Sequence
from typing import Any
from core.agent.base_agent_runner import BaseAgentRunner
from core.agent.entities import AgentScratchpadUnit
from core.agent.output_parser.cot_output_parser import CotAgentOutputParser
from core.app.apps.base_app_queue_manager import PublishFrom
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
PromptMessage,
PromptMessageTool,
ToolPromptMessage,
UserPromptMessage,
)
from core.ops.ops_trace_manager import TraceQueueManager
from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
from core.tools.__base.tool import Tool
from core.tools.entities.tool_entities import ToolInvokeMeta
from core.tools.tool_engine import ToolEngine
from models.model import Message
class CotAgentRunner(BaseAgentRunner, ABC):
_is_first_iteration = True
_ignore_observation_providers = ["wenxin"]
_historic_prompt_messages: list[PromptMessage]
_agent_scratchpad: list[AgentScratchpadUnit]
_instruction: str
_query: str
_prompt_messages_tools: Sequence[PromptMessageTool]
def run(
self,
message: Message,
query: str,
inputs: Mapping[str, str],
) -> Generator:
"""
Run Cot agent application
"""
app_generate_entity = self.application_generate_entity
self._repack_app_generate_entity(app_generate_entity)
self._init_react_state(query)
trace_manager = app_generate_entity.trace_manager
# check model mode
if "Observation" not in app_generate_entity.model_conf.stop:
if app_generate_entity.model_conf.provider not in self._ignore_observation_providers:
app_generate_entity.model_conf.stop.append("Observation")
app_config = self.app_config
assert app_config.agent
# init instruction
inputs = inputs or {}
instruction = app_config.prompt_template.simple_prompt_template or ""
self._instruction = self._fill_in_inputs_from_external_data_tools(instruction, inputs)
iteration_step = 1
max_iteration_steps = min(app_config.agent.max_iteration, 99) + 1
# convert tools into ModelRuntime Tool format
tool_instances, prompt_messages_tools = self._init_prompt_tools()
self._prompt_messages_tools = prompt_messages_tools
function_call_state = True
llm_usage: dict[str, LLMUsage | None] = {"usage": None}
final_answer = ""
prompt_messages: list = [] # Initialize prompt_messages
agent_thought_id = "" # Initialize agent_thought_id
def increase_usage(final_llm_usage_dict: dict[str, LLMUsage | None], usage: LLMUsage):
if not final_llm_usage_dict["usage"]:
final_llm_usage_dict["usage"] = usage
else:
llm_usage = final_llm_usage_dict["usage"]
llm_usage.prompt_tokens += usage.prompt_tokens
llm_usage.completion_tokens += usage.completion_tokens
llm_usage.total_tokens += usage.total_tokens
llm_usage.prompt_price += usage.prompt_price
llm_usage.completion_price += usage.completion_price
llm_usage.total_price += usage.total_price
model_instance = self.model_instance
while function_call_state and iteration_step <= max_iteration_steps:
# continue to run until there is not any tool call
function_call_state = False
if iteration_step == max_iteration_steps:
# the last iteration, remove all tools
self._prompt_messages_tools = []
message_file_ids: list[str] = []
agent_thought_id = self.create_agent_thought(
message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids
)
if iteration_step > 1:
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
# recalc llm max tokens
prompt_messages = self._organize_prompt_messages()
self.recalc_llm_max_tokens(self.model_config, prompt_messages)
# invoke model
chunks = model_instance.invoke_llm(
prompt_messages=prompt_messages,
model_parameters=app_generate_entity.model_conf.parameters,
tools=[],
stop=app_generate_entity.model_conf.stop,
stream=True,
user=self.user_id,
callbacks=[],
)
usage_dict: dict[str, LLMUsage | None] = {}
react_chunks = CotAgentOutputParser.handle_react_stream_output(chunks, usage_dict)
scratchpad = AgentScratchpadUnit(
agent_response="",
thought="",
action_str="",
observation="",
action=None,
)
# publish agent thought if it's first iteration
if iteration_step == 1:
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
for chunk in react_chunks:
if isinstance(chunk, AgentScratchpadUnit.Action):
action = chunk
# detect action
assert scratchpad.agent_response is not None
scratchpad.agent_response += json.dumps(chunk.model_dump())
scratchpad.action_str = json.dumps(chunk.model_dump())
scratchpad.action = action
else:
assert scratchpad.agent_response is not None
scratchpad.agent_response += chunk
assert scratchpad.thought is not None
scratchpad.thought += chunk
yield LLMResultChunk(
model=self.model_config.model,
prompt_messages=prompt_messages,
system_fingerprint="",
delta=LLMResultChunkDelta(index=0, message=AssistantPromptMessage(content=chunk), usage=None),
)
assert scratchpad.thought is not None
scratchpad.thought = scratchpad.thought.strip() or "I am thinking about how to help you"
self._agent_scratchpad.append(scratchpad)
# get llm usage
if "usage" in usage_dict:
if usage_dict["usage"] is not None:
increase_usage(llm_usage, usage_dict["usage"])
else:
usage_dict["usage"] = LLMUsage.empty_usage()
self.save_agent_thought(
agent_thought_id=agent_thought_id,
tool_name=(scratchpad.action.action_name if scratchpad.action and not scratchpad.is_final() else ""),
tool_input={scratchpad.action.action_name: scratchpad.action.action_input} if scratchpad.action else {},
tool_invoke_meta={},
thought=scratchpad.thought or "",
observation="",
answer=scratchpad.agent_response or "",
messages_ids=[],
llm_usage=usage_dict["usage"],
)
if not scratchpad.is_final():
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
if not scratchpad.action:
# failed to extract action, return final answer directly
final_answer = ""
else:
if scratchpad.action.action_name.lower() == "final answer":
# action is final answer, return final answer directly
try:
if isinstance(scratchpad.action.action_input, dict):
final_answer = json.dumps(scratchpad.action.action_input, ensure_ascii=False)
elif isinstance(scratchpad.action.action_input, str):
final_answer = scratchpad.action.action_input
else:
final_answer = f"{scratchpad.action.action_input}"
except TypeError:
final_answer = f"{scratchpad.action.action_input}"
else:
function_call_state = True
# action is tool call, invoke tool
tool_invoke_response, tool_invoke_meta = self._handle_invoke_action(
action=scratchpad.action,
tool_instances=tool_instances,
message_file_ids=message_file_ids,
trace_manager=trace_manager,
)
scratchpad.observation = tool_invoke_response
scratchpad.agent_response = tool_invoke_response
self.save_agent_thought(
agent_thought_id=agent_thought_id,
tool_name=scratchpad.action.action_name,
tool_input={scratchpad.action.action_name: scratchpad.action.action_input},
thought=scratchpad.thought or "",
observation={scratchpad.action.action_name: tool_invoke_response},
tool_invoke_meta={scratchpad.action.action_name: tool_invoke_meta.to_dict()},
answer=scratchpad.agent_response,
messages_ids=message_file_ids,
llm_usage=usage_dict["usage"],
)
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
# update prompt tool message
for prompt_tool in self._prompt_messages_tools:
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
iteration_step += 1
yield LLMResultChunk(
model=model_instance.model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(
index=0, message=AssistantPromptMessage(content=final_answer), usage=llm_usage["usage"]
),
system_fingerprint="",
)
# save agent thought
self.save_agent_thought(
agent_thought_id=agent_thought_id,
tool_name="",
tool_input={},
tool_invoke_meta={},
thought=final_answer,
observation={},
answer=final_answer,
messages_ids=[],
)
# publish end event
self.queue_manager.publish(
QueueMessageEndEvent(
llm_result=LLMResult(
model=model_instance.model,
prompt_messages=prompt_messages,
message=AssistantPromptMessage(content=final_answer),
usage=llm_usage["usage"] or LLMUsage.empty_usage(),
system_fingerprint="",
)
),
PublishFrom.APPLICATION_MANAGER,
)
def _handle_invoke_action(
self,
action: AgentScratchpadUnit.Action,
tool_instances: Mapping[str, Tool],
message_file_ids: list[str],
trace_manager: TraceQueueManager | None = None,
) -> tuple[str, ToolInvokeMeta]:
"""
handle invoke action
:param action: action
:param tool_instances: tool instances
:param message_file_ids: message file ids
:param trace_manager: trace manager
:return: observation, meta
"""
# action is tool call, invoke tool
tool_call_name = action.action_name
tool_call_args = action.action_input
tool_instance = tool_instances.get(tool_call_name)
if not tool_instance:
answer = f"there is not a tool named {tool_call_name}"
return answer, ToolInvokeMeta.error_instance(answer)
if isinstance(tool_call_args, str):
try:
tool_call_args = json.loads(tool_call_args)
except json.JSONDecodeError:
pass
# invoke tool
tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
tool=tool_instance,
tool_parameters=tool_call_args,
user_id=self.user_id,
tenant_id=self.tenant_id,
message=self.message,
invoke_from=self.application_generate_entity.invoke_from,
agent_tool_callback=self.agent_callback,
trace_manager=trace_manager,
)
# publish files
for message_file_id in message_files:
# publish message file
self.queue_manager.publish(
QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER
)
# add message file ids
message_file_ids.append(message_file_id)
return tool_invoke_response, tool_invoke_meta
def _convert_dict_to_action(self, action: dict) -> AgentScratchpadUnit.Action:
"""
convert dict to action
"""
return AgentScratchpadUnit.Action(action_name=action["action"], action_input=action["action_input"])
def _fill_in_inputs_from_external_data_tools(self, instruction: str, inputs: Mapping[str, Any]) -> str:
"""
fill in inputs from external data tools
"""
for key, value in inputs.items():
try:
instruction = instruction.replace(f"{{{{{key}}}}}", str(value))
except Exception:
continue
return instruction
def _init_react_state(self, query):
"""
init agent scratchpad
"""
self._query = query
self._agent_scratchpad = []
self._historic_prompt_messages = self._organize_historic_prompt_messages()
@abstractmethod
def _organize_prompt_messages(self) -> list[PromptMessage]:
"""
organize prompt messages
"""
def _format_assistant_message(self, agent_scratchpad: list[AgentScratchpadUnit]) -> str:
"""
format assistant message
"""
message = ""
for scratchpad in agent_scratchpad:
if scratchpad.is_final():
message += f"Final Answer: {scratchpad.agent_response}"
else:
message += f"Thought: {scratchpad.thought}\n\n"
if scratchpad.action_str:
message += f"Action: {scratchpad.action_str}\n\n"
if scratchpad.observation:
message += f"Observation: {scratchpad.observation}\n\n"
return message
def _organize_historic_prompt_messages(
self, current_session_messages: list[PromptMessage] | None = None
) -> list[PromptMessage]:
"""
organize historic prompt messages
"""
result: list[PromptMessage] = []
scratchpads: list[AgentScratchpadUnit] = []
current_scratchpad: AgentScratchpadUnit | None = None
for message in self.history_prompt_messages:
if isinstance(message, AssistantPromptMessage):
if not current_scratchpad:
assert isinstance(message.content, str)
current_scratchpad = AgentScratchpadUnit(
agent_response=message.content,
thought=message.content or "I am thinking about how to help you",
action_str="",
action=None,
observation=None,
)
scratchpads.append(current_scratchpad)
if message.tool_calls:
try:
current_scratchpad.action = AgentScratchpadUnit.Action(
action_name=message.tool_calls[0].function.name,
action_input=json.loads(message.tool_calls[0].function.arguments),
)
current_scratchpad.action_str = json.dumps(current_scratchpad.action.to_dict())
except:
pass
elif isinstance(message, ToolPromptMessage):
if current_scratchpad:
assert isinstance(message.content, str)
current_scratchpad.observation = message.content
else:
raise NotImplementedError("expected str type")
elif isinstance(message, UserPromptMessage):
if scratchpads:
result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads)))
scratchpads = []
current_scratchpad = None
result.append(message)
if scratchpads:
result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads)))
historic_prompts = AgentHistoryPromptTransform(
model_config=self.model_config,
prompt_messages=current_session_messages or [],
history_messages=result,
memory=self.memory,
).get_prompt()
return historic_prompts

View File

@@ -0,0 +1,118 @@
import json
from core.agent.cot_agent_runner import CotAgentRunner
from core.file import file_manager
from core.model_runtime.entities import (
AssistantPromptMessage,
PromptMessage,
SystemPromptMessage,
TextPromptMessageContent,
UserPromptMessage,
)
from core.model_runtime.entities.message_entities import ImagePromptMessageContent, PromptMessageContentUnionTypes
from core.model_runtime.utils.encoders import jsonable_encoder
class CotChatAgentRunner(CotAgentRunner):
def _organize_system_prompt(self) -> SystemPromptMessage:
"""
Organize system prompt
"""
assert self.app_config.agent
assert self.app_config.agent.prompt
prompt_entity = self.app_config.agent.prompt
if not prompt_entity:
raise ValueError("Agent prompt configuration is not set")
first_prompt = prompt_entity.first_prompt
system_prompt = (
first_prompt.replace("{{instruction}}", self._instruction)
.replace("{{tools}}", json.dumps(jsonable_encoder(self._prompt_messages_tools)))
.replace("{{tool_names}}", ", ".join([tool.name for tool in self._prompt_messages_tools]))
)
return SystemPromptMessage(content=system_prompt)
def _organize_user_query(self, query, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
Organize user query
"""
if self.files:
# get image detail config
image_detail_config = (
self.application_generate_entity.file_upload_config.image_config.detail
if (
self.application_generate_entity.file_upload_config
and self.application_generate_entity.file_upload_config.image_config
)
else None
)
image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
prompt_message_contents: list[PromptMessageContentUnionTypes] = []
for file in self.files:
prompt_message_contents.append(
file_manager.to_prompt_message_content(
file,
image_detail_config=image_detail_config,
)
)
prompt_message_contents.append(TextPromptMessageContent(data=query))
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
else:
prompt_messages.append(UserPromptMessage(content=query))
return prompt_messages
def _organize_prompt_messages(self) -> list[PromptMessage]:
"""
Organize
"""
# organize system prompt
system_message = self._organize_system_prompt()
# organize current assistant messages
agent_scratchpad = self._agent_scratchpad
if not agent_scratchpad:
assistant_messages = []
else:
assistant_message = AssistantPromptMessage(content="")
assistant_message.content = "" # FIXME: type check tell mypy that assistant_message.content is str
for unit in agent_scratchpad:
if unit.is_final():
assert isinstance(assistant_message.content, str)
assistant_message.content += f"Final Answer: {unit.agent_response}"
else:
assert isinstance(assistant_message.content, str)
assistant_message.content += f"Thought: {unit.thought}\n\n"
if unit.action_str:
assistant_message.content += f"Action: {unit.action_str}\n\n"
if unit.observation:
assistant_message.content += f"Observation: {unit.observation}\n\n"
assistant_messages = [assistant_message]
# query messages
query_messages = self._organize_user_query(self._query, [])
if assistant_messages:
# organize historic prompt messages
historic_messages = self._organize_historic_prompt_messages(
[system_message, *query_messages, *assistant_messages, UserPromptMessage(content="continue")]
)
messages = [
system_message,
*historic_messages,
*query_messages,
*assistant_messages,
UserPromptMessage(content="continue"),
]
else:
# organize historic prompt messages
historic_messages = self._organize_historic_prompt_messages([system_message, *query_messages])
messages = [system_message, *historic_messages, *query_messages]
# join all messages
return messages

View File

@@ -0,0 +1,87 @@
import json
from core.agent.cot_agent_runner import CotAgentRunner
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
PromptMessage,
TextPromptMessageContent,
UserPromptMessage,
)
from core.model_runtime.utils.encoders import jsonable_encoder
class CotCompletionAgentRunner(CotAgentRunner):
def _organize_instruction_prompt(self) -> str:
"""
Organize instruction prompt
"""
if self.app_config.agent is None:
raise ValueError("Agent configuration is not set")
prompt_entity = self.app_config.agent.prompt
if prompt_entity is None:
raise ValueError("prompt entity is not set")
first_prompt = prompt_entity.first_prompt
system_prompt = (
first_prompt.replace("{{instruction}}", self._instruction)
.replace("{{tools}}", json.dumps(jsonable_encoder(self._prompt_messages_tools)))
.replace("{{tool_names}}", ", ".join([tool.name for tool in self._prompt_messages_tools]))
)
return system_prompt
def _organize_historic_prompt(self, current_session_messages: list[PromptMessage] | None = None) -> str:
"""
Organize historic prompt
"""
historic_prompt_messages = self._organize_historic_prompt_messages(current_session_messages)
historic_prompt = ""
for message in historic_prompt_messages:
if isinstance(message, UserPromptMessage):
historic_prompt += f"Question: {message.content}\n\n"
elif isinstance(message, AssistantPromptMessage):
if isinstance(message.content, str):
historic_prompt += message.content + "\n\n"
elif isinstance(message.content, list):
for content in message.content:
if not isinstance(content, TextPromptMessageContent):
continue
historic_prompt += content.data
return historic_prompt
def _organize_prompt_messages(self) -> list[PromptMessage]:
"""
Organize prompt messages
"""
# organize system prompt
system_prompt = self._organize_instruction_prompt()
# organize historic prompt messages
historic_prompt = self._organize_historic_prompt()
# organize current assistant messages
agent_scratchpad = self._agent_scratchpad
assistant_prompt = ""
for unit in agent_scratchpad or []:
if unit.is_final():
assistant_prompt += f"Final Answer: {unit.agent_response}"
else:
assistant_prompt += f"Thought: {unit.thought}\n\n"
if unit.action_str:
assistant_prompt += f"Action: {unit.action_str}\n\n"
if unit.observation:
assistant_prompt += f"Observation: {unit.observation}\n\n"
# query messages
query_prompt = f"Question: {self._query}"
# join all messages
prompt = (
system_prompt.replace("{{historic_messages}}", historic_prompt)
.replace("{{agent_scratchpad}}", assistant_prompt)
.replace("{{query}}", query_prompt)
)
return [UserPromptMessage(content=prompt)]

View File

@@ -0,0 +1,94 @@
from enum import StrEnum
from typing import Any, Union
from pydantic import BaseModel, Field
from core.tools.entities.tool_entities import ToolInvokeMessage, ToolProviderType
class AgentToolEntity(BaseModel):
"""
Agent Tool Entity.
"""
provider_type: ToolProviderType
provider_id: str
tool_name: str
tool_parameters: dict[str, Any] = Field(default_factory=dict)
plugin_unique_identifier: str | None = None
credential_id: str | None = None
class AgentPromptEntity(BaseModel):
"""
Agent Prompt Entity.
"""
first_prompt: str
next_iteration: str
class AgentScratchpadUnit(BaseModel):
"""
Agent First Prompt Entity.
"""
class Action(BaseModel):
"""
Action Entity.
"""
action_name: str
action_input: Union[dict, str]
def to_dict(self):
"""
Convert to dictionary.
"""
return {
"action": self.action_name,
"action_input": self.action_input,
}
agent_response: str | None = None
thought: str | None = None
action_str: str | None = None
observation: str | None = None
action: Action | None = None
def is_final(self) -> bool:
"""
Check if the scratchpad unit is final.
"""
return self.action is None or (
"final" in self.action.action_name.lower() and "answer" in self.action.action_name.lower()
)
class AgentEntity(BaseModel):
"""
Agent Entity.
"""
class Strategy(StrEnum):
"""
Agent Strategy.
"""
CHAIN_OF_THOUGHT = "chain-of-thought"
FUNCTION_CALLING = "function-calling"
provider: str
model: str
strategy: Strategy
prompt: AgentPromptEntity | None = None
tools: list[AgentToolEntity] | None = None
max_iteration: int = 10
class AgentInvokeMessage(ToolInvokeMessage):
"""
Agent Invoke Message.
"""
pass

View File

@@ -0,0 +1,465 @@
import json
import logging
from collections.abc import Generator
from copy import deepcopy
from typing import Any, Union
from core.agent.base_agent_runner import BaseAgentRunner
from core.app.apps.base_app_queue_manager import PublishFrom
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
from core.file import file_manager
from core.model_runtime.entities import (
AssistantPromptMessage,
LLMResult,
LLMResultChunk,
LLMResultChunkDelta,
LLMUsage,
PromptMessage,
PromptMessageContentType,
SystemPromptMessage,
TextPromptMessageContent,
ToolPromptMessage,
UserPromptMessage,
)
from core.model_runtime.entities.message_entities import ImagePromptMessageContent, PromptMessageContentUnionTypes
from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
from core.tools.entities.tool_entities import ToolInvokeMeta
from core.tools.tool_engine import ToolEngine
from models.model import Message
logger = logging.getLogger(__name__)
class FunctionCallAgentRunner(BaseAgentRunner):
def run(self, message: Message, query: str, **kwargs: Any) -> Generator[LLMResultChunk, None, None]:
"""
Run FunctionCall agent application
"""
self.query = query
app_generate_entity = self.application_generate_entity
app_config = self.app_config
assert app_config is not None, "app_config is required"
assert app_config.agent is not None, "app_config.agent is required"
# convert tools into ModelRuntime Tool format
tool_instances, prompt_messages_tools = self._init_prompt_tools()
assert app_config.agent
iteration_step = 1
max_iteration_steps = min(app_config.agent.max_iteration, 99) + 1
# continue to run until there is not any tool call
function_call_state = True
llm_usage: dict[str, LLMUsage | None] = {"usage": None}
final_answer = ""
prompt_messages: list = [] # Initialize prompt_messages
# get tracing instance
trace_manager = app_generate_entity.trace_manager
def increase_usage(final_llm_usage_dict: dict[str, LLMUsage | None], usage: LLMUsage):
if not final_llm_usage_dict["usage"]:
final_llm_usage_dict["usage"] = usage
else:
llm_usage = final_llm_usage_dict["usage"]
llm_usage.prompt_tokens += usage.prompt_tokens
llm_usage.completion_tokens += usage.completion_tokens
llm_usage.total_tokens += usage.total_tokens
llm_usage.prompt_price += usage.prompt_price
llm_usage.completion_price += usage.completion_price
llm_usage.total_price += usage.total_price
model_instance = self.model_instance
while function_call_state and iteration_step <= max_iteration_steps:
function_call_state = False
if iteration_step == max_iteration_steps:
# the last iteration, remove all tools
prompt_messages_tools = []
message_file_ids: list[str] = []
agent_thought_id = self.create_agent_thought(
message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids
)
# recalc llm max tokens
prompt_messages = self._organize_prompt_messages()
self.recalc_llm_max_tokens(self.model_config, prompt_messages)
# invoke model
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm(
prompt_messages=prompt_messages,
model_parameters=app_generate_entity.model_conf.parameters,
tools=prompt_messages_tools,
stop=app_generate_entity.model_conf.stop,
stream=self.stream_tool_call,
user=self.user_id,
callbacks=[],
)
tool_calls: list[tuple[str, str, dict[str, Any]]] = []
# save full response
response = ""
# save tool call names and inputs
tool_call_names = ""
tool_call_inputs = ""
current_llm_usage = None
if isinstance(chunks, Generator):
is_first_chunk = True
for chunk in chunks:
if is_first_chunk:
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
is_first_chunk = False
# check if there is any tool call
if self.check_tool_calls(chunk):
function_call_state = True
tool_calls.extend(self.extract_tool_calls(chunk) or [])
tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])
try:
tool_call_inputs = json.dumps(
{tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False
)
except TypeError:
# fallback: force ASCII to handle non-serializable objects
tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})
if chunk.delta.message and chunk.delta.message.content:
if isinstance(chunk.delta.message.content, list):
for content in chunk.delta.message.content:
response += content.data
else:
response += str(chunk.delta.message.content)
if chunk.delta.usage:
increase_usage(llm_usage, chunk.delta.usage)
current_llm_usage = chunk.delta.usage
yield chunk
else:
result = chunks
# check if there is any tool call
if self.check_blocking_tool_calls(result):
function_call_state = True
tool_calls.extend(self.extract_blocking_tool_calls(result) or [])
tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])
try:
tool_call_inputs = json.dumps(
{tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False
)
except TypeError:
# fallback: force ASCII to handle non-serializable objects
tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})
if result.usage:
increase_usage(llm_usage, result.usage)
current_llm_usage = result.usage
if result.message and result.message.content:
if isinstance(result.message.content, list):
for content in result.message.content:
response += content.data
else:
response += str(result.message.content)
if not result.message.content:
result.message.content = ""
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
yield LLMResultChunk(
model=model_instance.model,
prompt_messages=result.prompt_messages,
system_fingerprint=result.system_fingerprint,
delta=LLMResultChunkDelta(
index=0,
message=result.message,
usage=result.usage,
),
)
assistant_message = AssistantPromptMessage(content="", tool_calls=[])
if tool_calls:
assistant_message.tool_calls = [
AssistantPromptMessage.ToolCall(
id=tool_call[0],
type="function",
function=AssistantPromptMessage.ToolCall.ToolCallFunction(
name=tool_call[1], arguments=json.dumps(tool_call[2], ensure_ascii=False)
),
)
for tool_call in tool_calls
]
else:
assistant_message.content = response
self._current_thoughts.append(assistant_message)
# save thought
self.save_agent_thought(
agent_thought_id=agent_thought_id,
tool_name=tool_call_names,
tool_input=tool_call_inputs,
thought=response,
tool_invoke_meta=None,
observation=None,
answer=response,
messages_ids=[],
llm_usage=current_llm_usage,
)
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
final_answer += response + "\n"
# call tools
tool_responses = []
for tool_call_id, tool_call_name, tool_call_args in tool_calls:
tool_instance = tool_instances.get(tool_call_name)
if not tool_instance:
tool_response = {
"tool_call_id": tool_call_id,
"tool_call_name": tool_call_name,
"tool_response": f"there is not a tool named {tool_call_name}",
"meta": ToolInvokeMeta.error_instance(f"there is not a tool named {tool_call_name}").to_dict(),
}
else:
# invoke tool
tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
tool=tool_instance,
tool_parameters=tool_call_args,
user_id=self.user_id,
tenant_id=self.tenant_id,
message=self.message,
invoke_from=self.application_generate_entity.invoke_from,
agent_tool_callback=self.agent_callback,
trace_manager=trace_manager,
app_id=self.application_generate_entity.app_config.app_id,
message_id=self.message.id,
conversation_id=self.conversation.id,
)
# publish files
for message_file_id in message_files:
# publish message file
self.queue_manager.publish(
QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER
)
# add message file ids
message_file_ids.append(message_file_id)
tool_response = {
"tool_call_id": tool_call_id,
"tool_call_name": tool_call_name,
"tool_response": tool_invoke_response,
"meta": tool_invoke_meta.to_dict(),
}
tool_responses.append(tool_response)
if tool_response["tool_response"] is not None:
self._current_thoughts.append(
ToolPromptMessage(
content=str(tool_response["tool_response"]),
tool_call_id=tool_call_id,
name=tool_call_name,
)
)
if len(tool_responses) > 0:
# save agent thought
self.save_agent_thought(
agent_thought_id=agent_thought_id,
tool_name="",
tool_input="",
thought="",
tool_invoke_meta={
tool_response["tool_call_name"]: tool_response["meta"] for tool_response in tool_responses
},
observation={
tool_response["tool_call_name"]: tool_response["tool_response"]
for tool_response in tool_responses
},
answer="",
messages_ids=message_file_ids,
)
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
)
# update prompt tool
for prompt_tool in prompt_messages_tools:
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
iteration_step += 1
# publish end event
self.queue_manager.publish(
QueueMessageEndEvent(
llm_result=LLMResult(
model=model_instance.model,
prompt_messages=prompt_messages,
message=AssistantPromptMessage(content=final_answer),
usage=llm_usage["usage"] or LLMUsage.empty_usage(),
system_fingerprint="",
)
),
PublishFrom.APPLICATION_MANAGER,
)
def check_tool_calls(self, llm_result_chunk: LLMResultChunk) -> bool:
"""
Check if there is any tool call in llm result chunk
"""
if llm_result_chunk.delta.message.tool_calls:
return True
return False
def check_blocking_tool_calls(self, llm_result: LLMResult) -> bool:
"""
Check if there is any blocking tool call in llm result
"""
if llm_result.message.tool_calls:
return True
return False
def extract_tool_calls(self, llm_result_chunk: LLMResultChunk) -> list[tuple[str, str, dict[str, Any]]]:
"""
Extract tool calls from llm result chunk
Returns:
List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
"""
tool_calls = []
for prompt_message in llm_result_chunk.delta.message.tool_calls:
args = {}
if prompt_message.function.arguments != "":
args = json.loads(prompt_message.function.arguments)
tool_calls.append(
(
prompt_message.id,
prompt_message.function.name,
args,
)
)
return tool_calls
def extract_blocking_tool_calls(self, llm_result: LLMResult) -> list[tuple[str, str, dict[str, Any]]]:
"""
Extract blocking tool calls from llm result
Returns:
List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
"""
tool_calls = []
for prompt_message in llm_result.message.tool_calls:
args = {}
if prompt_message.function.arguments != "":
args = json.loads(prompt_message.function.arguments)
tool_calls.append(
(
prompt_message.id,
prompt_message.function.name,
args,
)
)
return tool_calls
def _init_system_message(self, prompt_template: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
Initialize system message
"""
if not prompt_messages and prompt_template:
return [
SystemPromptMessage(content=prompt_template),
]
if prompt_messages and not isinstance(prompt_messages[0], SystemPromptMessage) and prompt_template:
prompt_messages.insert(0, SystemPromptMessage(content=prompt_template))
return prompt_messages or []
def _organize_user_query(self, query: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
Organize user query
"""
if self.files:
# get image detail config
image_detail_config = (
self.application_generate_entity.file_upload_config.image_config.detail
if (
self.application_generate_entity.file_upload_config
and self.application_generate_entity.file_upload_config.image_config
)
else None
)
image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
prompt_message_contents: list[PromptMessageContentUnionTypes] = []
for file in self.files:
prompt_message_contents.append(
file_manager.to_prompt_message_content(
file,
image_detail_config=image_detail_config,
)
)
prompt_message_contents.append(TextPromptMessageContent(data=query))
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
else:
prompt_messages.append(UserPromptMessage(content=query))
return prompt_messages
def _clear_user_prompt_image_messages(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
As for now, gpt supports both fc and vision at the first iteration.
We need to remove the image messages from the prompt messages at the first iteration.
"""
prompt_messages = deepcopy(prompt_messages)
for prompt_message in prompt_messages:
if isinstance(prompt_message, UserPromptMessage):
if isinstance(prompt_message.content, list):
prompt_message.content = "\n".join(
[
content.data
if content.type == PromptMessageContentType.TEXT
else "[image]"
if content.type == PromptMessageContentType.IMAGE
else "[file]"
for content in prompt_message.content
]
)
return prompt_messages
def _organize_prompt_messages(self):
prompt_template = self.app_config.prompt_template.simple_prompt_template or ""
self.history_prompt_messages = self._init_system_message(prompt_template, self.history_prompt_messages)
query_prompt_messages = self._organize_user_query(self.query or "", [])
self.history_prompt_messages = AgentHistoryPromptTransform(
model_config=self.model_config,
prompt_messages=[*query_prompt_messages, *self._current_thoughts],
history_messages=self.history_prompt_messages,
memory=self.memory,
).get_prompt()
prompt_messages = [*self.history_prompt_messages, *query_prompt_messages, *self._current_thoughts]
if len(self._current_thoughts) != 0:
# clear messages after the first iteration
prompt_messages = self._clear_user_prompt_image_messages(prompt_messages)
return prompt_messages

View File

@@ -0,0 +1,220 @@
import json
import re
from collections.abc import Generator
from typing import Union
from core.agent.entities import AgentScratchpadUnit
from core.model_runtime.entities.llm_entities import LLMResultChunk
class CotAgentOutputParser:
@classmethod
def handle_react_stream_output(
cls, llm_response: Generator[LLMResultChunk, None, None], usage_dict: dict
) -> Generator[Union[str, AgentScratchpadUnit.Action], None, None]:
def parse_action(action) -> Union[str, AgentScratchpadUnit.Action]:
action_name = None
action_input = None
if isinstance(action, str):
try:
action = json.loads(action, strict=False)
except json.JSONDecodeError:
return action or ""
# cohere always returns a list
if isinstance(action, list) and len(action) == 1:
action = action[0]
for key, value in action.items():
if "input" in key.lower():
action_input = value
else:
action_name = value
if action_name is not None and action_input is not None:
return AgentScratchpadUnit.Action(
action_name=action_name,
action_input=action_input,
)
else:
return json.dumps(action)
def extra_json_from_code_block(code_block) -> list[Union[list, dict]]:
blocks = re.findall(r"```[json]*\s*([\[{].*[]}])\s*```", code_block, re.DOTALL | re.IGNORECASE)
if not blocks:
return []
try:
json_blocks = []
for block in blocks:
json_text = re.sub(r"^[a-zA-Z]+\n", "", block.strip(), flags=re.MULTILINE)
json_blocks.append(json.loads(json_text, strict=False))
return json_blocks
except:
return []
code_block_cache = ""
code_block_delimiter_count = 0
in_code_block = False
json_cache = ""
json_quote_count = 0
in_json = False
got_json = False
action_cache = ""
action_str = "action:"
action_idx = 0
thought_cache = ""
thought_str = "thought:"
thought_idx = 0
last_character = ""
for response in llm_response:
if response.delta.usage:
usage_dict["usage"] = response.delta.usage
response_content = response.delta.message.content
if not isinstance(response_content, str):
continue
# stream
index = 0
while index < len(response_content):
steps = 1
delta = response_content[index : index + steps]
yield_delta = False
if not in_json and delta == "`":
last_character = delta
code_block_cache += delta
code_block_delimiter_count += 1
else:
if not in_code_block:
if code_block_delimiter_count > 0:
last_character = delta
yield code_block_cache
code_block_cache = ""
else:
last_character = delta
code_block_cache += delta
code_block_delimiter_count = 0
if not in_code_block and not in_json:
if delta.lower() == action_str[action_idx] and action_idx == 0:
if last_character not in {"\n", " ", ""}:
yield_delta = True
else:
last_character = delta
action_cache += delta
action_idx += 1
if action_idx == len(action_str):
action_cache = ""
action_idx = 0
index += steps
continue
elif delta.lower() == action_str[action_idx] and action_idx > 0:
last_character = delta
action_cache += delta
action_idx += 1
if action_idx == len(action_str):
action_cache = ""
action_idx = 0
index += steps
continue
else:
if action_cache:
last_character = delta
yield action_cache
action_cache = ""
action_idx = 0
if delta.lower() == thought_str[thought_idx] and thought_idx == 0:
if last_character not in {"\n", " ", ""}:
yield_delta = True
else:
last_character = delta
thought_cache += delta
thought_idx += 1
if thought_idx == len(thought_str):
thought_cache = ""
thought_idx = 0
index += steps
continue
elif delta.lower() == thought_str[thought_idx] and thought_idx > 0:
last_character = delta
thought_cache += delta
thought_idx += 1
if thought_idx == len(thought_str):
thought_cache = ""
thought_idx = 0
index += steps
continue
else:
if thought_cache:
last_character = delta
yield thought_cache
thought_cache = ""
thought_idx = 0
if yield_delta:
index += steps
last_character = delta
yield delta
continue
if code_block_delimiter_count == 3:
if in_code_block:
last_character = delta
action_json_list = extra_json_from_code_block(code_block_cache)
if action_json_list:
for action_json in action_json_list:
yield parse_action(action_json)
code_block_cache = ""
else:
index += steps
continue
in_code_block = not in_code_block
code_block_delimiter_count = 0
if not in_code_block:
# handle single json
if delta == "{":
json_quote_count += 1
in_json = True
last_character = delta
json_cache += delta
elif delta == "}":
last_character = delta
json_cache += delta
if json_quote_count > 0:
json_quote_count -= 1
if json_quote_count == 0:
in_json = False
got_json = True
index += steps
continue
else:
if in_json:
last_character = delta
json_cache += delta
if got_json:
got_json = False
last_character = delta
yield parse_action(json_cache)
json_cache = ""
json_quote_count = 0
in_json = False
if not in_code_block and not in_json:
last_character = delta
yield delta.replace("`", "")
index += steps
if code_block_cache:
yield code_block_cache
if json_cache:
yield parse_action(json_cache)

View File

@@ -0,0 +1,100 @@
from enum import StrEnum
from typing import Any
from pydantic import BaseModel, ConfigDict, Field, ValidationInfo, field_validator
from core.entities.parameter_entities import CommonParameterType
from core.plugin.entities.parameters import (
PluginParameter,
as_normal_type,
cast_parameter_value,
init_frontend_parameter,
)
from core.tools.entities.common_entities import I18nObject
from core.tools.entities.tool_entities import (
ToolIdentity,
ToolProviderIdentity,
)
class AgentStrategyProviderIdentity(ToolProviderIdentity):
"""
Inherits from ToolProviderIdentity, without any additional fields.
"""
pass
class AgentStrategyParameter(PluginParameter):
class AgentStrategyParameterType(StrEnum):
"""
Keep all the types from PluginParameterType
"""
STRING = CommonParameterType.STRING
NUMBER = CommonParameterType.NUMBER
BOOLEAN = CommonParameterType.BOOLEAN
SELECT = CommonParameterType.SELECT
SECRET_INPUT = CommonParameterType.SECRET_INPUT
FILE = CommonParameterType.FILE
FILES = CommonParameterType.FILES
APP_SELECTOR = CommonParameterType.APP_SELECTOR
MODEL_SELECTOR = CommonParameterType.MODEL_SELECTOR
TOOLS_SELECTOR = CommonParameterType.TOOLS_SELECTOR
ANY = CommonParameterType.ANY
# deprecated, should not use.
SYSTEM_FILES = CommonParameterType.SYSTEM_FILES
def as_normal_type(self):
return as_normal_type(self)
def cast_value(self, value: Any):
return cast_parameter_value(self, value)
type: AgentStrategyParameterType = Field(..., description="The type of the parameter")
help: I18nObject | None = None
def init_frontend_parameter(self, value: Any):
return init_frontend_parameter(self, self.type, value)
class AgentStrategyProviderEntity(BaseModel):
identity: AgentStrategyProviderIdentity
plugin_id: str | None = Field(None, description="The id of the plugin")
class AgentStrategyIdentity(ToolIdentity):
"""
Inherits from ToolIdentity, without any additional fields.
"""
pass
class AgentFeature(StrEnum):
"""
Agent Feature, used to describe the features of the agent strategy.
"""
HISTORY_MESSAGES = "history-messages"
class AgentStrategyEntity(BaseModel):
identity: AgentStrategyIdentity
parameters: list[AgentStrategyParameter] = Field(default_factory=list)
description: I18nObject = Field(..., description="The description of the agent strategy")
output_schema: dict | None = None
features: list[AgentFeature] | None = None
meta_version: str | None = None
# pydantic configs
model_config = ConfigDict(protected_namespaces=())
@field_validator("parameters", mode="before")
@classmethod
def set_parameters(cls, v, validation_info: ValidationInfo) -> list[AgentStrategyParameter]:
return v or []
class AgentProviderEntityWithPlugin(AgentStrategyProviderEntity):
strategies: list[AgentStrategyEntity] = Field(default_factory=list)

View File

@@ -0,0 +1,106 @@
ENGLISH_REACT_COMPLETION_PROMPT_TEMPLATES = """Respond to the human as helpfully and accurately as possible.
{{instruction}}
You have access to the following tools:
{{tools}}
Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
Valid "action" values: "Final Answer" or {{tool_names}}
Provide only ONE action per $JSON_BLOB, as shown:
```
{
"action": $TOOL_NAME,
"action_input": $ACTION_INPUT
}
```
Follow this format:
Question: input question to answer
Thought: consider previous and subsequent steps
Action:
```
$JSON_BLOB
```
Observation: action result
... (repeat Thought/Action/Observation N times)
Thought: I know what to respond
Action:
```
{
"action": "Final Answer",
"action_input": "Final response to human"
}
```
Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.
{{historic_messages}}
Question: {{query}}
{{agent_scratchpad}}
Thought:""" # noqa: E501
ENGLISH_REACT_COMPLETION_AGENT_SCRATCHPAD_TEMPLATES = """Observation: {{observation}}
Thought:"""
ENGLISH_REACT_CHAT_PROMPT_TEMPLATES = """Respond to the human as helpfully and accurately as possible.
{{instruction}}
You have access to the following tools:
{{tools}}
Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
Valid "action" values: "Final Answer" or {{tool_names}}
Provide only ONE action per $JSON_BLOB, as shown:
```
{
"action": $TOOL_NAME,
"action_input": $ACTION_INPUT
}
```
Follow this format:
Question: input question to answer
Thought: consider previous and subsequent steps
Action:
```
$JSON_BLOB
```
Observation: action result
... (repeat Thought/Action/Observation N times)
Thought: I know what to respond
Action:
```
{
"action": "Final Answer",
"action_input": "Final response to human"
}
```
Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.
""" # noqa: E501
ENGLISH_REACT_CHAT_AGENT_SCRATCHPAD_TEMPLATES = ""
REACT_PROMPT_TEMPLATES = {
"english": {
"chat": {
"prompt": ENGLISH_REACT_CHAT_PROMPT_TEMPLATES,
"agent_scratchpad": ENGLISH_REACT_CHAT_AGENT_SCRATCHPAD_TEMPLATES,
},
"completion": {
"prompt": ENGLISH_REACT_COMPLETION_PROMPT_TEMPLATES,
"agent_scratchpad": ENGLISH_REACT_COMPLETION_AGENT_SCRATCHPAD_TEMPLATES,
},
}
}

View File

@@ -0,0 +1,45 @@
from abc import ABC, abstractmethod
from collections.abc import Generator, Sequence
from typing import Any
from core.agent.entities import AgentInvokeMessage
from core.agent.plugin_entities import AgentStrategyParameter
from core.plugin.entities.request import InvokeCredentials
class BaseAgentStrategy(ABC):
"""
Agent Strategy
"""
def invoke(
self,
params: dict[str, Any],
user_id: str,
conversation_id: str | None = None,
app_id: str | None = None,
message_id: str | None = None,
credentials: InvokeCredentials | None = None,
) -> Generator[AgentInvokeMessage, None, None]:
"""
Invoke the agent strategy.
"""
yield from self._invoke(params, user_id, conversation_id, app_id, message_id, credentials)
def get_parameters(self) -> Sequence[AgentStrategyParameter]:
"""
Get the parameters for the agent strategy.
"""
return []
@abstractmethod
def _invoke(
self,
params: dict[str, Any],
user_id: str,
conversation_id: str | None = None,
app_id: str | None = None,
message_id: str | None = None,
credentials: InvokeCredentials | None = None,
) -> Generator[AgentInvokeMessage, None, None]:
pass

View File

@@ -0,0 +1,64 @@
from collections.abc import Generator, Sequence
from typing import Any
from core.agent.entities import AgentInvokeMessage
from core.agent.plugin_entities import AgentStrategyEntity, AgentStrategyParameter
from core.agent.strategy.base import BaseAgentStrategy
from core.plugin.entities.request import InvokeCredentials, PluginInvokeContext
from core.plugin.impl.agent import PluginAgentClient
from core.plugin.utils.converter import convert_parameters_to_plugin_format
class PluginAgentStrategy(BaseAgentStrategy):
"""
Agent Strategy
"""
tenant_id: str
declaration: AgentStrategyEntity
meta_version: str | None = None
def __init__(self, tenant_id: str, declaration: AgentStrategyEntity, meta_version: str | None):
self.tenant_id = tenant_id
self.declaration = declaration
self.meta_version = meta_version
def get_parameters(self) -> Sequence[AgentStrategyParameter]:
return self.declaration.parameters
def initialize_parameters(self, params: dict[str, Any]) -> dict[str, Any]:
"""
Initialize the parameters for the agent strategy.
"""
for parameter in self.declaration.parameters:
params[parameter.name] = parameter.init_frontend_parameter(params.get(parameter.name))
return params
def _invoke(
self,
params: dict[str, Any],
user_id: str,
conversation_id: str | None = None,
app_id: str | None = None,
message_id: str | None = None,
credentials: InvokeCredentials | None = None,
) -> Generator[AgentInvokeMessage, None, None]:
"""
Invoke the agent strategy.
"""
manager = PluginAgentClient()
initialized_params = self.initialize_parameters(params)
params = convert_parameters_to_plugin_format(initialized_params)
yield from manager.invoke(
tenant_id=self.tenant_id,
user_id=user_id,
agent_provider=self.declaration.identity.provider,
agent_strategy=self.declaration.identity.name,
agent_params=params,
conversation_id=conversation_id,
app_id=app_id,
message_id=message_id,
context=PluginInvokeContext(credentials=credentials or InvokeCredentials()),
)

View File

View File

View File

@@ -0,0 +1,49 @@
from collections.abc import Mapping
from typing import Any
from core.app.app_config.entities import AppAdditionalFeatures
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.app.app_config.features.more_like_this.manager import MoreLikeThisConfigManager
from core.app.app_config.features.opening_statement.manager import OpeningStatementConfigManager
from core.app.app_config.features.retrieval_resource.manager import RetrievalResourceConfigManager
from core.app.app_config.features.speech_to_text.manager import SpeechToTextConfigManager
from core.app.app_config.features.suggested_questions_after_answer.manager import (
SuggestedQuestionsAfterAnswerConfigManager,
)
from core.app.app_config.features.text_to_speech.manager import TextToSpeechConfigManager
from models.model import AppMode
class BaseAppConfigManager:
@classmethod
def convert_features(cls, config_dict: Mapping[str, Any], app_mode: AppMode) -> AppAdditionalFeatures:
"""
Convert app config to app model config
:param config_dict: app config
:param app_mode: app mode
"""
config_dict = dict(config_dict.items())
additional_features = AppAdditionalFeatures()
additional_features.show_retrieve_source = RetrievalResourceConfigManager.convert(config=config_dict)
additional_features.file_upload = FileUploadConfigManager.convert(
config=config_dict, is_vision=app_mode in {AppMode.CHAT, AppMode.COMPLETION, AppMode.AGENT_CHAT}
)
additional_features.opening_statement, additional_features.suggested_questions = (
OpeningStatementConfigManager.convert(config=config_dict)
)
additional_features.suggested_questions_after_answer = SuggestedQuestionsAfterAnswerConfigManager.convert(
config=config_dict
)
additional_features.more_like_this = MoreLikeThisConfigManager.convert(config=config_dict)
additional_features.speech_to_text = SpeechToTextConfigManager.convert(config=config_dict)
additional_features.text_to_speech = TextToSpeechConfigManager.convert(config=config_dict)
return additional_features

View File

@@ -0,0 +1,45 @@
from collections.abc import Mapping
from typing import Any
from configs import dify_config
from constants import DEFAULT_FILE_NUMBER_LIMITS
def get_parameters_from_feature_dict(
*, features_dict: Mapping[str, Any], user_input_form: list[dict[str, Any]]
) -> Mapping[str, Any]:
"""
Mapping from feature dict to webapp parameters
"""
return {
"opening_statement": features_dict.get("opening_statement"),
"suggested_questions": features_dict.get("suggested_questions", []),
"suggested_questions_after_answer": features_dict.get("suggested_questions_after_answer", {"enabled": False}),
"speech_to_text": features_dict.get("speech_to_text", {"enabled": False}),
"text_to_speech": features_dict.get("text_to_speech", {"enabled": False}),
"retriever_resource": features_dict.get("retriever_resource", {"enabled": False}),
"annotation_reply": features_dict.get("annotation_reply", {"enabled": False}),
"more_like_this": features_dict.get("more_like_this", {"enabled": False}),
"user_input_form": user_input_form,
"sensitive_word_avoidance": features_dict.get(
"sensitive_word_avoidance", {"enabled": False, "type": "", "configs": []}
),
"file_upload": features_dict.get(
"file_upload",
{
"image": {
"enabled": False,
"number_limits": DEFAULT_FILE_NUMBER_LIMITS,
"detail": "high",
"transfer_methods": ["remote_url", "local_file"],
}
},
),
"system_parameters": {
"image_file_size_limit": dify_config.UPLOAD_IMAGE_FILE_SIZE_LIMIT,
"video_file_size_limit": dify_config.UPLOAD_VIDEO_FILE_SIZE_LIMIT,
"audio_file_size_limit": dify_config.UPLOAD_AUDIO_FILE_SIZE_LIMIT,
"file_size_limit": dify_config.UPLOAD_FILE_SIZE_LIMIT,
"workflow_file_upload_limit": dify_config.WORKFLOW_FILE_UPLOAD_LIMIT,
},
}

View File

@@ -0,0 +1,50 @@
from core.app.app_config.entities import SensitiveWordAvoidanceEntity
from core.moderation.factory import ModerationFactory
class SensitiveWordAvoidanceConfigManager:
@classmethod
def convert(cls, config: dict) -> SensitiveWordAvoidanceEntity | None:
sensitive_word_avoidance_dict = config.get("sensitive_word_avoidance")
if not sensitive_word_avoidance_dict:
return None
if sensitive_word_avoidance_dict.get("enabled"):
return SensitiveWordAvoidanceEntity(
type=sensitive_word_avoidance_dict.get("type"),
config=sensitive_word_avoidance_dict.get("config"),
)
else:
return None
@classmethod
def validate_and_set_defaults(
cls, tenant_id: str, config: dict, only_structure_validate: bool = False
) -> tuple[dict, list[str]]:
if not config.get("sensitive_word_avoidance"):
config["sensitive_word_avoidance"] = {"enabled": False}
if not isinstance(config["sensitive_word_avoidance"], dict):
raise ValueError("sensitive_word_avoidance must be of dict type")
if "enabled" not in config["sensitive_word_avoidance"] or not config["sensitive_word_avoidance"]["enabled"]:
config["sensitive_word_avoidance"]["enabled"] = False
if config["sensitive_word_avoidance"]["enabled"]:
if not config["sensitive_word_avoidance"].get("type"):
raise ValueError("sensitive_word_avoidance.type is required")
if not only_structure_validate:
typ = config["sensitive_word_avoidance"]["type"]
if not isinstance(typ, str):
raise ValueError("sensitive_word_avoidance.type must be a string")
sensitive_word_avoidance_config = config["sensitive_word_avoidance"].get("config")
if sensitive_word_avoidance_config is None:
sensitive_word_avoidance_config = {}
if not isinstance(sensitive_word_avoidance_config, dict):
raise ValueError("sensitive_word_avoidance.config must be a dict")
ModerationFactory.validate_config(name=typ, tenant_id=tenant_id, config=sensitive_word_avoidance_config)
return config, ["sensitive_word_avoidance"]

View File

@@ -0,0 +1,80 @@
from core.agent.entities import AgentEntity, AgentPromptEntity, AgentToolEntity
from core.agent.prompt.template import REACT_PROMPT_TEMPLATES
class AgentConfigManager:
@classmethod
def convert(cls, config: dict) -> AgentEntity | None:
"""
Convert model config to model config
:param config: model config args
"""
if "agent_mode" in config and config["agent_mode"] and "enabled" in config["agent_mode"]:
agent_dict = config.get("agent_mode", {})
agent_strategy = agent_dict.get("strategy", "cot")
if agent_strategy == "function_call":
strategy = AgentEntity.Strategy.FUNCTION_CALLING
elif agent_strategy in {"cot", "react"}:
strategy = AgentEntity.Strategy.CHAIN_OF_THOUGHT
else:
# old configs, try to detect default strategy
if config["model"]["provider"] == "openai":
strategy = AgentEntity.Strategy.FUNCTION_CALLING
else:
strategy = AgentEntity.Strategy.CHAIN_OF_THOUGHT
agent_tools = []
for tool in agent_dict.get("tools", []):
keys = tool.keys()
if len(keys) >= 4:
if "enabled" not in tool or not tool["enabled"]:
continue
agent_tool_properties = {
"provider_type": tool["provider_type"],
"provider_id": tool["provider_id"],
"tool_name": tool["tool_name"],
"tool_parameters": tool.get("tool_parameters", {}),
"credential_id": tool.get("credential_id", None),
}
agent_tools.append(AgentToolEntity.model_validate(agent_tool_properties))
if "strategy" in config["agent_mode"] and config["agent_mode"]["strategy"] not in {
"react_router",
"router",
}:
agent_prompt = agent_dict.get("prompt", None) or {}
# check model mode
model_mode = config.get("model", {}).get("mode", "completion")
if model_mode == "completion":
agent_prompt_entity = AgentPromptEntity(
first_prompt=agent_prompt.get(
"first_prompt", REACT_PROMPT_TEMPLATES["english"]["completion"]["prompt"]
),
next_iteration=agent_prompt.get(
"next_iteration", REACT_PROMPT_TEMPLATES["english"]["completion"]["agent_scratchpad"]
),
)
else:
agent_prompt_entity = AgentPromptEntity(
first_prompt=agent_prompt.get(
"first_prompt", REACT_PROMPT_TEMPLATES["english"]["chat"]["prompt"]
),
next_iteration=agent_prompt.get(
"next_iteration", REACT_PROMPT_TEMPLATES["english"]["chat"]["agent_scratchpad"]
),
)
return AgentEntity(
provider=config["model"]["provider"],
model=config["model"]["name"],
strategy=strategy,
prompt=agent_prompt_entity,
tools=agent_tools,
max_iteration=agent_dict.get("max_iteration", 10),
)
return None

View File

@@ -0,0 +1,254 @@
import uuid
from typing import Literal, cast
from core.app.app_config.entities import (
DatasetEntity,
DatasetRetrieveConfigEntity,
MetadataFilteringCondition,
ModelConfig,
)
from core.entities.agent_entities import PlanningStrategy
from models.model import AppMode
from services.dataset_service import DatasetService
class DatasetConfigManager:
@classmethod
def convert(cls, config: dict) -> DatasetEntity | None:
"""
Convert model config to model config
:param config: model config args
"""
dataset_ids = []
if "datasets" in config.get("dataset_configs", {}):
datasets = config.get("dataset_configs", {}).get("datasets", {"strategy": "router", "datasets": []})
for dataset in datasets.get("datasets", []):
keys = list(dataset.keys())
if len(keys) == 0 or keys[0] != "dataset":
continue
dataset = dataset["dataset"]
if "enabled" not in dataset or not dataset["enabled"]:
continue
dataset_id = dataset.get("id", None)
if dataset_id:
dataset_ids.append(dataset_id)
if (
"agent_mode" in config
and config["agent_mode"]
and "enabled" in config["agent_mode"]
and config["agent_mode"]["enabled"]
):
agent_dict = config.get("agent_mode", {})
for tool in agent_dict.get("tools", []):
keys = tool.keys()
if len(keys) == 1:
# old standard
key = list(tool.keys())[0]
if key != "dataset":
continue
tool_item = tool[key]
if "enabled" not in tool_item or not tool_item["enabled"]:
continue
dataset_id = tool_item["id"]
dataset_ids.append(dataset_id)
if len(dataset_ids) == 0:
return None
# dataset configs
if "dataset_configs" in config and config.get("dataset_configs"):
dataset_configs = config.get("dataset_configs")
else:
dataset_configs = {"retrieval_model": "multiple"}
if dataset_configs is None:
return None
query_variable = config.get("dataset_query_variable")
metadata_model_config_dict = dataset_configs.get("metadata_model_config")
metadata_filtering_conditions_dict = dataset_configs.get("metadata_filtering_conditions")
if dataset_configs["retrieval_model"] == "single":
return DatasetEntity(
dataset_ids=dataset_ids,
retrieve_config=DatasetRetrieveConfigEntity(
query_variable=query_variable,
retrieve_strategy=DatasetRetrieveConfigEntity.RetrieveStrategy.value_of(
dataset_configs["retrieval_model"]
),
metadata_filtering_mode=cast(
Literal["disabled", "automatic", "manual"],
dataset_configs.get("metadata_filtering_mode", "disabled"),
),
metadata_model_config=ModelConfig(**metadata_model_config_dict)
if isinstance(metadata_model_config_dict, dict)
else None,
metadata_filtering_conditions=MetadataFilteringCondition(**metadata_filtering_conditions_dict)
if isinstance(metadata_filtering_conditions_dict, dict)
else None,
),
)
else:
score_threshold_val = dataset_configs.get("score_threshold")
reranking_model_val = dataset_configs.get("reranking_model")
weights_val = dataset_configs.get("weights")
return DatasetEntity(
dataset_ids=dataset_ids,
retrieve_config=DatasetRetrieveConfigEntity(
query_variable=query_variable,
retrieve_strategy=DatasetRetrieveConfigEntity.RetrieveStrategy.value_of(
dataset_configs["retrieval_model"]
),
top_k=int(dataset_configs.get("top_k", 4)),
score_threshold=float(score_threshold_val)
if dataset_configs.get("score_threshold_enabled", False) and score_threshold_val is not None
else None,
reranking_model=reranking_model_val if isinstance(reranking_model_val, dict) else None,
weights=weights_val if isinstance(weights_val, dict) else None,
reranking_enabled=bool(dataset_configs.get("reranking_enabled", True)),
rerank_mode=dataset_configs.get("reranking_mode", "reranking_model"),
metadata_filtering_mode=cast(
Literal["disabled", "automatic", "manual"],
dataset_configs.get("metadata_filtering_mode", "disabled"),
),
metadata_model_config=ModelConfig(**metadata_model_config_dict)
if isinstance(metadata_model_config_dict, dict)
else None,
metadata_filtering_conditions=MetadataFilteringCondition(**metadata_filtering_conditions_dict)
if isinstance(metadata_filtering_conditions_dict, dict)
else None,
),
)
@classmethod
def validate_and_set_defaults(cls, tenant_id: str, app_mode: AppMode, config: dict) -> tuple[dict, list[str]]:
"""
Validate and set defaults for dataset feature
:param tenant_id: tenant ID
:param app_mode: app mode
:param config: app model config args
"""
# Extract dataset config for legacy compatibility
config = cls.extract_dataset_config_for_legacy_compatibility(tenant_id, app_mode, config)
# dataset_configs
if "dataset_configs" not in config or not config.get("dataset_configs"):
config["dataset_configs"] = {}
config["dataset_configs"]["retrieval_model"] = config["dataset_configs"].get("retrieval_model", "single")
if not isinstance(config["dataset_configs"], dict):
raise ValueError("dataset_configs must be of object type")
if "datasets" not in config["dataset_configs"] or not config["dataset_configs"].get("datasets"):
config["dataset_configs"]["datasets"] = {"strategy": "router", "datasets": []}
need_manual_query_datasets = config.get("dataset_configs", {}).get("datasets", {}).get("datasets")
if need_manual_query_datasets and app_mode == AppMode.COMPLETION:
# Only check when mode is completion
dataset_query_variable = config.get("dataset_query_variable")
if not dataset_query_variable:
raise ValueError("Dataset query variable is required when dataset is exist")
return config, ["agent_mode", "dataset_configs", "dataset_query_variable"]
@classmethod
def extract_dataset_config_for_legacy_compatibility(cls, tenant_id: str, app_mode: AppMode, config: dict):
"""
Extract dataset config for legacy compatibility
:param tenant_id: tenant ID
:param app_mode: app mode
:param config: app model config args
"""
# Extract dataset config for legacy compatibility
if "agent_mode" not in config or not config.get("agent_mode"):
config["agent_mode"] = {}
if not isinstance(config["agent_mode"], dict):
raise ValueError("agent_mode must be of object type")
# enabled
if "enabled" not in config["agent_mode"] or not config["agent_mode"]["enabled"]:
config["agent_mode"]["enabled"] = False
if not isinstance(config["agent_mode"]["enabled"], bool):
raise ValueError("enabled in agent_mode must be of boolean type")
# tools
if "tools" not in config["agent_mode"] or not config["agent_mode"].get("tools"):
config["agent_mode"]["tools"] = []
if not isinstance(config["agent_mode"]["tools"], list):
raise ValueError("tools in agent_mode must be a list of objects")
# strategy
if "strategy" not in config["agent_mode"] or not config["agent_mode"].get("strategy"):
config["agent_mode"]["strategy"] = PlanningStrategy.ROUTER
has_datasets = False
if config.get("agent_mode", {}).get("strategy") in {
PlanningStrategy.ROUTER,
PlanningStrategy.REACT_ROUTER,
}:
for tool in config.get("agent_mode", {}).get("tools", []):
key = list(tool.keys())[0]
if key == "dataset":
# old style, use tool name as key
tool_item = tool[key]
if "enabled" not in tool_item or not tool_item["enabled"]:
tool_item["enabled"] = False
if not isinstance(tool_item["enabled"], bool):
raise ValueError("enabled in agent_mode.tools must be of boolean type")
if "id" not in tool_item:
raise ValueError("id is required in dataset")
try:
uuid.UUID(tool_item["id"])
except ValueError:
raise ValueError("id in dataset must be of UUID type")
if not cls.is_dataset_exists(tenant_id, tool_item["id"]):
raise ValueError("Dataset ID does not exist, please check your permission.")
has_datasets = True
need_manual_query_datasets = has_datasets and config.get("agent_mode", {}).get("enabled")
if need_manual_query_datasets and app_mode == AppMode.COMPLETION:
# Only check when mode is completion
dataset_query_variable = config.get("dataset_query_variable")
if not dataset_query_variable:
raise ValueError("Dataset query variable is required when dataset is exist")
return config
@classmethod
def is_dataset_exists(cls, tenant_id: str, dataset_id: str) -> bool:
# verify if the dataset ID exists
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
return False
if dataset.tenant_id != tenant_id:
return False
return True

View File

@@ -0,0 +1,91 @@
from typing import cast
from core.app.app_config.entities import EasyUIBasedAppConfig
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
from core.entities.model_entities import ModelStatus
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.entities.llm_entities import LLMMode
from core.model_runtime.entities.model_entities import ModelPropertyKey, ModelType
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.provider_manager import ProviderManager
class ModelConfigConverter:
@classmethod
def convert(cls, app_config: EasyUIBasedAppConfig) -> ModelConfigWithCredentialsEntity:
"""
Convert app model config dict to entity.
:param app_config: app config
:raises ProviderTokenNotInitError: provider token not init error
:return: app orchestration config entity
"""
model_config = app_config.model
provider_manager = ProviderManager()
provider_model_bundle = provider_manager.get_provider_model_bundle(
tenant_id=app_config.tenant_id, provider=model_config.provider, model_type=ModelType.LLM
)
provider_name = provider_model_bundle.configuration.provider.provider
model_name = model_config.model
model_type_instance = provider_model_bundle.model_type_instance
model_type_instance = cast(LargeLanguageModel, model_type_instance)
# check model credentials
model_credentials = provider_model_bundle.configuration.get_current_credentials(
model_type=ModelType.LLM, model=model_config.model
)
if model_credentials is None:
raise ProviderTokenNotInitError(f"Model {model_name} credentials is not initialized.")
# check model
provider_model = provider_model_bundle.configuration.get_provider_model(
model=model_config.model, model_type=ModelType.LLM
)
if provider_model is None:
model_name = model_config.model
raise ValueError(f"Model {model_name} not exist.")
if provider_model.status == ModelStatus.NO_CONFIGURE:
raise ProviderTokenNotInitError(f"Model {model_name} credentials is not initialized.")
elif provider_model.status == ModelStatus.NO_PERMISSION:
raise ModelCurrentlyNotSupportError(f"Dify Hosted OpenAI {model_name} currently not support.")
elif provider_model.status == ModelStatus.QUOTA_EXCEEDED:
raise QuotaExceededError(f"Model provider {provider_name} quota exceeded.")
# model config
completion_params = model_config.parameters
stop = []
if "stop" in completion_params:
stop = completion_params["stop"]
del completion_params["stop"]
model_schema = model_type_instance.get_model_schema(model_config.model, model_credentials)
# get model mode
model_mode = model_config.mode
if not model_mode:
model_mode = LLMMode.CHAT
if model_schema and model_schema.model_properties.get(ModelPropertyKey.MODE):
try:
model_mode = LLMMode(model_schema.model_properties[ModelPropertyKey.MODE])
except ValueError:
# Fall back to CHAT mode if the stored value is invalid
model_mode = LLMMode.CHAT
if not model_schema:
raise ValueError(f"Model {model_name} not exist.")
return ModelConfigWithCredentialsEntity(
provider=model_config.provider,
model=model_config.model,
model_schema=model_schema,
mode=model_mode,
provider_model_bundle=provider_model_bundle,
credentials=model_credentials,
parameters=completion_params,
stop=stop,
)

View File

@@ -0,0 +1,122 @@
from collections.abc import Mapping
from typing import Any
from core.app.app_config.entities import ModelConfigEntity
from core.model_runtime.entities.model_entities import ModelPropertyKey, ModelType
from core.model_runtime.model_providers.model_provider_factory import ModelProviderFactory
from core.provider_manager import ProviderManager
from models.provider_ids import ModelProviderID
class ModelConfigManager:
@classmethod
def convert(cls, config: dict) -> ModelConfigEntity:
"""
Convert model config to model config
:param config: model config args
"""
# model config
model_config = config.get("model")
if not model_config:
raise ValueError("model is required")
completion_params = model_config.get("completion_params")
stop = []
if "stop" in completion_params:
stop = completion_params["stop"]
del completion_params["stop"]
# get model mode
model_mode = model_config.get("mode")
return ModelConfigEntity(
provider=config["model"]["provider"],
model=config["model"]["name"],
mode=model_mode,
parameters=completion_params,
stop=stop,
)
@classmethod
def validate_and_set_defaults(cls, tenant_id: str, config: Mapping[str, Any]) -> tuple[dict, list[str]]:
"""
Validate and set defaults for model config
:param tenant_id: tenant id
:param config: app model config args
"""
if "model" not in config:
raise ValueError("model is required")
if not isinstance(config["model"], dict):
raise ValueError("model must be of object type")
# model.provider
model_provider_factory = ModelProviderFactory(tenant_id)
provider_entities = model_provider_factory.get_providers()
model_provider_names = [provider.provider for provider in provider_entities]
if "provider" not in config["model"]:
raise ValueError(f"model.provider is required and must be in {str(model_provider_names)}")
if "/" not in config["model"]["provider"]:
config["model"]["provider"] = str(ModelProviderID(config["model"]["provider"]))
if config["model"]["provider"] not in model_provider_names:
raise ValueError(f"model.provider is required and must be in {str(model_provider_names)}")
# model.name
if "name" not in config["model"]:
raise ValueError("model.name is required")
provider_manager = ProviderManager()
models = provider_manager.get_configurations(tenant_id).get_models(
provider=config["model"]["provider"], model_type=ModelType.LLM
)
if not models:
raise ValueError("model.name must be in the specified model list")
model_ids = [m.model for m in models]
if config["model"]["name"] not in model_ids:
raise ValueError("model.name must be in the specified model list")
model_mode = None
for model in models:
if model.model == config["model"]["name"]:
model_mode = model.model_properties.get(ModelPropertyKey.MODE)
break
# model.mode
if model_mode:
config["model"]["mode"] = model_mode
else:
config["model"]["mode"] = "completion"
# model.completion_params
if "completion_params" not in config["model"]:
raise ValueError("model.completion_params is required")
config["model"]["completion_params"] = cls.validate_model_completion_params(
config["model"]["completion_params"]
)
return dict(config), ["model"]
@classmethod
def validate_model_completion_params(cls, cp: dict):
# model.completion_params
if not isinstance(cp, dict):
raise ValueError("model.completion_params must be of object type")
# stop
if "stop" not in cp:
cp["stop"] = []
elif not isinstance(cp["stop"], list):
raise ValueError("stop in model.completion_params must be of list type")
if len(cp["stop"]) > 4:
raise ValueError("stop sequences must be less than 4")
return cp

View File

@@ -0,0 +1,142 @@
from core.app.app_config.entities import (
AdvancedChatMessageEntity,
AdvancedChatPromptTemplateEntity,
AdvancedCompletionPromptTemplateEntity,
PromptTemplateEntity,
)
from core.model_runtime.entities.message_entities import PromptMessageRole
from core.prompt.simple_prompt_transform import ModelMode
from models.model import AppMode
class PromptTemplateConfigManager:
@classmethod
def convert(cls, config: dict) -> PromptTemplateEntity:
if not config.get("prompt_type"):
raise ValueError("prompt_type is required")
prompt_type = PromptTemplateEntity.PromptType.value_of(config["prompt_type"])
if prompt_type == PromptTemplateEntity.PromptType.SIMPLE:
simple_prompt_template = config.get("pre_prompt", "")
return PromptTemplateEntity(prompt_type=prompt_type, simple_prompt_template=simple_prompt_template)
else:
advanced_chat_prompt_template = None
chat_prompt_config = config.get("chat_prompt_config", {})
if chat_prompt_config:
chat_prompt_messages = []
for message in chat_prompt_config.get("prompt", []):
text = message.get("text")
if not isinstance(text, str):
raise ValueError("message text must be a string")
role = message.get("role")
if not isinstance(role, str):
raise ValueError("message role must be a string")
chat_prompt_messages.append(
AdvancedChatMessageEntity(text=text, role=PromptMessageRole.value_of(role))
)
advanced_chat_prompt_template = AdvancedChatPromptTemplateEntity(messages=chat_prompt_messages)
advanced_completion_prompt_template = None
completion_prompt_config = config.get("completion_prompt_config", {})
if completion_prompt_config:
completion_prompt_template_params = {
"prompt": completion_prompt_config["prompt"]["text"],
}
if "conversation_histories_role" in completion_prompt_config:
completion_prompt_template_params["role_prefix"] = {
"user": completion_prompt_config["conversation_histories_role"]["user_prefix"],
"assistant": completion_prompt_config["conversation_histories_role"]["assistant_prefix"],
}
advanced_completion_prompt_template = AdvancedCompletionPromptTemplateEntity(
**completion_prompt_template_params
)
return PromptTemplateEntity(
prompt_type=prompt_type,
advanced_chat_prompt_template=advanced_chat_prompt_template,
advanced_completion_prompt_template=advanced_completion_prompt_template,
)
@classmethod
def validate_and_set_defaults(cls, app_mode: AppMode, config: dict) -> tuple[dict, list[str]]:
"""
Validate pre_prompt and set defaults for prompt feature
depending on the config['model']
:param app_mode: app mode
:param config: app model config args
"""
if not config.get("prompt_type"):
config["prompt_type"] = PromptTemplateEntity.PromptType.SIMPLE
prompt_type_vals = [typ.value for typ in PromptTemplateEntity.PromptType]
if config["prompt_type"] not in prompt_type_vals:
raise ValueError(f"prompt_type must be in {prompt_type_vals}")
# chat_prompt_config
if not config.get("chat_prompt_config"):
config["chat_prompt_config"] = {}
if not isinstance(config["chat_prompt_config"], dict):
raise ValueError("chat_prompt_config must be of object type")
# completion_prompt_config
if not config.get("completion_prompt_config"):
config["completion_prompt_config"] = {}
if not isinstance(config["completion_prompt_config"], dict):
raise ValueError("completion_prompt_config must be of object type")
if config["prompt_type"] == PromptTemplateEntity.PromptType.ADVANCED:
if not config["chat_prompt_config"] and not config["completion_prompt_config"]:
raise ValueError(
"chat_prompt_config or completion_prompt_config is required when prompt_type is advanced"
)
model_mode_vals = [mode.value for mode in ModelMode]
if config["model"]["mode"] not in model_mode_vals:
raise ValueError(f"model.mode must be in {model_mode_vals} when prompt_type is advanced")
if app_mode == AppMode.CHAT and config["model"]["mode"] == ModelMode.COMPLETION:
user_prefix = config["completion_prompt_config"]["conversation_histories_role"]["user_prefix"]
assistant_prefix = config["completion_prompt_config"]["conversation_histories_role"]["assistant_prefix"]
if not user_prefix:
config["completion_prompt_config"]["conversation_histories_role"]["user_prefix"] = "Human"
if not assistant_prefix:
config["completion_prompt_config"]["conversation_histories_role"]["assistant_prefix"] = "Assistant"
if config["model"]["mode"] == ModelMode.CHAT:
prompt_list = config["chat_prompt_config"]["prompt"]
if len(prompt_list) > 10:
raise ValueError("prompt messages must be less than 10")
else:
# pre_prompt, for simple mode
if not config.get("pre_prompt"):
config["pre_prompt"] = ""
if not isinstance(config["pre_prompt"], str):
raise ValueError("pre_prompt must be of string type")
return config, ["prompt_type", "pre_prompt", "chat_prompt_config", "completion_prompt_config"]
@classmethod
def validate_post_prompt_and_set_defaults(cls, config: dict):
"""
Validate post_prompt and set defaults for prompt feature
:param config: app model config args
"""
# post_prompt
if not config.get("post_prompt"):
config["post_prompt"] = ""
if not isinstance(config["post_prompt"], str):
raise ValueError("post_prompt must be of string type")
return config

View File

@@ -0,0 +1,189 @@
import re
from core.app.app_config.entities import ExternalDataVariableEntity, VariableEntity, VariableEntityType
from core.external_data_tool.factory import ExternalDataToolFactory
_ALLOWED_VARIABLE_ENTITY_TYPE = frozenset(
[
VariableEntityType.TEXT_INPUT,
VariableEntityType.SELECT,
VariableEntityType.PARAGRAPH,
VariableEntityType.NUMBER,
VariableEntityType.EXTERNAL_DATA_TOOL,
VariableEntityType.CHECKBOX,
]
)
class BasicVariablesConfigManager:
@classmethod
def convert(cls, config: dict) -> tuple[list[VariableEntity], list[ExternalDataVariableEntity]]:
"""
Convert model config to model config
:param config: model config args
"""
external_data_variables = []
variable_entities = []
# old external_data_tools
external_data_tools = config.get("external_data_tools", [])
for external_data_tool in external_data_tools:
if "enabled" not in external_data_tool or not external_data_tool["enabled"]:
continue
external_data_variables.append(
ExternalDataVariableEntity(
variable=external_data_tool["variable"],
type=external_data_tool["type"],
config=external_data_tool["config"],
)
)
# variables and external_data_tools
for variables in config.get("user_input_form", []):
variable_type = list(variables.keys())[0]
if variable_type == VariableEntityType.EXTERNAL_DATA_TOOL:
variable = variables[variable_type]
if "config" not in variable:
continue
external_data_variables.append(
ExternalDataVariableEntity(
variable=variable["variable"], type=variable["type"], config=variable["config"]
)
)
elif variable_type in {
VariableEntityType.TEXT_INPUT,
VariableEntityType.PARAGRAPH,
VariableEntityType.NUMBER,
VariableEntityType.SELECT,
VariableEntityType.CHECKBOX,
}:
variable = variables[variable_type]
variable_entities.append(
VariableEntity(
type=variable_type,
variable=variable.get("variable"),
description=variable.get("description") or "",
label=variable.get("label"),
required=variable.get("required", False),
max_length=variable.get("max_length"),
options=variable.get("options") or [],
)
)
return variable_entities, external_data_variables
@classmethod
def validate_and_set_defaults(cls, tenant_id: str, config: dict) -> tuple[dict, list[str]]:
"""
Validate and set defaults for user input form
:param tenant_id: workspace id
:param config: app model config args
"""
related_config_keys = []
config, current_related_config_keys = cls.validate_variables_and_set_defaults(config)
related_config_keys.extend(current_related_config_keys)
config, current_related_config_keys = cls.validate_external_data_tools_and_set_defaults(tenant_id, config)
related_config_keys.extend(current_related_config_keys)
return config, related_config_keys
@classmethod
def validate_variables_and_set_defaults(cls, config: dict) -> tuple[dict, list[str]]:
"""
Validate and set defaults for user input form
:param config: app model config args
"""
if not config.get("user_input_form"):
config["user_input_form"] = []
if not isinstance(config["user_input_form"], list):
raise ValueError("user_input_form must be a list of objects")
variables = []
for item in config["user_input_form"]:
key = list(item.keys())[0]
# if key not in {"text-input", "select", "paragraph", "number", "external_data_tool"}:
if key not in {
VariableEntityType.TEXT_INPUT,
VariableEntityType.SELECT,
VariableEntityType.PARAGRAPH,
VariableEntityType.NUMBER,
VariableEntityType.EXTERNAL_DATA_TOOL,
VariableEntityType.CHECKBOX,
}:
allowed_keys = ", ".join(i.value for i in _ALLOWED_VARIABLE_ENTITY_TYPE)
raise ValueError(f"Keys in user_input_form list can only be {allowed_keys}")
form_item = item[key]
if "label" not in form_item:
raise ValueError("label is required in user_input_form")
if not isinstance(form_item["label"], str):
raise ValueError("label in user_input_form must be of string type")
if "variable" not in form_item:
raise ValueError("variable is required in user_input_form")
if not isinstance(form_item["variable"], str):
raise ValueError("variable in user_input_form must be of string type")
pattern = re.compile(r"^(?!\d)[\u4e00-\u9fa5A-Za-z0-9_\U0001F300-\U0001F64F\U0001F680-\U0001F6FF]{1,100}$")
if pattern.match(form_item["variable"]) is None:
raise ValueError("variable in user_input_form must be a string, and cannot start with a number")
variables.append(form_item["variable"])
if "required" not in form_item or not form_item["required"]:
form_item["required"] = False
if not isinstance(form_item["required"], bool):
raise ValueError("required in user_input_form must be of boolean type")
if key == "select":
if "options" not in form_item or not form_item["options"]:
form_item["options"] = []
if not isinstance(form_item["options"], list):
raise ValueError("options in user_input_form must be a list of strings")
if "default" in form_item and form_item["default"] and form_item["default"] not in form_item["options"]:
raise ValueError("default value in user_input_form must be in the options list")
return config, ["user_input_form"]
@classmethod
def validate_external_data_tools_and_set_defaults(cls, tenant_id: str, config: dict) -> tuple[dict, list[str]]:
"""
Validate and set defaults for external data fetch feature
:param tenant_id: workspace id
:param config: app model config args
"""
if not config.get("external_data_tools"):
config["external_data_tools"] = []
if not isinstance(config["external_data_tools"], list):
raise ValueError("external_data_tools must be of list type")
for tool in config["external_data_tools"]:
if "enabled" not in tool or not tool["enabled"]:
tool["enabled"] = False
if not tool["enabled"]:
continue
if "type" not in tool or not tool["type"]:
raise ValueError("external_data_tools[].type is required")
typ = tool["type"]
config = tool["config"]
ExternalDataToolFactory.validate_config(name=typ, tenant_id=tenant_id, config=config)
return config, ["external_data_tools"]

View File

@@ -0,0 +1,336 @@
from collections.abc import Sequence
from enum import StrEnum, auto
from typing import Any, Literal
from pydantic import BaseModel, Field, field_validator
from core.file import FileTransferMethod, FileType, FileUploadConfig
from core.model_runtime.entities.llm_entities import LLMMode
from core.model_runtime.entities.message_entities import PromptMessageRole
from models.model import AppMode
class ModelConfigEntity(BaseModel):
"""
Model Config Entity.
"""
provider: str
model: str
mode: str | None = None
parameters: dict[str, Any] = Field(default_factory=dict)
stop: list[str] = Field(default_factory=list)
class AdvancedChatMessageEntity(BaseModel):
"""
Advanced Chat Message Entity.
"""
text: str
role: PromptMessageRole
class AdvancedChatPromptTemplateEntity(BaseModel):
"""
Advanced Chat Prompt Template Entity.
"""
messages: list[AdvancedChatMessageEntity]
class AdvancedCompletionPromptTemplateEntity(BaseModel):
"""
Advanced Completion Prompt Template Entity.
"""
class RolePrefixEntity(BaseModel):
"""
Role Prefix Entity.
"""
user: str
assistant: str
prompt: str
role_prefix: RolePrefixEntity | None = None
class PromptTemplateEntity(BaseModel):
"""
Prompt Template Entity.
"""
class PromptType(StrEnum):
"""
Prompt Type.
'simple', 'advanced'
"""
SIMPLE = auto()
ADVANCED = auto()
@classmethod
def value_of(cls, value: str):
"""
Get value of given mode.
:param value: mode value
:return: mode
"""
for mode in cls:
if mode.value == value:
return mode
raise ValueError(f"invalid prompt type value {value}")
prompt_type: PromptType
simple_prompt_template: str | None = None
advanced_chat_prompt_template: AdvancedChatPromptTemplateEntity | None = None
advanced_completion_prompt_template: AdvancedCompletionPromptTemplateEntity | None = None
class VariableEntityType(StrEnum):
TEXT_INPUT = "text-input"
SELECT = "select"
PARAGRAPH = "paragraph"
NUMBER = "number"
EXTERNAL_DATA_TOOL = "external_data_tool"
FILE = "file"
FILE_LIST = "file-list"
CHECKBOX = "checkbox"
class VariableEntity(BaseModel):
"""
Variable Entity.
"""
# `variable` records the name of the variable in user inputs.
variable: str
label: str
description: str = ""
type: VariableEntityType
required: bool = False
hide: bool = False
default: Any = None
max_length: int | None = None
options: Sequence[str] = Field(default_factory=list)
allowed_file_types: Sequence[FileType] | None = Field(default_factory=list)
allowed_file_extensions: Sequence[str] | None = Field(default_factory=list)
allowed_file_upload_methods: Sequence[FileTransferMethod] | None = Field(default_factory=list)
@field_validator("description", mode="before")
@classmethod
def convert_none_description(cls, v: Any) -> str:
return v or ""
@field_validator("options", mode="before")
@classmethod
def convert_none_options(cls, v: Any) -> Sequence[str]:
return v or []
class RagPipelineVariableEntity(VariableEntity):
"""
Rag Pipeline Variable Entity.
"""
tooltips: str | None = None
placeholder: str | None = None
belong_to_node_id: str
class ExternalDataVariableEntity(BaseModel):
"""
External Data Variable Entity.
"""
variable: str
type: str
config: dict[str, Any] = Field(default_factory=dict)
SupportedComparisonOperator = Literal[
# for string or array
"contains",
"not contains",
"start with",
"end with",
"is",
"is not",
"empty",
"not empty",
"in",
"not in",
# for number
"=",
"",
">",
"<",
"",
"",
# for time
"before",
"after",
]
class ModelConfig(BaseModel):
provider: str
name: str
mode: LLMMode
completion_params: dict[str, Any] = Field(default_factory=dict)
class Condition(BaseModel):
"""
Condition detail
"""
name: str
comparison_operator: SupportedComparisonOperator
value: str | Sequence[str] | None | int | float = None
class MetadataFilteringCondition(BaseModel):
"""
Metadata Filtering Condition.
"""
logical_operator: Literal["and", "or"] | None = "and"
conditions: list[Condition] | None = Field(default=None, deprecated=True)
class DatasetRetrieveConfigEntity(BaseModel):
"""
Dataset Retrieve Config Entity.
"""
class RetrieveStrategy(StrEnum):
"""
Dataset Retrieve Strategy.
'single' or 'multiple'
"""
SINGLE = auto()
MULTIPLE = auto()
@classmethod
def value_of(cls, value: str):
"""
Get value of given mode.
:param value: mode value
:return: mode
"""
for mode in cls:
if mode.value == value:
return mode
raise ValueError(f"invalid retrieve strategy value {value}")
query_variable: str | None = None # Only when app mode is completion
retrieve_strategy: RetrieveStrategy
top_k: int | None = None
score_threshold: float | None = 0.0
rerank_mode: str | None = "reranking_model"
reranking_model: dict | None = None
weights: dict | None = None
reranking_enabled: bool | None = True
metadata_filtering_mode: Literal["disabled", "automatic", "manual"] | None = "disabled"
metadata_model_config: ModelConfig | None = None
metadata_filtering_conditions: MetadataFilteringCondition | None = None
class DatasetEntity(BaseModel):
"""
Dataset Config Entity.
"""
dataset_ids: list[str]
retrieve_config: DatasetRetrieveConfigEntity
class SensitiveWordAvoidanceEntity(BaseModel):
"""
Sensitive Word Avoidance Entity.
"""
type: str
config: dict[str, Any] = Field(default_factory=dict)
class TextToSpeechEntity(BaseModel):
"""
Sensitive Word Avoidance Entity.
"""
enabled: bool
voice: str | None = None
language: str | None = None
class TracingConfigEntity(BaseModel):
"""
Tracing Config Entity.
"""
enabled: bool
tracing_provider: str
class AppAdditionalFeatures(BaseModel):
file_upload: FileUploadConfig | None = None
opening_statement: str | None = None
suggested_questions: list[str] = []
suggested_questions_after_answer: bool = False
show_retrieve_source: bool = False
more_like_this: bool = False
speech_to_text: bool = False
text_to_speech: TextToSpeechEntity | None = None
trace_config: TracingConfigEntity | None = None
class AppConfig(BaseModel):
"""
Application Config Entity.
"""
tenant_id: str
app_id: str
app_mode: AppMode
additional_features: AppAdditionalFeatures | None = None
variables: list[VariableEntity] = []
sensitive_word_avoidance: SensitiveWordAvoidanceEntity | None = None
class EasyUIBasedAppModelConfigFrom(StrEnum):
"""
App Model Config From.
"""
ARGS = auto()
APP_LATEST_CONFIG = "app-latest-config"
CONVERSATION_SPECIFIC_CONFIG = "conversation-specific-config"
class EasyUIBasedAppConfig(AppConfig):
"""
Easy UI Based App Config Entity.
"""
app_model_config_from: EasyUIBasedAppModelConfigFrom
app_model_config_id: str
app_model_config_dict: dict
model: ModelConfigEntity
prompt_template: PromptTemplateEntity
dataset: DatasetEntity | None = None
external_data_variables: list[ExternalDataVariableEntity] = []
class WorkflowUIBasedAppConfig(AppConfig):
"""
Workflow UI Based App Config Entity.
"""
workflow_id: str

View File

@@ -0,0 +1,43 @@
from collections.abc import Mapping
from typing import Any
from constants import DEFAULT_FILE_NUMBER_LIMITS
from core.file import FileUploadConfig
class FileUploadConfigManager:
@classmethod
def convert(cls, config: Mapping[str, Any], is_vision: bool = True):
"""
Convert model config to model config
:param config: model config args
:param is_vision: if True, the feature is vision feature
"""
file_upload_dict = config.get("file_upload")
if file_upload_dict:
if file_upload_dict.get("enabled"):
transform_methods = file_upload_dict.get("allowed_file_upload_methods", [])
file_upload_dict["image_config"] = {
"number_limits": file_upload_dict.get("number_limits", DEFAULT_FILE_NUMBER_LIMITS),
"transfer_methods": transform_methods,
}
if is_vision:
file_upload_dict["image_config"]["detail"] = file_upload_dict.get("image", {}).get("detail", "high")
return FileUploadConfig.model_validate(file_upload_dict)
@classmethod
def validate_and_set_defaults(cls, config: dict) -> tuple[dict, list[str]]:
"""
Validate and set defaults for file upload feature
:param config: app model config args
"""
if not config.get("file_upload"):
config["file_upload"] = {}
else:
FileUploadConfig.model_validate(config["file_upload"])
return config, ["file_upload"]

View File

@@ -0,0 +1,32 @@
from pydantic import BaseModel, ConfigDict, Field, ValidationError
class MoreLikeThisConfig(BaseModel):
enabled: bool = False
model_config = ConfigDict(extra="allow")
class AppConfigModel(BaseModel):
more_like_this: MoreLikeThisConfig = Field(default_factory=MoreLikeThisConfig)
model_config = ConfigDict(extra="allow")
class MoreLikeThisConfigManager:
@classmethod
def convert(cls, config: dict) -> bool:
"""
Convert model config to model config
:param config: model config args
"""
validated_config, _ = cls.validate_and_set_defaults(config)
return AppConfigModel.model_validate(validated_config).more_like_this.enabled
@classmethod
def validate_and_set_defaults(cls, config: dict) -> tuple[dict, list[str]]:
try:
return AppConfigModel.model_validate(config).model_dump(), ["more_like_this"]
except ValidationError:
raise ValueError(
"more_like_this must be of dict type and enabled in more_like_this must be of boolean type"
)

View File

@@ -0,0 +1,41 @@
class OpeningStatementConfigManager:
@classmethod
def convert(cls, config: dict) -> tuple[str, list]:
"""
Convert model config to model config
:param config: model config args
"""
# opening statement
opening_statement = config.get("opening_statement", "")
# suggested questions
suggested_questions_list = config.get("suggested_questions", [])
return opening_statement, suggested_questions_list
@classmethod
def validate_and_set_defaults(cls, config: dict) -> tuple[dict, list[str]]:
"""
Validate and set defaults for opening statement feature
:param config: app model config args
"""
if not config.get("opening_statement"):
config["opening_statement"] = ""
if not isinstance(config["opening_statement"], str):
raise ValueError("opening_statement must be of string type")
# suggested_questions
if not config.get("suggested_questions"):
config["suggested_questions"] = []
if not isinstance(config["suggested_questions"], list):
raise ValueError("suggested_questions must be of list type")
for question in config["suggested_questions"]:
if not isinstance(question, str):
raise ValueError("Elements in suggested_questions list must be of string type")
return config, ["opening_statement", "suggested_questions"]

View File

@@ -0,0 +1,31 @@
class RetrievalResourceConfigManager:
@classmethod
def convert(cls, config: dict) -> bool:
show_retrieve_source = False
retriever_resource_dict = config.get("retriever_resource")
if retriever_resource_dict:
if retriever_resource_dict.get("enabled"):
show_retrieve_source = True
return show_retrieve_source
@classmethod
def validate_and_set_defaults(cls, config: dict) -> tuple[dict, list[str]]:
"""
Validate and set defaults for retriever resource feature
:param config: app model config args
"""
if not config.get("retriever_resource"):
config["retriever_resource"] = {"enabled": False}
if not isinstance(config["retriever_resource"], dict):
raise ValueError("retriever_resource must be of dict type")
if "enabled" not in config["retriever_resource"] or not config["retriever_resource"]["enabled"]:
config["retriever_resource"]["enabled"] = False
if not isinstance(config["retriever_resource"]["enabled"], bool):
raise ValueError("enabled in retriever_resource must be of boolean type")
return config, ["retriever_resource"]

View File

@@ -0,0 +1,36 @@
class SpeechToTextConfigManager:
@classmethod
def convert(cls, config: dict) -> bool:
"""
Convert model config to model config
:param config: model config args
"""
speech_to_text = False
speech_to_text_dict = config.get("speech_to_text")
if speech_to_text_dict:
if speech_to_text_dict.get("enabled"):
speech_to_text = True
return speech_to_text
@classmethod
def validate_and_set_defaults(cls, config: dict) -> tuple[dict, list[str]]:
"""
Validate and set defaults for speech to text feature
:param config: app model config args
"""
if not config.get("speech_to_text"):
config["speech_to_text"] = {"enabled": False}
if not isinstance(config["speech_to_text"], dict):
raise ValueError("speech_to_text must be of dict type")
if "enabled" not in config["speech_to_text"] or not config["speech_to_text"]["enabled"]:
config["speech_to_text"]["enabled"] = False
if not isinstance(config["speech_to_text"]["enabled"], bool):
raise ValueError("enabled in speech_to_text must be of boolean type")
return config, ["speech_to_text"]

View File

@@ -0,0 +1,39 @@
class SuggestedQuestionsAfterAnswerConfigManager:
@classmethod
def convert(cls, config: dict) -> bool:
"""
Convert model config to model config
:param config: model config args
"""
suggested_questions_after_answer = False
suggested_questions_after_answer_dict = config.get("suggested_questions_after_answer")
if suggested_questions_after_answer_dict:
if suggested_questions_after_answer_dict.get("enabled"):
suggested_questions_after_answer = True
return suggested_questions_after_answer
@classmethod
def validate_and_set_defaults(cls, config: dict) -> tuple[dict, list[str]]:
"""
Validate and set defaults for suggested questions feature
:param config: app model config args
"""
if not config.get("suggested_questions_after_answer"):
config["suggested_questions_after_answer"] = {"enabled": False}
if not isinstance(config["suggested_questions_after_answer"], dict):
raise ValueError("suggested_questions_after_answer must be of dict type")
if (
"enabled" not in config["suggested_questions_after_answer"]
or not config["suggested_questions_after_answer"]["enabled"]
):
config["suggested_questions_after_answer"]["enabled"] = False
if not isinstance(config["suggested_questions_after_answer"]["enabled"], bool):
raise ValueError("enabled in suggested_questions_after_answer must be of boolean type")
return config, ["suggested_questions_after_answer"]

View File

@@ -0,0 +1,45 @@
from core.app.app_config.entities import TextToSpeechEntity
class TextToSpeechConfigManager:
@classmethod
def convert(cls, config: dict):
"""
Convert model config to model config
:param config: model config args
"""
text_to_speech = None
text_to_speech_dict = config.get("text_to_speech")
if text_to_speech_dict:
if text_to_speech_dict.get("enabled"):
text_to_speech = TextToSpeechEntity(
enabled=text_to_speech_dict.get("enabled"),
voice=text_to_speech_dict.get("voice"),
language=text_to_speech_dict.get("language"),
)
return text_to_speech
@classmethod
def validate_and_set_defaults(cls, config: dict) -> tuple[dict, list[str]]:
"""
Validate and set defaults for text to speech feature
:param config: app model config args
"""
if not config.get("text_to_speech"):
config["text_to_speech"] = {"enabled": False, "voice": "", "language": ""}
if not isinstance(config["text_to_speech"], dict):
raise ValueError("text_to_speech must be of dict type")
if "enabled" not in config["text_to_speech"] or not config["text_to_speech"]["enabled"]:
config["text_to_speech"]["enabled"] = False
config["text_to_speech"]["voice"] = ""
config["text_to_speech"]["language"] = ""
if not isinstance(config["text_to_speech"]["enabled"], bool):
raise ValueError("enabled in text_to_speech must be of boolean type")
return config, ["text_to_speech"]

View File

@@ -0,0 +1,69 @@
import re
from core.app.app_config.entities import RagPipelineVariableEntity, VariableEntity
from models.workflow import Workflow
class WorkflowVariablesConfigManager:
@classmethod
def convert(cls, workflow: Workflow) -> list[VariableEntity]:
"""
Convert workflow start variables to variables
:param workflow: workflow instance
"""
variables = []
# find start node
user_input_form = workflow.user_input_form()
# variables
for variable in user_input_form:
variables.append(VariableEntity.model_validate(variable))
return variables
@classmethod
def convert_rag_pipeline_variable(cls, workflow: Workflow, start_node_id: str) -> list[RagPipelineVariableEntity]:
"""
Convert workflow start variables to variables
:param workflow: workflow instance
"""
variables = []
# get second step node
rag_pipeline_variables = workflow.rag_pipeline_variables
if not rag_pipeline_variables:
return []
variables_map = {item["variable"]: item for item in rag_pipeline_variables}
# get datasource node data
datasource_node_data = None
datasource_nodes = workflow.graph_dict.get("nodes", [])
for datasource_node in datasource_nodes:
if datasource_node.get("id") == start_node_id:
datasource_node_data = datasource_node.get("data", {})
break
if datasource_node_data:
datasource_parameters = datasource_node_data.get("datasource_parameters", {})
for _, value in datasource_parameters.items():
if value.get("value") and isinstance(value.get("value"), str):
pattern = r"\{\{#([a-zA-Z0-9_]{1,50}(?:\.[a-zA-Z0-9_][a-zA-Z0-9_]{0,29}){1,10})#\}\}"
match = re.match(pattern, value["value"])
if match:
full_path = match.group(1)
last_part = full_path.split(".")[-1]
variables_map.pop(last_part, None)
if value.get("value") and isinstance(value.get("value"), list):
last_part = value.get("value")[-1]
variables_map.pop(last_part, None)
all_second_step_variables = list(variables_map.values())
for item in all_second_step_variables:
if item.get("belong_to_node_id") == start_node_id or item.get("belong_to_node_id") == "shared":
variables.append(RagPipelineVariableEntity.model_validate(item))
return variables

View File

View File

@@ -0,0 +1,91 @@
from core.app.app_config.base_app_config_manager import BaseAppConfigManager
from core.app.app_config.common.sensitive_word_avoidance.manager import SensitiveWordAvoidanceConfigManager
from core.app.app_config.entities import WorkflowUIBasedAppConfig
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.app.app_config.features.opening_statement.manager import OpeningStatementConfigManager
from core.app.app_config.features.retrieval_resource.manager import RetrievalResourceConfigManager
from core.app.app_config.features.speech_to_text.manager import SpeechToTextConfigManager
from core.app.app_config.features.suggested_questions_after_answer.manager import (
SuggestedQuestionsAfterAnswerConfigManager,
)
from core.app.app_config.features.text_to_speech.manager import TextToSpeechConfigManager
from core.app.app_config.workflow_ui_based_app.variables.manager import WorkflowVariablesConfigManager
from models.model import App, AppMode
from models.workflow import Workflow
class AdvancedChatAppConfig(WorkflowUIBasedAppConfig):
"""
Advanced Chatbot App Config Entity.
"""
pass
class AdvancedChatAppConfigManager(BaseAppConfigManager):
@classmethod
def get_app_config(cls, app_model: App, workflow: Workflow) -> AdvancedChatAppConfig:
features_dict = workflow.features_dict
app_mode = AppMode.value_of(app_model.mode)
app_config = AdvancedChatAppConfig(
tenant_id=app_model.tenant_id,
app_id=app_model.id,
app_mode=app_mode,
workflow_id=workflow.id,
sensitive_word_avoidance=SensitiveWordAvoidanceConfigManager.convert(config=features_dict),
variables=WorkflowVariablesConfigManager.convert(workflow=workflow),
additional_features=cls.convert_features(features_dict, app_mode),
)
return app_config
@classmethod
def config_validate(cls, tenant_id: str, config: dict, only_structure_validate: bool = False):
"""
Validate for advanced chat app model config
:param tenant_id: tenant id
:param config: app model config args
:param only_structure_validate: if True, only structure validation will be performed
"""
related_config_keys = []
# file upload validation
config, current_related_config_keys = FileUploadConfigManager.validate_and_set_defaults(config=config)
related_config_keys.extend(current_related_config_keys)
# opening_statement
config, current_related_config_keys = OpeningStatementConfigManager.validate_and_set_defaults(config)
related_config_keys.extend(current_related_config_keys)
# suggested_questions_after_answer
config, current_related_config_keys = SuggestedQuestionsAfterAnswerConfigManager.validate_and_set_defaults(
config
)
related_config_keys.extend(current_related_config_keys)
# speech_to_text
config, current_related_config_keys = SpeechToTextConfigManager.validate_and_set_defaults(config)
related_config_keys.extend(current_related_config_keys)
# text_to_speech
config, current_related_config_keys = TextToSpeechConfigManager.validate_and_set_defaults(config)
related_config_keys.extend(current_related_config_keys)
# return retriever resource
config, current_related_config_keys = RetrievalResourceConfigManager.validate_and_set_defaults(config)
related_config_keys.extend(current_related_config_keys)
# moderation validation
config, current_related_config_keys = SensitiveWordAvoidanceConfigManager.validate_and_set_defaults(
tenant_id=tenant_id, config=config, only_structure_validate=only_structure_validate
)
related_config_keys.extend(current_related_config_keys)
related_config_keys = list(set(related_config_keys))
# Filter out extra parameters
filtered_config = {key: config.get(key) for key in related_config_keys}
return filtered_config

View File

@@ -0,0 +1,611 @@
import contextvars
import logging
import threading
import uuid
from collections.abc import Generator, Mapping
from typing import Any, Literal, Union, overload
from flask import Flask, current_app
from pydantic import ValidationError
from sqlalchemy import select
from sqlalchemy.orm import Session, sessionmaker
import contexts
from configs import dify_config
from constants import UUID_NIL
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.app.apps.advanced_chat.app_config_manager import AdvancedChatAppConfigManager
from core.app.apps.advanced_chat.app_runner import AdvancedChatAppRunner
from core.app.apps.advanced_chat.generate_response_converter import AdvancedChatAppGenerateResponseConverter
from core.app.apps.advanced_chat.generate_task_pipeline import AdvancedChatAppGenerateTaskPipeline
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
from core.app.apps.exc import GenerateTaskStoppedError
from core.app.apps.message_based_app_generator import MessageBasedAppGenerator
from core.app.apps.message_based_app_queue_manager import MessageBasedAppQueueManager
from core.app.entities.app_invoke_entities import AdvancedChatAppGenerateEntity, InvokeFrom
from core.app.entities.task_entities import ChatbotAppBlockingResponse, ChatbotAppStreamResponse
from core.helper.trace_id_helper import extract_external_trace_id_from_args
from core.model_runtime.errors.invoke import InvokeAuthorizationError
from core.ops.ops_trace_manager import TraceQueueManager
from core.prompt.utils.get_thread_messages_length import get_thread_messages_length
from core.repositories import DifyCoreRepositoryFactory
from core.workflow.repositories.draft_variable_repository import (
DraftVariableSaverFactory,
)
from core.workflow.repositories.workflow_execution_repository import WorkflowExecutionRepository
from core.workflow.repositories.workflow_node_execution_repository import WorkflowNodeExecutionRepository
from core.workflow.variable_loader import DUMMY_VARIABLE_LOADER, VariableLoader
from extensions.ext_database import db
from factories import file_factory
from libs.flask_utils import preserve_flask_contexts
from models import Account, App, Conversation, EndUser, Message, Workflow, WorkflowNodeExecutionTriggeredFrom
from models.enums import WorkflowRunTriggeredFrom
from services.conversation_service import ConversationService
from services.workflow_draft_variable_service import (
DraftVarLoader,
WorkflowDraftVariableService,
)
logger = logging.getLogger(__name__)
class AdvancedChatAppGenerator(MessageBasedAppGenerator):
_dialogue_count: int
@overload
def generate(
self,
app_model: App,
workflow: Workflow,
user: Union[Account, EndUser],
args: Mapping[str, Any],
invoke_from: InvokeFrom,
streaming: Literal[False],
) -> Mapping[str, Any]: ...
@overload
def generate(
self,
app_model: App,
workflow: Workflow,
user: Union[Account, EndUser],
args: Mapping,
invoke_from: InvokeFrom,
streaming: Literal[True],
) -> Generator[Mapping | str, None, None]: ...
@overload
def generate(
self,
app_model: App,
workflow: Workflow,
user: Union[Account, EndUser],
args: Mapping,
invoke_from: InvokeFrom,
streaming: bool,
) -> Mapping[str, Any] | Generator[str | Mapping, None, None]: ...
def generate(
self,
app_model: App,
workflow: Workflow,
user: Union[Account, EndUser],
args: Mapping,
invoke_from: InvokeFrom,
streaming: bool = True,
) -> Mapping[str, Any] | Generator[str | Mapping, None, None]:
"""
Generate App response.
:param app_model: App
:param workflow: Workflow
:param user: account or end user
:param args: request args
:param invoke_from: invoke from source
:param streaming: is stream
"""
if not args.get("query"):
raise ValueError("query is required")
query = args["query"]
if not isinstance(query, str):
raise ValueError("query must be a string")
query = query.replace("\x00", "")
inputs = args["inputs"]
extras = {
"auto_generate_conversation_name": args.get("auto_generate_name", False),
**extract_external_trace_id_from_args(args),
}
# get conversation
conversation = None
conversation_id = args.get("conversation_id")
if conversation_id:
conversation = ConversationService.get_conversation(
app_model=app_model, conversation_id=conversation_id, user=user
)
# parse files
# TODO(QuantumGhost): Move file parsing logic to the API controller layer
# for better separation of concerns.
#
# For implementation reference, see the `_parse_file` function and
# `DraftWorkflowNodeRunApi` class which handle this properly.
files = args["files"] if args.get("files") else []
file_extra_config = FileUploadConfigManager.convert(workflow.features_dict, is_vision=False)
if file_extra_config:
file_objs = file_factory.build_from_mappings(
mappings=files,
tenant_id=app_model.tenant_id,
config=file_extra_config,
)
else:
file_objs = []
# convert to app config
app_config = AdvancedChatAppConfigManager.get_app_config(app_model=app_model, workflow=workflow)
# get tracing instance
trace_manager = TraceQueueManager(
app_id=app_model.id, user_id=user.id if isinstance(user, Account) else user.session_id
)
if invoke_from == InvokeFrom.DEBUGGER:
# always enable retriever resource in debugger mode
app_config.additional_features.show_retrieve_source = True # type: ignore
workflow_run_id = str(uuid.uuid4())
# init application generate entity
application_generate_entity = AdvancedChatAppGenerateEntity(
task_id=str(uuid.uuid4()),
app_config=app_config,
file_upload_config=file_extra_config,
conversation_id=conversation.id if conversation else None,
inputs=self._prepare_user_inputs(
user_inputs=inputs, variables=app_config.variables, tenant_id=app_model.tenant_id
),
query=query,
files=list(file_objs),
parent_message_id=args.get("parent_message_id") if invoke_from != InvokeFrom.SERVICE_API else UUID_NIL,
user_id=user.id,
stream=streaming,
invoke_from=invoke_from,
extras=extras,
trace_manager=trace_manager,
workflow_run_id=workflow_run_id,
)
contexts.plugin_tool_providers.set({})
contexts.plugin_tool_providers_lock.set(threading.Lock())
# Create repositories
#
# Create session factory
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
# Create workflow execution(aka workflow run) repository
if invoke_from == InvokeFrom.DEBUGGER:
workflow_triggered_from = WorkflowRunTriggeredFrom.DEBUGGING
else:
workflow_triggered_from = WorkflowRunTriggeredFrom.APP_RUN
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
session_factory=session_factory,
user=user,
app_id=application_generate_entity.app_config.app_id,
triggered_from=workflow_triggered_from,
)
# Create workflow node execution repository
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
session_factory=session_factory,
user=user,
app_id=application_generate_entity.app_config.app_id,
triggered_from=WorkflowNodeExecutionTriggeredFrom.WORKFLOW_RUN,
)
return self._generate(
workflow=workflow,
user=user,
invoke_from=invoke_from,
application_generate_entity=application_generate_entity,
workflow_execution_repository=workflow_execution_repository,
workflow_node_execution_repository=workflow_node_execution_repository,
conversation=conversation,
stream=streaming,
)
def single_iteration_generate(
self,
app_model: App,
workflow: Workflow,
node_id: str,
user: Account | EndUser,
args: Mapping,
streaming: bool = True,
) -> Mapping[str, Any] | Generator[str | Mapping[str, Any], Any, None]:
"""
Generate App response.
:param app_model: App
:param workflow: Workflow
:param node_id: the node id
:param user: account or end user
:param args: request args
:param streaming: is streamed
"""
if not node_id:
raise ValueError("node_id is required")
if args.get("inputs") is None:
raise ValueError("inputs is required")
# convert to app config
app_config = AdvancedChatAppConfigManager.get_app_config(app_model=app_model, workflow=workflow)
# init application generate entity
application_generate_entity = AdvancedChatAppGenerateEntity(
task_id=str(uuid.uuid4()),
app_config=app_config,
conversation_id=None,
inputs={},
query="",
files=[],
user_id=user.id,
stream=streaming,
invoke_from=InvokeFrom.DEBUGGER,
extras={"auto_generate_conversation_name": False},
single_iteration_run=AdvancedChatAppGenerateEntity.SingleIterationRunEntity(
node_id=node_id, inputs=args["inputs"]
),
)
contexts.plugin_tool_providers.set({})
contexts.plugin_tool_providers_lock.set(threading.Lock())
# Create repositories
#
# Create session factory
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
# Create workflow execution(aka workflow run) repository
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
session_factory=session_factory,
user=user,
app_id=application_generate_entity.app_config.app_id,
triggered_from=WorkflowRunTriggeredFrom.DEBUGGING,
)
# Create workflow node execution repository
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
session_factory=session_factory,
user=user,
app_id=application_generate_entity.app_config.app_id,
triggered_from=WorkflowNodeExecutionTriggeredFrom.SINGLE_STEP,
)
var_loader = DraftVarLoader(
engine=db.engine,
app_id=application_generate_entity.app_config.app_id,
tenant_id=application_generate_entity.app_config.tenant_id,
)
draft_var_srv = WorkflowDraftVariableService(db.session())
draft_var_srv.prefill_conversation_variable_default_values(workflow)
return self._generate(
workflow=workflow,
user=user,
invoke_from=InvokeFrom.DEBUGGER,
application_generate_entity=application_generate_entity,
workflow_execution_repository=workflow_execution_repository,
workflow_node_execution_repository=workflow_node_execution_repository,
conversation=None,
stream=streaming,
variable_loader=var_loader,
)
def single_loop_generate(
self,
app_model: App,
workflow: Workflow,
node_id: str,
user: Account | EndUser,
args: Mapping,
streaming: bool = True,
) -> Mapping[str, Any] | Generator[str | Mapping[str, Any], Any, None]:
"""
Generate App response.
:param app_model: App
:param workflow: Workflow
:param node_id: the node id
:param user: account or end user
:param args: request args
:param streaming: is stream
"""
if not node_id:
raise ValueError("node_id is required")
if args.get("inputs") is None:
raise ValueError("inputs is required")
# convert to app config
app_config = AdvancedChatAppConfigManager.get_app_config(app_model=app_model, workflow=workflow)
# init application generate entity
application_generate_entity = AdvancedChatAppGenerateEntity(
task_id=str(uuid.uuid4()),
app_config=app_config,
conversation_id=None,
inputs={},
query="",
files=[],
user_id=user.id,
stream=streaming,
invoke_from=InvokeFrom.DEBUGGER,
extras={"auto_generate_conversation_name": False},
single_loop_run=AdvancedChatAppGenerateEntity.SingleLoopRunEntity(node_id=node_id, inputs=args["inputs"]),
)
contexts.plugin_tool_providers.set({})
contexts.plugin_tool_providers_lock.set(threading.Lock())
# Create repositories
#
# Create session factory
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
# Create workflow execution(aka workflow run) repository
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
session_factory=session_factory,
user=user,
app_id=application_generate_entity.app_config.app_id,
triggered_from=WorkflowRunTriggeredFrom.DEBUGGING,
)
# Create workflow node execution repository
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
session_factory=session_factory,
user=user,
app_id=application_generate_entity.app_config.app_id,
triggered_from=WorkflowNodeExecutionTriggeredFrom.SINGLE_STEP,
)
var_loader = DraftVarLoader(
engine=db.engine,
app_id=application_generate_entity.app_config.app_id,
tenant_id=application_generate_entity.app_config.tenant_id,
)
draft_var_srv = WorkflowDraftVariableService(db.session())
draft_var_srv.prefill_conversation_variable_default_values(workflow)
return self._generate(
workflow=workflow,
user=user,
invoke_from=InvokeFrom.DEBUGGER,
application_generate_entity=application_generate_entity,
workflow_execution_repository=workflow_execution_repository,
workflow_node_execution_repository=workflow_node_execution_repository,
conversation=None,
stream=streaming,
variable_loader=var_loader,
)
def _generate(
self,
*,
workflow: Workflow,
user: Union[Account, EndUser],
invoke_from: InvokeFrom,
application_generate_entity: AdvancedChatAppGenerateEntity,
workflow_execution_repository: WorkflowExecutionRepository,
workflow_node_execution_repository: WorkflowNodeExecutionRepository,
conversation: Conversation | None = None,
stream: bool = True,
variable_loader: VariableLoader = DUMMY_VARIABLE_LOADER,
) -> Mapping[str, Any] | Generator[str | Mapping[str, Any], Any, None]:
"""
Generate App response.
:param workflow: Workflow
:param user: account or end user
:param invoke_from: invoke from source
:param application_generate_entity: application generate entity
:param workflow_execution_repository: repository for workflow execution
:param workflow_node_execution_repository: repository for workflow node execution
:param conversation: conversation
:param stream: is stream
"""
is_first_conversation = False
if not conversation:
is_first_conversation = True
# init generate records
(conversation, message) = self._init_generate_records(application_generate_entity, conversation)
if is_first_conversation:
# update conversation features
conversation.override_model_configs = workflow.features
db.session.commit()
db.session.refresh(conversation)
# get conversation dialogue count
# NOTE: dialogue_count should not start from 0,
# because during the first conversation, dialogue_count should be 1.
self._dialogue_count = get_thread_messages_length(conversation.id) + 1
# init queue manager
queue_manager = MessageBasedAppQueueManager(
task_id=application_generate_entity.task_id,
user_id=application_generate_entity.user_id,
invoke_from=application_generate_entity.invoke_from,
conversation_id=conversation.id,
app_mode=conversation.mode,
message_id=message.id,
)
# new thread with request context and contextvars
context = contextvars.copy_context()
worker_thread = threading.Thread(
target=self._generate_worker,
kwargs={
"flask_app": current_app._get_current_object(), # type: ignore
"application_generate_entity": application_generate_entity,
"queue_manager": queue_manager,
"conversation_id": conversation.id,
"message_id": message.id,
"context": context,
"variable_loader": variable_loader,
"workflow_execution_repository": workflow_execution_repository,
"workflow_node_execution_repository": workflow_node_execution_repository,
},
)
worker_thread.start()
# release database connection, because the following new thread operations may take a long time
db.session.refresh(workflow)
db.session.refresh(message)
# db.session.refresh(user)
db.session.close()
# return response or stream generator
response = self._handle_advanced_chat_response(
application_generate_entity=application_generate_entity,
workflow=workflow,
queue_manager=queue_manager,
conversation=conversation,
message=message,
user=user,
stream=stream,
draft_var_saver_factory=self._get_draft_var_saver_factory(invoke_from, account=user),
)
return AdvancedChatAppGenerateResponseConverter.convert(response=response, invoke_from=invoke_from)
def _generate_worker(
self,
flask_app: Flask,
application_generate_entity: AdvancedChatAppGenerateEntity,
queue_manager: AppQueueManager,
conversation_id: str,
message_id: str,
context: contextvars.Context,
variable_loader: VariableLoader,
workflow_execution_repository: WorkflowExecutionRepository,
workflow_node_execution_repository: WorkflowNodeExecutionRepository,
):
"""
Generate worker in a new thread.
:param flask_app: Flask app
:param application_generate_entity: application generate entity
:param queue_manager: queue manager
:param conversation_id: conversation ID
:param message_id: message ID
:return:
"""
with preserve_flask_contexts(flask_app, context_vars=context):
# get conversation and message
conversation = self._get_conversation(conversation_id)
message = self._get_message(message_id)
with Session(db.engine, expire_on_commit=False) as session:
workflow = session.scalar(
select(Workflow).where(
Workflow.tenant_id == application_generate_entity.app_config.tenant_id,
Workflow.app_id == application_generate_entity.app_config.app_id,
Workflow.id == application_generate_entity.app_config.workflow_id,
)
)
if workflow is None:
raise ValueError("Workflow not found")
# Determine system_user_id based on invocation source
is_external_api_call = application_generate_entity.invoke_from in {
InvokeFrom.WEB_APP,
InvokeFrom.SERVICE_API,
}
if is_external_api_call:
# For external API calls, use end user's session ID
end_user = session.scalar(select(EndUser).where(EndUser.id == application_generate_entity.user_id))
system_user_id = end_user.session_id if end_user else ""
else:
# For internal calls, use the original user ID
system_user_id = application_generate_entity.user_id
app = session.scalar(select(App).where(App.id == application_generate_entity.app_config.app_id))
if app is None:
raise ValueError("App not found")
runner = AdvancedChatAppRunner(
application_generate_entity=application_generate_entity,
queue_manager=queue_manager,
conversation=conversation,
message=message,
dialogue_count=self._dialogue_count,
variable_loader=variable_loader,
workflow=workflow,
system_user_id=system_user_id,
app=app,
workflow_execution_repository=workflow_execution_repository,
workflow_node_execution_repository=workflow_node_execution_repository,
)
try:
runner.run()
except GenerateTaskStoppedError:
pass
except InvokeAuthorizationError:
queue_manager.publish_error(
InvokeAuthorizationError("Incorrect API key provided"), PublishFrom.APPLICATION_MANAGER
)
except ValidationError as e:
logger.exception("Validation Error when generating")
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
except ValueError as e:
if dify_config.DEBUG:
logger.exception("Error when generating")
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
except Exception as e:
logger.exception("Unknown Error when generating")
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
finally:
db.session.close()
def _handle_advanced_chat_response(
self,
*,
application_generate_entity: AdvancedChatAppGenerateEntity,
workflow: Workflow,
queue_manager: AppQueueManager,
conversation: Conversation,
message: Message,
user: Union[Account, EndUser],
draft_var_saver_factory: DraftVariableSaverFactory,
stream: bool = False,
) -> Union[ChatbotAppBlockingResponse, Generator[ChatbotAppStreamResponse, None, None]]:
"""
Handle response.
:param application_generate_entity: application generate entity
:param workflow: workflow
:param queue_manager: queue manager
:param conversation: conversation
:param message: message
:param user: account or end user
:param stream: is stream
:return:
"""
# init generate task pipeline
generate_task_pipeline = AdvancedChatAppGenerateTaskPipeline(
application_generate_entity=application_generate_entity,
workflow=workflow,
queue_manager=queue_manager,
conversation=conversation,
message=message,
user=user,
dialogue_count=self._dialogue_count,
stream=stream,
draft_var_saver_factory=draft_var_saver_factory,
)
try:
return generate_task_pipeline.process()
except ValueError as e:
if len(e.args) > 0 and e.args[0] == "I/O operation on closed file.": # ignore this error
raise GenerateTaskStoppedError()
else:
logger.exception("Failed to process generate task pipeline, conversation_id: %s", conversation.id)
raise e

View File

@@ -0,0 +1,405 @@
import logging
import time
from collections.abc import Mapping, Sequence
from typing import Any, cast
from sqlalchemy import select
from sqlalchemy.orm import Session
from core.app.apps.advanced_chat.app_config_manager import AdvancedChatAppConfig
from core.app.apps.base_app_queue_manager import AppQueueManager
from core.app.apps.workflow_app_runner import WorkflowBasedAppRunner
from core.app.entities.app_invoke_entities import (
AdvancedChatAppGenerateEntity,
AppGenerateEntity,
InvokeFrom,
)
from core.app.entities.queue_entities import (
QueueAnnotationReplyEvent,
QueueStopEvent,
QueueTextChunkEvent,
)
from core.app.features.annotation_reply.annotation_reply import AnnotationReplyFeature
from core.moderation.base import ModerationError
from core.moderation.input_moderation import InputModeration
from core.variables.variables import VariableUnion
from core.workflow.enums import WorkflowType
from core.workflow.graph_engine.command_channels.redis_channel import RedisChannel
from core.workflow.graph_engine.layers.base import GraphEngineLayer
from core.workflow.graph_engine.layers.persistence import PersistenceWorkflowInfo, WorkflowPersistenceLayer
from core.workflow.repositories.workflow_execution_repository import WorkflowExecutionRepository
from core.workflow.repositories.workflow_node_execution_repository import WorkflowNodeExecutionRepository
from core.workflow.runtime import GraphRuntimeState, VariablePool
from core.workflow.system_variable import SystemVariable
from core.workflow.variable_loader import VariableLoader
from core.workflow.workflow_entry import WorkflowEntry
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from models import Workflow
from models.enums import UserFrom
from models.model import App, Conversation, Message, MessageAnnotation
from models.workflow import ConversationVariable
logger = logging.getLogger(__name__)
class AdvancedChatAppRunner(WorkflowBasedAppRunner):
"""
AdvancedChat Application Runner
"""
def __init__(
self,
*,
application_generate_entity: AdvancedChatAppGenerateEntity,
queue_manager: AppQueueManager,
conversation: Conversation,
message: Message,
dialogue_count: int,
variable_loader: VariableLoader,
workflow: Workflow,
system_user_id: str,
app: App,
workflow_execution_repository: WorkflowExecutionRepository,
workflow_node_execution_repository: WorkflowNodeExecutionRepository,
graph_engine_layers: Sequence[GraphEngineLayer] = (),
):
super().__init__(
queue_manager=queue_manager,
variable_loader=variable_loader,
app_id=application_generate_entity.app_config.app_id,
graph_engine_layers=graph_engine_layers,
)
self.application_generate_entity = application_generate_entity
self.conversation = conversation
self.message = message
self._dialogue_count = dialogue_count
self._workflow = workflow
self.system_user_id = system_user_id
self._app = app
self._workflow_execution_repository = workflow_execution_repository
self._workflow_node_execution_repository = workflow_node_execution_repository
def run(self):
app_config = self.application_generate_entity.app_config
app_config = cast(AdvancedChatAppConfig, app_config)
system_inputs = SystemVariable(
query=self.application_generate_entity.query,
files=self.application_generate_entity.files,
conversation_id=self.conversation.id,
user_id=self.system_user_id,
dialogue_count=self._dialogue_count,
app_id=app_config.app_id,
workflow_id=app_config.workflow_id,
workflow_execution_id=self.application_generate_entity.workflow_run_id,
)
with Session(db.engine, expire_on_commit=False) as session:
app_record = session.scalar(select(App).where(App.id == app_config.app_id))
if not app_record:
raise ValueError("App not found")
if self.application_generate_entity.single_iteration_run or self.application_generate_entity.single_loop_run:
# Handle single iteration or single loop run
graph, variable_pool, graph_runtime_state = self._prepare_single_node_execution(
workflow=self._workflow,
single_iteration_run=self.application_generate_entity.single_iteration_run,
single_loop_run=self.application_generate_entity.single_loop_run,
)
else:
inputs = self.application_generate_entity.inputs
query = self.application_generate_entity.query
# moderation
if self.handle_input_moderation(
app_record=self._app,
app_generate_entity=self.application_generate_entity,
inputs=inputs,
query=query,
message_id=self.message.id,
):
return
# annotation reply
if self.handle_annotation_reply(
app_record=self._app,
message=self.message,
query=query,
app_generate_entity=self.application_generate_entity,
):
return
# Initialize conversation variables
conversation_variables = self._initialize_conversation_variables()
# Create a variable pool.
# init variable pool
variable_pool = VariablePool(
system_variables=system_inputs,
user_inputs=inputs,
environment_variables=self._workflow.environment_variables,
# Based on the definition of `VariableUnion`,
# `list[Variable]` can be safely used as `list[VariableUnion]` since they are compatible.
conversation_variables=conversation_variables,
)
# init graph
graph_runtime_state = GraphRuntimeState(variable_pool=variable_pool, start_at=time.time())
graph = self._init_graph(
graph_config=self._workflow.graph_dict,
graph_runtime_state=graph_runtime_state,
workflow_id=self._workflow.id,
tenant_id=self._workflow.tenant_id,
user_id=self.application_generate_entity.user_id,
)
db.session.close()
# RUN WORKFLOW
# Create Redis command channel for this workflow execution
task_id = self.application_generate_entity.task_id
channel_key = f"workflow:{task_id}:commands"
command_channel = RedisChannel(redis_client, channel_key)
workflow_entry = WorkflowEntry(
tenant_id=self._workflow.tenant_id,
app_id=self._workflow.app_id,
workflow_id=self._workflow.id,
graph=graph,
graph_config=self._workflow.graph_dict,
user_id=self.application_generate_entity.user_id,
user_from=(
UserFrom.ACCOUNT
if self.application_generate_entity.invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER}
else UserFrom.END_USER
),
invoke_from=self.application_generate_entity.invoke_from,
call_depth=self.application_generate_entity.call_depth,
variable_pool=variable_pool,
graph_runtime_state=graph_runtime_state,
command_channel=command_channel,
)
self._queue_manager.graph_runtime_state = graph_runtime_state
persistence_layer = WorkflowPersistenceLayer(
application_generate_entity=self.application_generate_entity,
workflow_info=PersistenceWorkflowInfo(
workflow_id=self._workflow.id,
workflow_type=WorkflowType(self._workflow.type),
version=self._workflow.version,
graph_data=self._workflow.graph_dict,
),
workflow_execution_repository=self._workflow_execution_repository,
workflow_node_execution_repository=self._workflow_node_execution_repository,
trace_manager=self.application_generate_entity.trace_manager,
)
workflow_entry.graph_engine.layer(persistence_layer)
for layer in self._graph_engine_layers:
workflow_entry.graph_engine.layer(layer)
generator = workflow_entry.run()
for event in generator:
self._handle_event(workflow_entry, event)
def handle_input_moderation(
self,
app_record: App,
app_generate_entity: AdvancedChatAppGenerateEntity,
inputs: Mapping[str, Any],
query: str,
message_id: str,
) -> bool:
try:
# process sensitive_word_avoidance
_, inputs, query = self.moderation_for_inputs(
app_id=app_record.id,
tenant_id=app_generate_entity.app_config.tenant_id,
app_generate_entity=app_generate_entity,
inputs=inputs,
query=query,
message_id=message_id,
)
except ModerationError as e:
self._complete_with_stream_output(text=str(e), stopped_by=QueueStopEvent.StopBy.INPUT_MODERATION)
return True
return False
def handle_annotation_reply(
self, app_record: App, message: Message, query: str, app_generate_entity: AdvancedChatAppGenerateEntity
) -> bool:
annotation_reply = self.query_app_annotations_to_reply(
app_record=app_record,
message=message,
query=query,
user_id=app_generate_entity.user_id,
invoke_from=app_generate_entity.invoke_from,
)
if annotation_reply:
self._publish_event(QueueAnnotationReplyEvent(message_annotation_id=annotation_reply.id))
self._complete_with_stream_output(
text=annotation_reply.content, stopped_by=QueueStopEvent.StopBy.ANNOTATION_REPLY
)
return True
return False
def _complete_with_stream_output(self, text: str, stopped_by: QueueStopEvent.StopBy):
"""
Direct output
"""
self._publish_event(QueueTextChunkEvent(text=text))
self._publish_event(QueueStopEvent(stopped_by=stopped_by))
def query_app_annotations_to_reply(
self, app_record: App, message: Message, query: str, user_id: str, invoke_from: InvokeFrom
) -> MessageAnnotation | None:
"""
Query app annotations to reply
:param app_record: app record
:param message: message
:param query: query
:param user_id: user id
:param invoke_from: invoke from
:return:
"""
annotation_reply_feature = AnnotationReplyFeature()
return annotation_reply_feature.query(
app_record=app_record, message=message, query=query, user_id=user_id, invoke_from=invoke_from
)
def moderation_for_inputs(
self,
*,
app_id: str,
tenant_id: str,
app_generate_entity: AppGenerateEntity,
inputs: Mapping[str, Any],
query: str | None = None,
message_id: str,
) -> tuple[bool, Mapping[str, Any], str]:
"""
Process sensitive_word_avoidance.
:param app_id: app id
:param tenant_id: tenant id
:param app_generate_entity: app generate entity
:param inputs: inputs
:param query: query
:param message_id: message id
:return:
"""
moderation_feature = InputModeration()
return moderation_feature.check(
app_id=app_id,
tenant_id=tenant_id,
app_config=app_generate_entity.app_config,
inputs=dict(inputs),
query=query or "",
message_id=message_id,
trace_manager=app_generate_entity.trace_manager,
)
def _initialize_conversation_variables(self) -> list[VariableUnion]:
"""
Initialize conversation variables for the current conversation.
This method:
1. Loads existing variables from the database
2. Creates new variables if none exist
3. Syncs missing variables from the workflow definition
:return: List of conversation variables ready for use
"""
with Session(db.engine) as session:
existing_variables = self._load_existing_conversation_variables(session)
if not existing_variables:
# First time initialization - create all variables
existing_variables = self._create_all_conversation_variables(session)
else:
# Check and add any missing variables from the workflow
existing_variables = self._sync_missing_conversation_variables(session, existing_variables)
# Convert to Variable objects for use in the workflow
conversation_variables = [var.to_variable() for var in existing_variables]
session.commit()
return cast(list[VariableUnion], conversation_variables)
def _load_existing_conversation_variables(self, session: Session) -> list[ConversationVariable]:
"""
Load existing conversation variables from the database.
:param session: Database session
:return: List of existing conversation variables
"""
stmt = select(ConversationVariable).where(
ConversationVariable.app_id == self.conversation.app_id,
ConversationVariable.conversation_id == self.conversation.id,
)
return list(session.scalars(stmt).all())
def _create_all_conversation_variables(self, session: Session) -> list[ConversationVariable]:
"""
Create all conversation variables for a new conversation.
:param session: Database session
:return: List of created conversation variables
"""
new_variables = [
ConversationVariable.from_variable(
app_id=self.conversation.app_id, conversation_id=self.conversation.id, variable=variable
)
for variable in self._workflow.conversation_variables
]
if new_variables:
session.add_all(new_variables)
return new_variables
def _sync_missing_conversation_variables(
self, session: Session, existing_variables: list[ConversationVariable]
) -> list[ConversationVariable]:
"""
Sync missing conversation variables from the workflow definition.
This handles the case where new variables are added to a workflow
after conversations have already been created.
:param session: Database session
:param existing_variables: List of existing conversation variables
:return: Updated list including any newly created variables
"""
# Get IDs of existing and workflow variables
existing_ids = {var.id for var in existing_variables}
workflow_variables = {var.id: var for var in self._workflow.conversation_variables}
# Find missing variable IDs
missing_ids = set(workflow_variables.keys()) - existing_ids
if not missing_ids:
return existing_variables
# Create missing variables with their default values
new_variables = [
ConversationVariable.from_variable(
app_id=self.conversation.app_id,
conversation_id=self.conversation.id,
variable=workflow_variables[var_id],
)
for var_id in missing_ids
]
session.add_all(new_variables)
# Return combined list
return existing_variables + new_variables

View File

@@ -0,0 +1,125 @@
from collections.abc import Generator
from typing import Any, cast
from core.app.apps.base_app_generate_response_converter import AppGenerateResponseConverter
from core.app.entities.task_entities import (
AppBlockingResponse,
AppStreamResponse,
ChatbotAppBlockingResponse,
ChatbotAppStreamResponse,
ErrorStreamResponse,
MessageEndStreamResponse,
NodeFinishStreamResponse,
NodeStartStreamResponse,
PingStreamResponse,
)
class AdvancedChatAppGenerateResponseConverter(AppGenerateResponseConverter):
_blocking_response_type = ChatbotAppBlockingResponse
@classmethod
def convert_blocking_full_response(cls, blocking_response: AppBlockingResponse) -> dict[str, Any]:
"""
Convert blocking full response.
:param blocking_response: blocking response
:return:
"""
blocking_response = cast(ChatbotAppBlockingResponse, blocking_response)
response = {
"event": "message",
"task_id": blocking_response.task_id,
"id": blocking_response.data.id,
"message_id": blocking_response.data.message_id,
"conversation_id": blocking_response.data.conversation_id,
"mode": blocking_response.data.mode,
"answer": blocking_response.data.answer,
"metadata": blocking_response.data.metadata,
"created_at": blocking_response.data.created_at,
}
return response
@classmethod
def convert_blocking_simple_response(cls, blocking_response: AppBlockingResponse) -> dict[str, Any]:
"""
Convert blocking simple response.
:param blocking_response: blocking response
:return:
"""
response = cls.convert_blocking_full_response(blocking_response)
metadata = response.get("metadata", {})
response["metadata"] = cls._get_simple_metadata(metadata)
return response
@classmethod
def convert_stream_full_response(
cls, stream_response: Generator[AppStreamResponse, None, None]
) -> Generator[dict | str, Any, None]:
"""
Convert stream full response.
:param stream_response: stream response
:return:
"""
for chunk in stream_response:
chunk = cast(ChatbotAppStreamResponse, chunk)
sub_stream_response = chunk.stream_response
if isinstance(sub_stream_response, PingStreamResponse):
yield "ping"
continue
response_chunk: dict[str, Any] = {
"event": sub_stream_response.event.value,
"conversation_id": chunk.conversation_id,
"message_id": chunk.message_id,
"created_at": chunk.created_at,
}
if isinstance(sub_stream_response, ErrorStreamResponse):
data = cls._error_to_stream_response(sub_stream_response.err)
response_chunk.update(data)
else:
response_chunk.update(sub_stream_response.model_dump(mode="json"))
yield response_chunk
@classmethod
def convert_stream_simple_response(
cls, stream_response: Generator[AppStreamResponse, None, None]
) -> Generator[dict | str, Any, None]:
"""
Convert stream simple response.
:param stream_response: stream response
:return:
"""
for chunk in stream_response:
chunk = cast(ChatbotAppStreamResponse, chunk)
sub_stream_response = chunk.stream_response
if isinstance(sub_stream_response, PingStreamResponse):
yield "ping"
continue
response_chunk: dict[str, Any] = {
"event": sub_stream_response.event.value,
"conversation_id": chunk.conversation_id,
"message_id": chunk.message_id,
"created_at": chunk.created_at,
}
if isinstance(sub_stream_response, MessageEndStreamResponse):
sub_stream_response_dict = sub_stream_response.model_dump(mode="json")
metadata = sub_stream_response_dict.get("metadata", {})
sub_stream_response_dict["metadata"] = cls._get_simple_metadata(metadata)
response_chunk.update(sub_stream_response_dict)
if isinstance(sub_stream_response, ErrorStreamResponse):
data = cls._error_to_stream_response(sub_stream_response.err)
response_chunk.update(data)
elif isinstance(sub_stream_response, NodeStartStreamResponse | NodeFinishStreamResponse):
response_chunk.update(sub_stream_response.to_ignore_detail_dict())
else:
response_chunk.update(sub_stream_response.model_dump(mode="json"))
yield response_chunk

View File

@@ -0,0 +1,891 @@
import json
import logging
import re
import time
from collections.abc import Callable, Generator, Mapping
from contextlib import contextmanager
from threading import Thread
from typing import Any, Union
from sqlalchemy import select
from sqlalchemy.orm import Session
from constants.tts_auto_play_timeout import TTS_AUTO_PLAY_TIMEOUT, TTS_AUTO_PLAY_YIELD_CPU_TIME
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
from core.app.apps.common.graph_runtime_state_support import GraphRuntimeStateSupport
from core.app.apps.common.workflow_response_converter import WorkflowResponseConverter
from core.app.entities.app_invoke_entities import (
AdvancedChatAppGenerateEntity,
InvokeFrom,
)
from core.app.entities.queue_entities import (
MessageQueueMessage,
QueueAdvancedChatMessageEndEvent,
QueueAgentLogEvent,
QueueAnnotationReplyEvent,
QueueErrorEvent,
QueueIterationCompletedEvent,
QueueIterationNextEvent,
QueueIterationStartEvent,
QueueLoopCompletedEvent,
QueueLoopNextEvent,
QueueLoopStartEvent,
QueueMessageReplaceEvent,
QueueNodeExceptionEvent,
QueueNodeFailedEvent,
QueueNodeRetryEvent,
QueueNodeStartedEvent,
QueueNodeSucceededEvent,
QueuePingEvent,
QueueRetrieverResourcesEvent,
QueueStopEvent,
QueueTextChunkEvent,
QueueWorkflowFailedEvent,
QueueWorkflowPartialSuccessEvent,
QueueWorkflowStartedEvent,
QueueWorkflowSucceededEvent,
WorkflowQueueMessage,
)
from core.app.entities.task_entities import (
ChatbotAppBlockingResponse,
ChatbotAppStreamResponse,
ErrorStreamResponse,
MessageAudioEndStreamResponse,
MessageAudioStreamResponse,
MessageEndStreamResponse,
PingStreamResponse,
StreamResponse,
WorkflowTaskState,
)
from core.app.task_pipeline.based_generate_task_pipeline import BasedGenerateTaskPipeline
from core.app.task_pipeline.message_cycle_manager import MessageCycleManager
from core.base.tts import AppGeneratorTTSPublisher, AudioTrunk
from core.model_runtime.entities.llm_entities import LLMUsage
from core.model_runtime.utils.encoders import jsonable_encoder
from core.ops.ops_trace_manager import TraceQueueManager
from core.workflow.enums import WorkflowExecutionStatus
from core.workflow.nodes import NodeType
from core.workflow.repositories.draft_variable_repository import DraftVariableSaverFactory
from core.workflow.runtime import GraphRuntimeState
from core.workflow.system_variable import SystemVariable
from extensions.ext_database import db
from libs.datetime_utils import naive_utc_now
from models import Account, Conversation, EndUser, Message, MessageFile
from models.enums import CreatorUserRole
from models.workflow import Workflow
logger = logging.getLogger(__name__)
class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
"""
AdvancedChatAppGenerateTaskPipeline is a class that generate stream output and state management for Application.
"""
def __init__(
self,
application_generate_entity: AdvancedChatAppGenerateEntity,
workflow: Workflow,
queue_manager: AppQueueManager,
conversation: Conversation,
message: Message,
user: Union[Account, EndUser],
stream: bool,
dialogue_count: int,
draft_var_saver_factory: DraftVariableSaverFactory,
):
self._base_task_pipeline = BasedGenerateTaskPipeline(
application_generate_entity=application_generate_entity,
queue_manager=queue_manager,
stream=stream,
)
if isinstance(user, EndUser):
self._user_id = user.id
user_session_id = user.session_id
self._created_by_role = CreatorUserRole.END_USER
elif isinstance(user, Account):
self._user_id = user.id
user_session_id = user.id
self._created_by_role = CreatorUserRole.ACCOUNT
else:
raise NotImplementedError(f"User type not supported: {type(user)}")
self._workflow_system_variables = SystemVariable(
query=message.query,
files=application_generate_entity.files,
conversation_id=conversation.id,
user_id=user_session_id,
dialogue_count=dialogue_count,
app_id=application_generate_entity.app_config.app_id,
workflow_id=workflow.id,
workflow_execution_id=application_generate_entity.workflow_run_id,
)
self._workflow_response_converter = WorkflowResponseConverter(
application_generate_entity=application_generate_entity,
user=user,
system_variables=self._workflow_system_variables,
)
self._task_state = WorkflowTaskState()
self._message_cycle_manager = MessageCycleManager(
application_generate_entity=application_generate_entity, task_state=self._task_state
)
self._application_generate_entity = application_generate_entity
self._workflow_id = workflow.id
self._workflow_features_dict = workflow.features_dict
self._conversation_id = conversation.id
self._conversation_mode = conversation.mode
self._message_id = message.id
self._message_created_at = int(message.created_at.timestamp())
self._conversation_name_generate_thread: Thread | None = None
self._recorded_files: list[Mapping[str, Any]] = []
self._workflow_run_id: str = ""
self._draft_var_saver_factory = draft_var_saver_factory
self._graph_runtime_state: GraphRuntimeState | None = None
self._seed_graph_runtime_state_from_queue_manager()
def process(self) -> Union[ChatbotAppBlockingResponse, Generator[ChatbotAppStreamResponse, None, None]]:
"""
Process generate task pipeline.
:return:
"""
self._conversation_name_generate_thread = self._message_cycle_manager.generate_conversation_name(
conversation_id=self._conversation_id, query=self._application_generate_entity.query
)
generator = self._wrapper_process_stream_response(trace_manager=self._application_generate_entity.trace_manager)
if self._base_task_pipeline.stream:
return self._to_stream_response(generator)
else:
return self._to_blocking_response(generator)
def _to_blocking_response(self, generator: Generator[StreamResponse, None, None]) -> ChatbotAppBlockingResponse:
"""
Process blocking response.
:return:
"""
for stream_response in generator:
if isinstance(stream_response, ErrorStreamResponse):
raise stream_response.err
elif isinstance(stream_response, MessageEndStreamResponse):
extras = {}
if stream_response.metadata:
extras["metadata"] = stream_response.metadata
return ChatbotAppBlockingResponse(
task_id=stream_response.task_id,
data=ChatbotAppBlockingResponse.Data(
id=self._message_id,
mode=self._conversation_mode,
conversation_id=self._conversation_id,
message_id=self._message_id,
answer=self._task_state.answer,
created_at=self._message_created_at,
**extras,
),
)
else:
continue
raise ValueError("queue listening stopped unexpectedly.")
def _to_stream_response(
self, generator: Generator[StreamResponse, None, None]
) -> Generator[ChatbotAppStreamResponse, Any, None]:
"""
To stream response.
:return:
"""
for stream_response in generator:
yield ChatbotAppStreamResponse(
conversation_id=self._conversation_id,
message_id=self._message_id,
created_at=self._message_created_at,
stream_response=stream_response,
)
def _listen_audio_msg(self, publisher: AppGeneratorTTSPublisher | None, task_id: str):
if not publisher:
return None
audio_msg = publisher.check_and_get_audio()
if audio_msg and isinstance(audio_msg, AudioTrunk) and audio_msg.status != "finish":
return MessageAudioStreamResponse(audio=audio_msg.audio, task_id=task_id)
return None
def _wrapper_process_stream_response(
self, trace_manager: TraceQueueManager | None = None
) -> Generator[StreamResponse, None, None]:
tts_publisher = None
task_id = self._application_generate_entity.task_id
tenant_id = self._application_generate_entity.app_config.tenant_id
features_dict = self._workflow_features_dict
if (
features_dict.get("text_to_speech")
and features_dict["text_to_speech"].get("enabled")
and features_dict["text_to_speech"].get("autoPlay") == "enabled"
):
tts_publisher = AppGeneratorTTSPublisher(
tenant_id, features_dict["text_to_speech"].get("voice"), features_dict["text_to_speech"].get("language")
)
for response in self._process_stream_response(tts_publisher=tts_publisher, trace_manager=trace_manager):
while True:
audio_response = self._listen_audio_msg(publisher=tts_publisher, task_id=task_id)
if audio_response:
yield audio_response
else:
break
yield response
start_listener_time = time.time()
while (time.time() - start_listener_time) < TTS_AUTO_PLAY_TIMEOUT:
try:
if not tts_publisher:
break
audio_trunk = tts_publisher.check_and_get_audio()
if audio_trunk is None:
time.sleep(TTS_AUTO_PLAY_YIELD_CPU_TIME)
continue
if audio_trunk.status == "finish":
break
else:
start_listener_time = time.time()
yield MessageAudioStreamResponse(audio=audio_trunk.audio, task_id=task_id)
except Exception:
logger.exception("Failed to listen audio message, task_id: %s", task_id)
break
if tts_publisher:
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
@contextmanager
def _database_session(self):
"""Context manager for database sessions."""
with Session(db.engine, expire_on_commit=False) as session:
try:
yield session
session.commit()
except Exception:
session.rollback()
raise
def _ensure_workflow_initialized(self):
"""Fluent validation for workflow state."""
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
def _handle_ping_event(self, event: QueuePingEvent, **kwargs) -> Generator[PingStreamResponse, None, None]:
"""Handle ping events."""
yield self._base_task_pipeline.ping_stream_response()
def _handle_error_event(self, event: QueueErrorEvent, **kwargs) -> Generator[ErrorStreamResponse, None, None]:
"""Handle error events."""
with self._database_session() as session:
err = self._base_task_pipeline.handle_error(event=event, session=session, message_id=self._message_id)
yield self._base_task_pipeline.error_to_stream_response(err)
def _handle_workflow_started_event(
self,
event: QueueWorkflowStartedEvent,
**kwargs,
) -> Generator[StreamResponse, None, None]:
"""Handle workflow started events."""
runtime_state = self._resolve_graph_runtime_state()
run_id = self._extract_workflow_run_id(runtime_state)
self._workflow_run_id = run_id
with self._database_session() as session:
message = self._get_message(session=session)
if not message:
raise ValueError(f"Message not found: {self._message_id}")
message.workflow_run_id = run_id
workflow_start_resp = self._workflow_response_converter.workflow_start_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_run_id=run_id,
workflow_id=self._workflow_id,
)
yield workflow_start_resp
def _handle_node_retry_event(self, event: QueueNodeRetryEvent, **kwargs) -> Generator[StreamResponse, None, None]:
"""Handle node retry events."""
self._ensure_workflow_initialized()
node_retry_resp = self._workflow_response_converter.workflow_node_retry_to_stream_response(
event=event,
task_id=self._application_generate_entity.task_id,
)
if node_retry_resp:
yield node_retry_resp
def _handle_node_started_event(
self, event: QueueNodeStartedEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle node started events."""
self._ensure_workflow_initialized()
node_start_resp = self._workflow_response_converter.workflow_node_start_to_stream_response(
event=event,
task_id=self._application_generate_entity.task_id,
)
if node_start_resp:
yield node_start_resp
def _handle_node_succeeded_event(
self, event: QueueNodeSucceededEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle node succeeded events."""
# Record files if it's an answer node or end node
if event.node_type in [NodeType.ANSWER, NodeType.END, NodeType.LLM]:
self._recorded_files.extend(
self._workflow_response_converter.fetch_files_from_node_outputs(event.outputs or {})
)
node_finish_resp = self._workflow_response_converter.workflow_node_finish_to_stream_response(
event=event,
task_id=self._application_generate_entity.task_id,
)
self._save_output_for_event(event, event.node_execution_id)
if node_finish_resp:
yield node_finish_resp
def _handle_node_failed_events(
self,
event: Union[QueueNodeFailedEvent, QueueNodeExceptionEvent],
**kwargs,
) -> Generator[StreamResponse, None, None]:
"""Handle various node failure events."""
node_finish_resp = self._workflow_response_converter.workflow_node_finish_to_stream_response(
event=event,
task_id=self._application_generate_entity.task_id,
)
if isinstance(event, QueueNodeExceptionEvent):
self._save_output_for_event(event, event.node_execution_id)
if node_finish_resp:
yield node_finish_resp
def _handle_text_chunk_event(
self,
event: QueueTextChunkEvent,
*,
tts_publisher: AppGeneratorTTSPublisher | None = None,
queue_message: Union[WorkflowQueueMessage, MessageQueueMessage] | None = None,
**kwargs,
) -> Generator[StreamResponse, None, None]:
"""Handle text chunk events."""
delta_text = event.text
if delta_text is None:
return
# Handle output moderation chunk
should_direct_answer = self._handle_output_moderation_chunk(delta_text)
if should_direct_answer:
return
current_time = time.perf_counter()
if self._task_state.first_token_time is None and delta_text.strip():
self._task_state.first_token_time = current_time
self._task_state.is_streaming_response = True
if delta_text.strip():
self._task_state.last_token_time = current_time
# Only publish tts message at text chunk streaming
if tts_publisher and queue_message:
tts_publisher.publish(queue_message)
self._task_state.answer += delta_text
yield self._message_cycle_manager.message_to_stream_response(
answer=delta_text, message_id=self._message_id, from_variable_selector=event.from_variable_selector
)
def _handle_iteration_start_event(
self, event: QueueIterationStartEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle iteration start events."""
self._ensure_workflow_initialized()
iter_start_resp = self._workflow_response_converter.workflow_iteration_start_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
yield iter_start_resp
def _handle_iteration_next_event(
self, event: QueueIterationNextEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle iteration next events."""
self._ensure_workflow_initialized()
iter_next_resp = self._workflow_response_converter.workflow_iteration_next_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
yield iter_next_resp
def _handle_iteration_completed_event(
self, event: QueueIterationCompletedEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle iteration completed events."""
self._ensure_workflow_initialized()
iter_finish_resp = self._workflow_response_converter.workflow_iteration_completed_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
yield iter_finish_resp
def _handle_loop_start_event(self, event: QueueLoopStartEvent, **kwargs) -> Generator[StreamResponse, None, None]:
"""Handle loop start events."""
self._ensure_workflow_initialized()
loop_start_resp = self._workflow_response_converter.workflow_loop_start_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
yield loop_start_resp
def _handle_loop_next_event(self, event: QueueLoopNextEvent, **kwargs) -> Generator[StreamResponse, None, None]:
"""Handle loop next events."""
self._ensure_workflow_initialized()
loop_next_resp = self._workflow_response_converter.workflow_loop_next_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
yield loop_next_resp
def _handle_loop_completed_event(
self, event: QueueLoopCompletedEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle loop completed events."""
self._ensure_workflow_initialized()
loop_finish_resp = self._workflow_response_converter.workflow_loop_completed_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
yield loop_finish_resp
def _handle_workflow_succeeded_event(
self,
event: QueueWorkflowSucceededEvent,
*,
trace_manager: TraceQueueManager | None = None,
**kwargs,
) -> Generator[StreamResponse, None, None]:
"""Handle workflow succeeded events."""
_ = trace_manager
self._ensure_workflow_initialized()
validated_state = self._ensure_graph_runtime_initialized()
workflow_finish_resp = self._workflow_response_converter.workflow_finish_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_id=self._workflow_id,
status=WorkflowExecutionStatus.SUCCEEDED,
graph_runtime_state=validated_state,
)
yield workflow_finish_resp
self._base_task_pipeline.queue_manager.publish(QueueAdvancedChatMessageEndEvent(), PublishFrom.TASK_PIPELINE)
def _handle_workflow_partial_success_event(
self,
event: QueueWorkflowPartialSuccessEvent,
*,
trace_manager: TraceQueueManager | None = None,
**kwargs,
) -> Generator[StreamResponse, None, None]:
"""Handle workflow partial success events."""
_ = trace_manager
self._ensure_workflow_initialized()
validated_state = self._ensure_graph_runtime_initialized()
workflow_finish_resp = self._workflow_response_converter.workflow_finish_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_id=self._workflow_id,
status=WorkflowExecutionStatus.PARTIAL_SUCCEEDED,
graph_runtime_state=validated_state,
exceptions_count=event.exceptions_count,
)
yield workflow_finish_resp
self._base_task_pipeline.queue_manager.publish(QueueAdvancedChatMessageEndEvent(), PublishFrom.TASK_PIPELINE)
def _handle_workflow_failed_event(
self,
event: QueueWorkflowFailedEvent,
*,
trace_manager: TraceQueueManager | None = None,
**kwargs,
) -> Generator[StreamResponse, None, None]:
"""Handle workflow failed events."""
_ = trace_manager
self._ensure_workflow_initialized()
validated_state = self._ensure_graph_runtime_initialized()
workflow_finish_resp = self._workflow_response_converter.workflow_finish_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_id=self._workflow_id,
status=WorkflowExecutionStatus.FAILED,
graph_runtime_state=validated_state,
error=event.error,
exceptions_count=event.exceptions_count,
)
with self._database_session() as session:
err_event = QueueErrorEvent(error=ValueError(f"Run failed: {event.error}"))
err = self._base_task_pipeline.handle_error(event=err_event, session=session, message_id=self._message_id)
yield workflow_finish_resp
yield self._base_task_pipeline.error_to_stream_response(err)
def _handle_stop_event(
self,
event: QueueStopEvent,
*,
graph_runtime_state: GraphRuntimeState | None = None,
trace_manager: TraceQueueManager | None = None,
**kwargs,
) -> Generator[StreamResponse, None, None]:
"""Handle stop events."""
_ = trace_manager
resolved_state = None
if self._workflow_run_id:
resolved_state = self._resolve_graph_runtime_state(graph_runtime_state)
if self._workflow_run_id and resolved_state:
workflow_finish_resp = self._workflow_response_converter.workflow_finish_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_id=self._workflow_id,
status=WorkflowExecutionStatus.STOPPED,
graph_runtime_state=resolved_state,
error=event.get_stop_reason(),
)
with self._database_session() as session:
# Save message
self._save_message(session=session, graph_runtime_state=resolved_state)
yield workflow_finish_resp
elif event.stopped_by in (
QueueStopEvent.StopBy.INPUT_MODERATION,
QueueStopEvent.StopBy.ANNOTATION_REPLY,
):
# When hitting input-moderation or annotation-reply, the workflow will not start
with self._database_session() as session:
# Save message
self._save_message(session=session)
yield self._message_end_to_stream_response()
def _handle_advanced_chat_message_end_event(
self,
event: QueueAdvancedChatMessageEndEvent,
*,
graph_runtime_state: GraphRuntimeState | None = None,
**kwargs,
) -> Generator[StreamResponse, None, None]:
"""Handle advanced chat message end events."""
resolved_state = self._ensure_graph_runtime_initialized(graph_runtime_state)
output_moderation_answer = self._base_task_pipeline.handle_output_moderation_when_task_finished(
self._task_state.answer
)
if output_moderation_answer:
self._task_state.answer = output_moderation_answer
yield self._message_cycle_manager.message_replace_to_stream_response(
answer=output_moderation_answer,
reason=QueueMessageReplaceEvent.MessageReplaceReason.OUTPUT_MODERATION,
)
# Save message
with self._database_session() as session:
self._save_message(session=session, graph_runtime_state=resolved_state)
yield self._message_end_to_stream_response()
def _handle_retriever_resources_event(
self, event: QueueRetrieverResourcesEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle retriever resources events."""
self._message_cycle_manager.handle_retriever_resources(event)
return
yield # Make this a generator
def _handle_annotation_reply_event(
self, event: QueueAnnotationReplyEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle annotation reply events."""
self._message_cycle_manager.handle_annotation_reply(event)
return
yield # Make this a generator
def _handle_message_replace_event(
self, event: QueueMessageReplaceEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle message replace events."""
yield self._message_cycle_manager.message_replace_to_stream_response(answer=event.text, reason=event.reason)
def _handle_agent_log_event(self, event: QueueAgentLogEvent, **kwargs) -> Generator[StreamResponse, None, None]:
"""Handle agent log events."""
yield self._workflow_response_converter.handle_agent_log(
task_id=self._application_generate_entity.task_id, event=event
)
def _get_event_handlers(self) -> dict[type, Callable]:
"""Get mapping of event types to their handlers using fluent pattern."""
return {
# Basic events
QueuePingEvent: self._handle_ping_event,
QueueErrorEvent: self._handle_error_event,
QueueTextChunkEvent: self._handle_text_chunk_event,
# Workflow events
QueueWorkflowStartedEvent: self._handle_workflow_started_event,
QueueWorkflowSucceededEvent: self._handle_workflow_succeeded_event,
QueueWorkflowPartialSuccessEvent: self._handle_workflow_partial_success_event,
QueueWorkflowFailedEvent: self._handle_workflow_failed_event,
# Node events
QueueNodeRetryEvent: self._handle_node_retry_event,
QueueNodeStartedEvent: self._handle_node_started_event,
QueueNodeSucceededEvent: self._handle_node_succeeded_event,
# Iteration events
QueueIterationStartEvent: self._handle_iteration_start_event,
QueueIterationNextEvent: self._handle_iteration_next_event,
QueueIterationCompletedEvent: self._handle_iteration_completed_event,
# Loop events
QueueLoopStartEvent: self._handle_loop_start_event,
QueueLoopNextEvent: self._handle_loop_next_event,
QueueLoopCompletedEvent: self._handle_loop_completed_event,
# Control events
QueueStopEvent: self._handle_stop_event,
# Message events
QueueRetrieverResourcesEvent: self._handle_retriever_resources_event,
QueueAnnotationReplyEvent: self._handle_annotation_reply_event,
QueueMessageReplaceEvent: self._handle_message_replace_event,
QueueAdvancedChatMessageEndEvent: self._handle_advanced_chat_message_end_event,
QueueAgentLogEvent: self._handle_agent_log_event,
}
def _dispatch_event(
self,
event: Any,
*,
tts_publisher: AppGeneratorTTSPublisher | None = None,
trace_manager: TraceQueueManager | None = None,
queue_message: Union[WorkflowQueueMessage, MessageQueueMessage] | None = None,
) -> Generator[StreamResponse, None, None]:
"""Dispatch events using elegant pattern matching."""
handlers = self._get_event_handlers()
event_type = type(event)
# Direct handler lookup
if handler := handlers.get(event_type):
yield from handler(
event,
tts_publisher=tts_publisher,
trace_manager=trace_manager,
queue_message=queue_message,
)
return
# Handle node failure events with isinstance check
if isinstance(
event,
(
QueueNodeFailedEvent,
QueueNodeExceptionEvent,
),
):
yield from self._handle_node_failed_events(
event,
tts_publisher=tts_publisher,
trace_manager=trace_manager,
queue_message=queue_message,
)
return
# For unhandled events, we continue (original behavior)
return
def _process_stream_response(
self,
tts_publisher: AppGeneratorTTSPublisher | None = None,
trace_manager: TraceQueueManager | None = None,
) -> Generator[StreamResponse, None, None]:
"""
Process stream response using elegant Fluent Python patterns.
Maintains exact same functionality as original 57-if-statement version.
"""
for queue_message in self._base_task_pipeline.queue_manager.listen():
event = queue_message.event
match event:
case QueueWorkflowStartedEvent():
self._resolve_graph_runtime_state()
yield from self._handle_workflow_started_event(event)
case QueueErrorEvent():
yield from self._handle_error_event(event)
break
case QueueWorkflowFailedEvent():
yield from self._handle_workflow_failed_event(event, trace_manager=trace_manager)
break
case QueueStopEvent():
yield from self._handle_stop_event(event, graph_runtime_state=None, trace_manager=trace_manager)
break
# Handle all other events through elegant dispatch
case _:
if responses := list(
self._dispatch_event(
event,
tts_publisher=tts_publisher,
trace_manager=trace_manager,
queue_message=queue_message,
)
):
yield from responses
if tts_publisher:
tts_publisher.publish(None)
if self._conversation_name_generate_thread:
self._conversation_name_generate_thread.join()
def _save_message(self, *, session: Session, graph_runtime_state: GraphRuntimeState | None = None):
message = self._get_message(session=session)
# If there are assistant files, remove markdown image links from answer
answer_text = self._task_state.answer
if self._recorded_files:
# Remove markdown image links since we're storing files separately
answer_text = re.sub(r"!\[.*?\]\(.*?\)", "", answer_text).strip()
message.answer = answer_text
message.updated_at = naive_utc_now()
message.provider_response_latency = time.perf_counter() - self._base_task_pipeline.start_at
# Set usage first before dumping metadata
if graph_runtime_state and graph_runtime_state.llm_usage:
usage = graph_runtime_state.llm_usage
message.message_tokens = usage.prompt_tokens
message.message_unit_price = usage.prompt_unit_price
message.message_price_unit = usage.prompt_price_unit
message.answer_tokens = usage.completion_tokens
message.answer_unit_price = usage.completion_unit_price
message.answer_price_unit = usage.completion_price_unit
message.total_price = usage.total_price
message.currency = usage.currency
self._task_state.metadata.usage = usage
else:
usage = LLMUsage.empty_usage()
self._task_state.metadata.usage = usage
# Add streaming metrics to usage if available
if self._task_state.is_streaming_response and self._task_state.first_token_time:
start_time = self._base_task_pipeline.start_at
first_token_time = self._task_state.first_token_time
last_token_time = self._task_state.last_token_time or first_token_time
usage.time_to_first_token = round(first_token_time - start_time, 3)
usage.time_to_generate = round(last_token_time - first_token_time, 3)
metadata = self._task_state.metadata.model_dump()
message.message_metadata = json.dumps(jsonable_encoder(metadata))
message_files = [
MessageFile(
message_id=message.id,
type=file["type"],
transfer_method=file["transfer_method"],
url=file["remote_url"],
belongs_to="assistant",
upload_file_id=file["related_id"],
created_by_role=CreatorUserRole.ACCOUNT
if message.invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER}
else CreatorUserRole.END_USER,
created_by=message.from_account_id or message.from_end_user_id or "",
)
for file in self._recorded_files
]
session.add_all(message_files)
def _seed_graph_runtime_state_from_queue_manager(self) -> None:
"""Bootstrap the cached runtime state from the queue manager when present."""
candidate = self._base_task_pipeline.queue_manager.graph_runtime_state
if candidate is not None:
self._graph_runtime_state = candidate
def _message_end_to_stream_response(self) -> MessageEndStreamResponse:
"""
Message end to stream response.
:return:
"""
extras = self._task_state.metadata.model_dump()
if self._task_state.metadata.annotation_reply:
del extras["annotation_reply"]
return MessageEndStreamResponse(
task_id=self._application_generate_entity.task_id,
id=self._message_id,
files=self._recorded_files,
metadata=extras,
)
def _handle_output_moderation_chunk(self, text: str) -> bool:
"""
Handle output moderation chunk.
:param text: text
:return: True if output moderation should direct output, otherwise False
"""
if self._base_task_pipeline.output_moderation_handler:
if self._base_task_pipeline.output_moderation_handler.should_direct_output():
self._task_state.answer = self._base_task_pipeline.output_moderation_handler.get_final_output()
self._base_task_pipeline.queue_manager.publish(
QueueTextChunkEvent(text=self._task_state.answer), PublishFrom.TASK_PIPELINE
)
self._base_task_pipeline.queue_manager.publish(
QueueStopEvent(stopped_by=QueueStopEvent.StopBy.OUTPUT_MODERATION), PublishFrom.TASK_PIPELINE
)
return True
else:
self._base_task_pipeline.output_moderation_handler.append_new_token(text)
return False
def _get_message(self, *, session: Session):
stmt = select(Message).where(Message.id == self._message_id)
message = session.scalar(stmt)
if not message:
raise ValueError(f"Message not found: {self._message_id}")
return message
def _save_output_for_event(self, event: QueueNodeSucceededEvent | QueueNodeExceptionEvent, node_execution_id: str):
with Session(db.engine) as session, session.begin():
saver = self._draft_var_saver_factory(
session=session,
app_id=self._application_generate_entity.app_config.app_id,
node_id=event.node_id,
node_type=event.node_type,
node_execution_id=node_execution_id,
enclosing_node_id=event.in_loop_id or event.in_iteration_id,
)
saver.save(event.process_data, event.outputs)

View File

@@ -0,0 +1,236 @@
import uuid
from collections.abc import Mapping
from typing import Any, cast
from core.agent.entities import AgentEntity
from core.app.app_config.base_app_config_manager import BaseAppConfigManager
from core.app.app_config.common.sensitive_word_avoidance.manager import SensitiveWordAvoidanceConfigManager
from core.app.app_config.easy_ui_based_app.agent.manager import AgentConfigManager
from core.app.app_config.easy_ui_based_app.dataset.manager import DatasetConfigManager
from core.app.app_config.easy_ui_based_app.model_config.manager import ModelConfigManager
from core.app.app_config.easy_ui_based_app.prompt_template.manager import PromptTemplateConfigManager
from core.app.app_config.easy_ui_based_app.variables.manager import BasicVariablesConfigManager
from core.app.app_config.entities import EasyUIBasedAppConfig, EasyUIBasedAppModelConfigFrom
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.app.app_config.features.opening_statement.manager import OpeningStatementConfigManager
from core.app.app_config.features.retrieval_resource.manager import RetrievalResourceConfigManager
from core.app.app_config.features.speech_to_text.manager import SpeechToTextConfigManager
from core.app.app_config.features.suggested_questions_after_answer.manager import (
SuggestedQuestionsAfterAnswerConfigManager,
)
from core.app.app_config.features.text_to_speech.manager import TextToSpeechConfigManager
from core.entities.agent_entities import PlanningStrategy
from models.model import App, AppMode, AppModelConfig, Conversation
OLD_TOOLS = ["dataset", "google_search", "web_reader", "wikipedia", "current_datetime"]
class AgentChatAppConfig(EasyUIBasedAppConfig):
"""
Agent Chatbot App Config Entity.
"""
agent: AgentEntity | None = None
class AgentChatAppConfigManager(BaseAppConfigManager):
@classmethod
def get_app_config(
cls,
app_model: App,
app_model_config: AppModelConfig,
conversation: Conversation | None = None,
override_config_dict: dict | None = None,
) -> AgentChatAppConfig:
"""
Convert app model config to agent chat app config
:param app_model: app model
:param app_model_config: app model config
:param conversation: conversation
:param override_config_dict: app model config dict
:return:
"""
if override_config_dict:
config_from = EasyUIBasedAppModelConfigFrom.ARGS
elif conversation:
config_from = EasyUIBasedAppModelConfigFrom.CONVERSATION_SPECIFIC_CONFIG
else:
config_from = EasyUIBasedAppModelConfigFrom.APP_LATEST_CONFIG
if config_from != EasyUIBasedAppModelConfigFrom.ARGS:
app_model_config_dict = app_model_config.to_dict()
config_dict = app_model_config_dict.copy()
else:
config_dict = override_config_dict or {}
app_mode = AppMode.value_of(app_model.mode)
app_config = AgentChatAppConfig(
tenant_id=app_model.tenant_id,
app_id=app_model.id,
app_mode=app_mode,
app_model_config_from=config_from,
app_model_config_id=app_model_config.id,
app_model_config_dict=config_dict,
model=ModelConfigManager.convert(config=config_dict),
prompt_template=PromptTemplateConfigManager.convert(config=config_dict),
sensitive_word_avoidance=SensitiveWordAvoidanceConfigManager.convert(config=config_dict),
dataset=DatasetConfigManager.convert(config=config_dict),
agent=AgentConfigManager.convert(config=config_dict),
additional_features=cls.convert_features(config_dict, app_mode),
)
app_config.variables, app_config.external_data_variables = BasicVariablesConfigManager.convert(
config=config_dict
)
return app_config
@classmethod
def config_validate(cls, tenant_id: str, config: Mapping[str, Any]):
"""
Validate for agent chat app model config
:param tenant_id: tenant id
:param config: app model config args
"""
app_mode = AppMode.AGENT_CHAT
related_config_keys = []
# model
config, current_related_config_keys = ModelConfigManager.validate_and_set_defaults(tenant_id, config)
related_config_keys.extend(current_related_config_keys)
# user_input_form
config, current_related_config_keys = BasicVariablesConfigManager.validate_and_set_defaults(tenant_id, config)
related_config_keys.extend(current_related_config_keys)
# file upload validation
config, current_related_config_keys = FileUploadConfigManager.validate_and_set_defaults(config)
related_config_keys.extend(current_related_config_keys)
# prompt
config, current_related_config_keys = PromptTemplateConfigManager.validate_and_set_defaults(app_mode, config)
related_config_keys.extend(current_related_config_keys)
# agent_mode
config, current_related_config_keys = cls.validate_agent_mode_and_set_defaults(tenant_id, config)
related_config_keys.extend(current_related_config_keys)
# opening_statement
config, current_related_config_keys = OpeningStatementConfigManager.validate_and_set_defaults(config)
related_config_keys.extend(current_related_config_keys)
# suggested_questions_after_answer
config, current_related_config_keys = SuggestedQuestionsAfterAnswerConfigManager.validate_and_set_defaults(
config
)
related_config_keys.extend(current_related_config_keys)
# speech_to_text
config, current_related_config_keys = SpeechToTextConfigManager.validate_and_set_defaults(config)
related_config_keys.extend(current_related_config_keys)
# text_to_speech
config, current_related_config_keys = TextToSpeechConfigManager.validate_and_set_defaults(config)
related_config_keys.extend(current_related_config_keys)
# return retriever resource
config, current_related_config_keys = RetrievalResourceConfigManager.validate_and_set_defaults(config)
related_config_keys.extend(current_related_config_keys)
# dataset configs
# dataset_query_variable
config, current_related_config_keys = DatasetConfigManager.validate_and_set_defaults(
tenant_id, app_mode, config
)
related_config_keys.extend(current_related_config_keys)
# moderation validation
config, current_related_config_keys = SensitiveWordAvoidanceConfigManager.validate_and_set_defaults(
tenant_id, config
)
related_config_keys.extend(current_related_config_keys)
related_config_keys = list(set(related_config_keys))
# Filter out extra parameters
filtered_config = {key: config.get(key) for key in related_config_keys}
return filtered_config
@classmethod
def validate_agent_mode_and_set_defaults(
cls, tenant_id: str, config: dict[str, Any]
) -> tuple[dict[str, Any], list[str]]:
"""
Validate agent_mode and set defaults for agent feature
:param tenant_id: tenant ID
:param config: app model config args
"""
if not config.get("agent_mode"):
config["agent_mode"] = {"enabled": False, "tools": []}
agent_mode = config["agent_mode"]
if not isinstance(agent_mode, dict):
raise ValueError("agent_mode must be of object type")
# FIXME(-LAN-): Cast needed due to basedpyright limitation with dict type narrowing
agent_mode = cast(dict[str, Any], agent_mode)
if "enabled" not in agent_mode or not agent_mode["enabled"]:
agent_mode["enabled"] = False
if not isinstance(agent_mode["enabled"], bool):
raise ValueError("enabled in agent_mode must be of boolean type")
if not agent_mode.get("strategy"):
agent_mode["strategy"] = PlanningStrategy.ROUTER
if agent_mode["strategy"] not in [member.value for member in list(PlanningStrategy.__members__.values())]:
raise ValueError("strategy in agent_mode must be in the specified strategy list")
if not agent_mode.get("tools"):
agent_mode["tools"] = []
if not isinstance(agent_mode["tools"], list):
raise ValueError("tools in agent_mode must be a list of objects")
for tool in agent_mode["tools"]:
key = list(tool.keys())[0]
if key in OLD_TOOLS:
# old style, use tool name as key
tool_item = tool[key]
if "enabled" not in tool_item or not tool_item["enabled"]:
tool_item["enabled"] = False
if not isinstance(tool_item["enabled"], bool):
raise ValueError("enabled in agent_mode.tools must be of boolean type")
if key == "dataset":
if "id" not in tool_item:
raise ValueError("id is required in dataset")
try:
uuid.UUID(tool_item["id"])
except ValueError:
raise ValueError("id in dataset must be of UUID type")
if not DatasetConfigManager.is_dataset_exists(tenant_id, tool_item["id"]):
raise ValueError("Dataset ID does not exist, please check your permission.")
else:
# latest style, use key-value pair
if "enabled" not in tool or not tool["enabled"]:
tool["enabled"] = False
if "provider_type" not in tool:
raise ValueError("provider_type is required in agent_mode.tools")
if "provider_id" not in tool:
raise ValueError("provider_id is required in agent_mode.tools")
if "tool_name" not in tool:
raise ValueError("tool_name is required in agent_mode.tools")
if "tool_parameters" not in tool:
raise ValueError("tool_parameters is required in agent_mode.tools")
return config, ["agent_mode"]

View File

@@ -0,0 +1,266 @@
import contextvars
import logging
import threading
import uuid
from collections.abc import Generator, Mapping
from typing import Any, Literal, Union, overload
from flask import Flask, current_app
from pydantic import ValidationError
from configs import dify_config
from constants import UUID_NIL
from core.app.app_config.easy_ui_based_app.model_config.converter import ModelConfigConverter
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfigManager
from core.app.apps.agent_chat.app_runner import AgentChatAppRunner
from core.app.apps.agent_chat.generate_response_converter import AgentChatAppGenerateResponseConverter
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
from core.app.apps.exc import GenerateTaskStoppedError
from core.app.apps.message_based_app_generator import MessageBasedAppGenerator
from core.app.apps.message_based_app_queue_manager import MessageBasedAppQueueManager
from core.app.entities.app_invoke_entities import AgentChatAppGenerateEntity, InvokeFrom
from core.model_runtime.errors.invoke import InvokeAuthorizationError
from core.ops.ops_trace_manager import TraceQueueManager
from extensions.ext_database import db
from factories import file_factory
from libs.flask_utils import preserve_flask_contexts
from models import Account, App, EndUser
from services.conversation_service import ConversationService
logger = logging.getLogger(__name__)
class AgentChatAppGenerator(MessageBasedAppGenerator):
@overload
def generate(
self,
*,
app_model: App,
user: Union[Account, EndUser],
args: Mapping[str, Any],
invoke_from: InvokeFrom,
streaming: Literal[False],
) -> Mapping[str, Any]: ...
@overload
def generate(
self,
*,
app_model: App,
user: Union[Account, EndUser],
args: Mapping[str, Any],
invoke_from: InvokeFrom,
streaming: Literal[True],
) -> Generator[Mapping | str, None, None]: ...
@overload
def generate(
self,
*,
app_model: App,
user: Union[Account, EndUser],
args: Mapping[str, Any],
invoke_from: InvokeFrom,
streaming: bool,
) -> Union[Mapping, Generator[Mapping | str, None, None]]: ...
def generate(
self,
*,
app_model: App,
user: Union[Account, EndUser],
args: Mapping[str, Any],
invoke_from: InvokeFrom,
streaming: bool = True,
) -> Union[Mapping, Generator[Mapping | str, None, None]]:
"""
Generate App response.
:param app_model: App
:param user: account or end user
:param args: request args
:param invoke_from: invoke from source
:param streaming: is stream
"""
if not streaming:
raise ValueError("Agent Chat App does not support blocking mode")
if not args.get("query"):
raise ValueError("query is required")
query = args["query"]
if not isinstance(query, str):
raise ValueError("query must be a string")
query = query.replace("\x00", "")
inputs = args["inputs"]
extras = {"auto_generate_conversation_name": args.get("auto_generate_name", True)}
# get conversation
conversation = None
conversation_id = args.get("conversation_id")
if conversation_id:
conversation = ConversationService.get_conversation(
app_model=app_model, conversation_id=conversation_id, user=user
)
# get app model config
app_model_config = self._get_app_model_config(app_model=app_model, conversation=conversation)
# validate override model config
override_model_config_dict = None
if args.get("model_config"):
if invoke_from != InvokeFrom.DEBUGGER:
raise ValueError("Only in App debug mode can override model config")
# validate config
override_model_config_dict = AgentChatAppConfigManager.config_validate(
tenant_id=app_model.tenant_id,
config=args["model_config"],
)
# always enable retriever resource in debugger mode
override_model_config_dict["retriever_resource"] = {"enabled": True}
# parse files
# TODO(QuantumGhost): Move file parsing logic to the API controller layer
# for better separation of concerns.
#
# For implementation reference, see the `_parse_file` function and
# `DraftWorkflowNodeRunApi` class which handle this properly.
files = args.get("files") or []
file_extra_config = FileUploadConfigManager.convert(override_model_config_dict or app_model_config.to_dict())
if file_extra_config:
file_objs = file_factory.build_from_mappings(
mappings=files,
tenant_id=app_model.tenant_id,
config=file_extra_config,
)
else:
file_objs = []
# convert to app config
app_config = AgentChatAppConfigManager.get_app_config(
app_model=app_model,
app_model_config=app_model_config,
conversation=conversation,
override_config_dict=override_model_config_dict,
)
# get tracing instance
trace_manager = TraceQueueManager(app_model.id, user.id if isinstance(user, Account) else user.session_id)
# init application generate entity
application_generate_entity = AgentChatAppGenerateEntity(
task_id=str(uuid.uuid4()),
app_config=app_config,
model_conf=ModelConfigConverter.convert(app_config),
file_upload_config=file_extra_config,
conversation_id=conversation.id if conversation else None,
inputs=self._prepare_user_inputs(
user_inputs=inputs, variables=app_config.variables, tenant_id=app_model.tenant_id
),
query=query,
files=list(file_objs),
parent_message_id=args.get("parent_message_id") if invoke_from != InvokeFrom.SERVICE_API else UUID_NIL,
user_id=user.id,
stream=streaming,
invoke_from=invoke_from,
extras=extras,
call_depth=0,
trace_manager=trace_manager,
)
# init generate records
(conversation, message) = self._init_generate_records(application_generate_entity, conversation)
# init queue manager
queue_manager = MessageBasedAppQueueManager(
task_id=application_generate_entity.task_id,
user_id=application_generate_entity.user_id,
invoke_from=application_generate_entity.invoke_from,
conversation_id=conversation.id,
app_mode=conversation.mode,
message_id=message.id,
)
# new thread with request context and contextvars
context = contextvars.copy_context()
worker_thread = threading.Thread(
target=self._generate_worker,
kwargs={
"flask_app": current_app._get_current_object(), # type: ignore
"context": context,
"application_generate_entity": application_generate_entity,
"queue_manager": queue_manager,
"conversation_id": conversation.id,
"message_id": message.id,
},
)
worker_thread.start()
# return response or stream generator
response = self._handle_response(
application_generate_entity=application_generate_entity,
queue_manager=queue_manager,
conversation=conversation,
message=message,
user=user,
stream=streaming,
)
return AgentChatAppGenerateResponseConverter.convert(response=response, invoke_from=invoke_from)
def _generate_worker(
self,
flask_app: Flask,
context: contextvars.Context,
application_generate_entity: AgentChatAppGenerateEntity,
queue_manager: AppQueueManager,
conversation_id: str,
message_id: str,
):
"""
Generate worker in a new thread.
:param flask_app: Flask app
:param application_generate_entity: application generate entity
:param queue_manager: queue manager
:param conversation_id: conversation ID
:param message_id: message ID
:return:
"""
with preserve_flask_contexts(flask_app, context_vars=context):
try:
# get conversation and message
conversation = self._get_conversation(conversation_id)
message = self._get_message(message_id)
# chatbot app
runner = AgentChatAppRunner()
runner.run(
application_generate_entity=application_generate_entity,
queue_manager=queue_manager,
conversation=conversation,
message=message,
)
except GenerateTaskStoppedError:
pass
except InvokeAuthorizationError:
queue_manager.publish_error(
InvokeAuthorizationError("Incorrect API key provided"), PublishFrom.APPLICATION_MANAGER
)
except ValidationError as e:
logger.exception("Validation Error when generating")
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
except ValueError as e:
if dify_config.DEBUG:
logger.exception("Error when generating")
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
except Exception as e:
logger.exception("Unknown Error when generating")
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
finally:
db.session.close()

View File

@@ -0,0 +1,239 @@
import logging
from typing import cast
from sqlalchemy import select
from core.agent.cot_chat_agent_runner import CotChatAgentRunner
from core.agent.cot_completion_agent_runner import CotCompletionAgentRunner
from core.agent.entities import AgentEntity
from core.agent.fc_agent_runner import FunctionCallAgentRunner
from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfig
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
from core.app.apps.base_app_runner import AppRunner
from core.app.entities.app_invoke_entities import AgentChatAppGenerateEntity
from core.app.entities.queue_entities import QueueAnnotationReplyEvent
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance
from core.model_runtime.entities.llm_entities import LLMMode
from core.model_runtime.entities.model_entities import ModelFeature, ModelPropertyKey
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.moderation.base import ModerationError
from extensions.ext_database import db
from models.model import App, Conversation, Message
logger = logging.getLogger(__name__)
class AgentChatAppRunner(AppRunner):
"""
Agent Application Runner
"""
def run(
self,
application_generate_entity: AgentChatAppGenerateEntity,
queue_manager: AppQueueManager,
conversation: Conversation,
message: Message,
):
"""
Run assistant application
:param application_generate_entity: application generate entity
:param queue_manager: application queue manager
:param conversation: conversation
:param message: message
:return:
"""
app_config = application_generate_entity.app_config
app_config = cast(AgentChatAppConfig, app_config)
app_stmt = select(App).where(App.id == app_config.app_id)
app_record = db.session.scalar(app_stmt)
if not app_record:
raise ValueError("App not found")
inputs = application_generate_entity.inputs
query = application_generate_entity.query
files = application_generate_entity.files
memory = None
if application_generate_entity.conversation_id:
# get memory of conversation (read-only)
model_instance = ModelInstance(
provider_model_bundle=application_generate_entity.model_conf.provider_model_bundle,
model=application_generate_entity.model_conf.model,
)
memory = TokenBufferMemory(conversation=conversation, model_instance=model_instance)
# organize all inputs and template to prompt messages
# Include: prompt template, inputs, query(optional), files(optional)
# memory(optional)
prompt_messages, _ = self.organize_prompt_messages(
app_record=app_record,
model_config=application_generate_entity.model_conf,
prompt_template_entity=app_config.prompt_template,
inputs=dict(inputs),
files=list(files),
query=query,
memory=memory,
)
# moderation
try:
# process sensitive_word_avoidance
_, inputs, query = self.moderation_for_inputs(
app_id=app_record.id,
tenant_id=app_config.tenant_id,
app_generate_entity=application_generate_entity,
inputs=dict(inputs),
query=query or "",
message_id=message.id,
)
except ModerationError as e:
self.direct_output(
queue_manager=queue_manager,
app_generate_entity=application_generate_entity,
prompt_messages=prompt_messages,
text=str(e),
stream=application_generate_entity.stream,
)
return
if query:
# annotation reply
annotation_reply = self.query_app_annotations_to_reply(
app_record=app_record,
message=message,
query=query,
user_id=application_generate_entity.user_id,
invoke_from=application_generate_entity.invoke_from,
)
if annotation_reply:
queue_manager.publish(
QueueAnnotationReplyEvent(message_annotation_id=annotation_reply.id),
PublishFrom.APPLICATION_MANAGER,
)
self.direct_output(
queue_manager=queue_manager,
app_generate_entity=application_generate_entity,
prompt_messages=prompt_messages,
text=annotation_reply.content,
stream=application_generate_entity.stream,
)
return
# fill in variable inputs from external data tools if exists
external_data_tools = app_config.external_data_variables
if external_data_tools:
inputs = self.fill_in_inputs_from_external_data_tools(
tenant_id=app_record.tenant_id,
app_id=app_record.id,
external_data_tools=external_data_tools,
inputs=inputs,
query=query,
)
# reorganize all inputs and template to prompt messages
# Include: prompt template, inputs, query(optional), files(optional)
# memory(optional), external data, dataset context(optional)
prompt_messages, _ = self.organize_prompt_messages(
app_record=app_record,
model_config=application_generate_entity.model_conf,
prompt_template_entity=app_config.prompt_template,
inputs=dict(inputs),
files=list(files),
query=query,
memory=memory,
)
# check hosting moderation
hosting_moderation_result = self.check_hosting_moderation(
application_generate_entity=application_generate_entity,
queue_manager=queue_manager,
prompt_messages=prompt_messages,
)
if hosting_moderation_result:
return
agent_entity = app_config.agent
assert agent_entity is not None
# init model instance
model_instance = ModelInstance(
provider_model_bundle=application_generate_entity.model_conf.provider_model_bundle,
model=application_generate_entity.model_conf.model,
)
prompt_message, _ = self.organize_prompt_messages(
app_record=app_record,
model_config=application_generate_entity.model_conf,
prompt_template_entity=app_config.prompt_template,
inputs=dict(inputs),
files=list(files),
query=query,
memory=memory,
)
# change function call strategy based on LLM model
llm_model = cast(LargeLanguageModel, model_instance.model_type_instance)
model_schema = llm_model.get_model_schema(model_instance.model, model_instance.credentials)
if not model_schema:
raise ValueError("Model schema not found")
if {ModelFeature.MULTI_TOOL_CALL, ModelFeature.TOOL_CALL}.intersection(model_schema.features or []):
agent_entity.strategy = AgentEntity.Strategy.FUNCTION_CALLING
conversation_stmt = select(Conversation).where(Conversation.id == conversation.id)
conversation_result = db.session.scalar(conversation_stmt)
if conversation_result is None:
raise ValueError("Conversation not found")
msg_stmt = select(Message).where(Message.id == message.id)
message_result = db.session.scalar(msg_stmt)
if message_result is None:
raise ValueError("Message not found")
db.session.close()
runner_cls: type[FunctionCallAgentRunner] | type[CotChatAgentRunner] | type[CotCompletionAgentRunner]
# start agent runner
if agent_entity.strategy == AgentEntity.Strategy.CHAIN_OF_THOUGHT:
# check LLM mode
if model_schema.model_properties.get(ModelPropertyKey.MODE) == LLMMode.CHAT:
runner_cls = CotChatAgentRunner
elif model_schema.model_properties.get(ModelPropertyKey.MODE) == LLMMode.COMPLETION:
runner_cls = CotCompletionAgentRunner
else:
raise ValueError(f"Invalid LLM mode: {model_schema.model_properties.get(ModelPropertyKey.MODE)}")
elif agent_entity.strategy == AgentEntity.Strategy.FUNCTION_CALLING:
runner_cls = FunctionCallAgentRunner
else:
raise ValueError(f"Invalid agent strategy: {agent_entity.strategy}")
runner = runner_cls(
tenant_id=app_config.tenant_id,
application_generate_entity=application_generate_entity,
conversation=conversation_result,
app_config=app_config,
model_config=application_generate_entity.model_conf,
config=agent_entity,
queue_manager=queue_manager,
message=message_result,
user_id=application_generate_entity.user_id,
memory=memory,
prompt_messages=prompt_message,
model_instance=model_instance,
)
invoke_result = runner.run(
message=message,
query=query,
inputs=inputs,
)
# handle invoke result
self._handle_invoke_result(
invoke_result=invoke_result,
queue_manager=queue_manager,
stream=application_generate_entity.stream,
agent=True,
)

View File

@@ -0,0 +1,122 @@
from collections.abc import Generator
from typing import cast
from core.app.apps.base_app_generate_response_converter import AppGenerateResponseConverter
from core.app.entities.task_entities import (
AppStreamResponse,
ChatbotAppBlockingResponse,
ChatbotAppStreamResponse,
ErrorStreamResponse,
MessageEndStreamResponse,
PingStreamResponse,
)
class AgentChatAppGenerateResponseConverter(AppGenerateResponseConverter):
_blocking_response_type = ChatbotAppBlockingResponse
@classmethod
def convert_blocking_full_response(cls, blocking_response: ChatbotAppBlockingResponse): # type: ignore[override]
"""
Convert blocking full response.
:param blocking_response: blocking response
:return:
"""
response = {
"event": "message",
"task_id": blocking_response.task_id,
"id": blocking_response.data.id,
"message_id": blocking_response.data.message_id,
"conversation_id": blocking_response.data.conversation_id,
"mode": blocking_response.data.mode,
"answer": blocking_response.data.answer,
"metadata": blocking_response.data.metadata,
"created_at": blocking_response.data.created_at,
}
return response
@classmethod
def convert_blocking_simple_response(cls, blocking_response: ChatbotAppBlockingResponse): # type: ignore[override]
"""
Convert blocking simple response.
:param blocking_response: blocking response
:return:
"""
response = cls.convert_blocking_full_response(blocking_response)
metadata = response.get("metadata", {})
if isinstance(metadata, dict):
response["metadata"] = cls._get_simple_metadata(metadata)
else:
response["metadata"] = {}
return response
@classmethod
def convert_stream_full_response(
cls, stream_response: Generator[AppStreamResponse, None, None]
) -> Generator[dict | str, None, None]:
"""
Convert stream full response.
:param stream_response: stream response
:return:
"""
for chunk in stream_response:
chunk = cast(ChatbotAppStreamResponse, chunk)
sub_stream_response = chunk.stream_response
if isinstance(sub_stream_response, PingStreamResponse):
yield "ping"
continue
response_chunk = {
"event": sub_stream_response.event.value,
"conversation_id": chunk.conversation_id,
"message_id": chunk.message_id,
"created_at": chunk.created_at,
}
if isinstance(sub_stream_response, ErrorStreamResponse):
data = cls._error_to_stream_response(sub_stream_response.err)
response_chunk.update(data)
else:
response_chunk.update(sub_stream_response.model_dump(mode="json"))
yield response_chunk
@classmethod
def convert_stream_simple_response(
cls, stream_response: Generator[AppStreamResponse, None, None]
) -> Generator[dict | str, None, None]:
"""
Convert stream simple response.
:param stream_response: stream response
:return:
"""
for chunk in stream_response:
chunk = cast(ChatbotAppStreamResponse, chunk)
sub_stream_response = chunk.stream_response
if isinstance(sub_stream_response, PingStreamResponse):
yield "ping"
continue
response_chunk = {
"event": sub_stream_response.event.value,
"conversation_id": chunk.conversation_id,
"message_id": chunk.message_id,
"created_at": chunk.created_at,
}
if isinstance(sub_stream_response, MessageEndStreamResponse):
sub_stream_response_dict = sub_stream_response.model_dump(mode="json")
metadata = sub_stream_response_dict.get("metadata", {})
sub_stream_response_dict["metadata"] = cls._get_simple_metadata(metadata)
response_chunk.update(sub_stream_response_dict)
if isinstance(sub_stream_response, ErrorStreamResponse):
data = cls._error_to_stream_response(sub_stream_response.err)
response_chunk.update(data)
else:
response_chunk.update(sub_stream_response.model_dump(mode="json"))
yield response_chunk

View File

@@ -0,0 +1,132 @@
import logging
from abc import ABC, abstractmethod
from collections.abc import Generator, Mapping
from typing import Any, Union
from core.app.entities.app_invoke_entities import InvokeFrom
from core.app.entities.task_entities import AppBlockingResponse, AppStreamResponse
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_runtime.errors.invoke import InvokeError
logger = logging.getLogger(__name__)
class AppGenerateResponseConverter(ABC):
_blocking_response_type: type[AppBlockingResponse]
@classmethod
def convert(
cls, response: Union[AppBlockingResponse, Generator[AppStreamResponse, Any, None]], invoke_from: InvokeFrom
) -> Mapping[str, Any] | Generator[str | Mapping[str, Any], Any, None]:
if invoke_from in {InvokeFrom.DEBUGGER, InvokeFrom.SERVICE_API}:
if isinstance(response, AppBlockingResponse):
return cls.convert_blocking_full_response(response)
else:
def _generate_full_response() -> Generator[dict | str, Any, None]:
yield from cls.convert_stream_full_response(response)
return _generate_full_response()
else:
if isinstance(response, AppBlockingResponse):
return cls.convert_blocking_simple_response(response)
else:
def _generate_simple_response() -> Generator[dict | str, Any, None]:
yield from cls.convert_stream_simple_response(response)
return _generate_simple_response()
@classmethod
@abstractmethod
def convert_blocking_full_response(cls, blocking_response: AppBlockingResponse) -> dict[str, Any]:
raise NotImplementedError
@classmethod
@abstractmethod
def convert_blocking_simple_response(cls, blocking_response: AppBlockingResponse) -> dict[str, Any]:
raise NotImplementedError
@classmethod
@abstractmethod
def convert_stream_full_response(
cls, stream_response: Generator[AppStreamResponse, None, None]
) -> Generator[dict | str, None, None]:
raise NotImplementedError
@classmethod
@abstractmethod
def convert_stream_simple_response(
cls, stream_response: Generator[AppStreamResponse, None, None]
) -> Generator[dict | str, None, None]:
raise NotImplementedError
@classmethod
def _get_simple_metadata(cls, metadata: dict[str, Any]):
"""
Get simple metadata.
:param metadata: metadata
:return:
"""
# show_retrieve_source
updated_resources = []
if "retriever_resources" in metadata:
for resource in metadata["retriever_resources"]:
updated_resources.append(
{
"segment_id": resource.get("segment_id", ""),
"position": resource["position"],
"document_name": resource["document_name"],
"score": resource["score"],
"content": resource["content"],
}
)
metadata["retriever_resources"] = updated_resources
# show annotation reply
if "annotation_reply" in metadata:
del metadata["annotation_reply"]
# show usage
if "usage" in metadata:
del metadata["usage"]
return metadata
@classmethod
def _error_to_stream_response(cls, e: Exception):
"""
Error to stream response.
:param e: exception
:return:
"""
error_responses = {
ValueError: {"code": "invalid_param", "status": 400},
ProviderTokenNotInitError: {"code": "provider_not_initialize", "status": 400},
QuotaExceededError: {
"code": "provider_quota_exceeded",
"message": "Your quota for Dify Hosted Model Provider has been exhausted. "
"Please go to Settings -> Model Provider to complete your own provider credentials.",
"status": 400,
},
ModelCurrentlyNotSupportError: {"code": "model_currently_not_support", "status": 400},
InvokeError: {"code": "completion_request_error", "status": 400},
}
# Determine the response based on the type of exception
data = None
for k, v in error_responses.items():
if isinstance(e, k):
data = v
if data:
data.setdefault("message", getattr(e, "description", str(e)))
else:
logger.error(e)
data = {
"code": "internal_server_error",
"message": "Internal Server Error, please contact support.",
"status": 500,
}
return data

View File

@@ -0,0 +1,232 @@
from collections.abc import Generator, Mapping, Sequence
from typing import TYPE_CHECKING, Any, Union, final
from sqlalchemy.orm import Session
from core.app.app_config.entities import VariableEntityType
from core.app.entities.app_invoke_entities import InvokeFrom
from core.file import File, FileUploadConfig
from core.workflow.enums import NodeType
from core.workflow.repositories.draft_variable_repository import (
DraftVariableSaver,
DraftVariableSaverFactory,
NoopDraftVariableSaver,
)
from factories import file_factory
from libs.orjson import orjson_dumps
from models import Account, EndUser
from services.workflow_draft_variable_service import DraftVariableSaver as DraftVariableSaverImpl
if TYPE_CHECKING:
from core.app.app_config.entities import VariableEntity
class BaseAppGenerator:
def _prepare_user_inputs(
self,
*,
user_inputs: Mapping[str, Any] | None,
variables: Sequence["VariableEntity"],
tenant_id: str,
strict_type_validation: bool = False,
) -> Mapping[str, Any]:
user_inputs = user_inputs or {}
# Filter input variables from form configuration, handle required fields, default values, and option values
user_inputs = {
var.variable: self._validate_inputs(value=user_inputs.get(var.variable), variable_entity=var)
for var in variables
}
user_inputs = {k: self._sanitize_value(v) for k, v in user_inputs.items()}
# Convert files in inputs to File
entity_dictionary = {item.variable: item for item in variables}
# Convert single file to File
files_inputs = {
k: file_factory.build_from_mapping(
mapping=v,
tenant_id=tenant_id,
config=FileUploadConfig(
allowed_file_types=entity_dictionary[k].allowed_file_types or [],
allowed_file_extensions=entity_dictionary[k].allowed_file_extensions or [],
allowed_file_upload_methods=entity_dictionary[k].allowed_file_upload_methods or [],
),
strict_type_validation=strict_type_validation,
)
for k, v in user_inputs.items()
if isinstance(v, dict) and entity_dictionary[k].type == VariableEntityType.FILE
}
# Convert list of files to File
file_list_inputs = {
k: file_factory.build_from_mappings(
mappings=v,
tenant_id=tenant_id,
config=FileUploadConfig(
allowed_file_types=entity_dictionary[k].allowed_file_types or [],
allowed_file_extensions=entity_dictionary[k].allowed_file_extensions or [],
allowed_file_upload_methods=entity_dictionary[k].allowed_file_upload_methods or [],
),
)
for k, v in user_inputs.items()
if isinstance(v, list)
# Ensure skip List<File>
and all(isinstance(item, dict) for item in v)
and entity_dictionary[k].type == VariableEntityType.FILE_LIST
}
# Merge all inputs
user_inputs = {**user_inputs, **files_inputs, **file_list_inputs}
# Check if all files are converted to File
if any(filter(lambda v: isinstance(v, dict), user_inputs.values())):
raise ValueError("Invalid input type")
if any(
filter(lambda v: isinstance(v, dict), filter(lambda item: isinstance(item, list), user_inputs.values()))
):
raise ValueError("Invalid input type")
return user_inputs
def _validate_inputs(
self,
*,
variable_entity: "VariableEntity",
value: Any,
):
if value is None:
if variable_entity.required:
raise ValueError(f"{variable_entity.variable} is required in input form")
# Use default value and continue validation to ensure type conversion
value = variable_entity.default
# If default is also None, return None directly
if value is None:
return None
if variable_entity.type in {
VariableEntityType.TEXT_INPUT,
VariableEntityType.SELECT,
VariableEntityType.PARAGRAPH,
} and not isinstance(value, str):
raise ValueError(
f"(type '{variable_entity.type}') {variable_entity.variable} in input form must be a string"
)
if variable_entity.type == VariableEntityType.NUMBER:
if isinstance(value, (int, float)):
return value
elif isinstance(value, str):
# handle empty string case
if not value.strip():
return None
# may raise ValueError if user_input_value is not a valid number
try:
if "." in value:
return float(value)
else:
return int(value)
except ValueError:
raise ValueError(f"{variable_entity.variable} in input form must be a valid number")
else:
raise TypeError(f"expected value type int, float or str, got {type(value)}, value: {value}")
match variable_entity.type:
case VariableEntityType.SELECT:
if value not in variable_entity.options:
raise ValueError(
f"{variable_entity.variable} in input form must be one of the following: "
f"{variable_entity.options}"
)
case VariableEntityType.TEXT_INPUT | VariableEntityType.PARAGRAPH:
if variable_entity.max_length and len(value) > variable_entity.max_length:
raise ValueError(
f"{variable_entity.variable} in input form must be less than {variable_entity.max_length} "
"characters"
)
case VariableEntityType.FILE:
if not isinstance(value, dict) and not isinstance(value, File):
raise ValueError(f"{variable_entity.variable} in input form must be a file")
case VariableEntityType.FILE_LIST:
# if number of files exceeds the limit, raise ValueError
if not (
isinstance(value, list)
and (all(isinstance(item, dict) for item in value) or all(isinstance(item, File) for item in value))
):
raise ValueError(f"{variable_entity.variable} in input form must be a list of files")
if variable_entity.max_length and len(value) > variable_entity.max_length:
raise ValueError(
f"{variable_entity.variable} in input form must be less than {variable_entity.max_length} files"
)
case VariableEntityType.CHECKBOX:
if isinstance(value, str):
normalized_value = value.strip().lower()
if normalized_value in {"true", "1", "yes", "on"}:
value = True
elif normalized_value in {"false", "0", "no", "off"}:
value = False
elif isinstance(value, (int, float)):
if value == 1:
value = True
elif value == 0:
value = False
case _:
raise AssertionError("this statement should be unreachable.")
return value
def _sanitize_value(self, value: Any):
if isinstance(value, str):
return value.replace("\x00", "")
return value
@classmethod
def convert_to_event_stream(cls, generator: Union[Mapping, Generator[Mapping | str, None, None]]):
"""
Convert messages into event stream
"""
if isinstance(generator, dict):
return generator
else:
def gen():
for message in generator:
if isinstance(message, Mapping | dict):
yield f"data: {orjson_dumps(message)}\n\n"
else:
yield f"event: {message}\n\n"
return gen()
@final
@staticmethod
def _get_draft_var_saver_factory(invoke_from: InvokeFrom, account: Account | EndUser) -> DraftVariableSaverFactory:
if invoke_from == InvokeFrom.DEBUGGER:
assert isinstance(account, Account)
def draft_var_saver_factory(
session: Session,
app_id: str,
node_id: str,
node_type: NodeType,
node_execution_id: str,
enclosing_node_id: str | None = None,
) -> DraftVariableSaver:
return DraftVariableSaverImpl(
session=session,
app_id=app_id,
node_id=node_id,
node_type=node_type,
node_execution_id=node_execution_id,
enclosing_node_id=enclosing_node_id,
user=account,
)
else:
def draft_var_saver_factory(
session: Session,
app_id: str,
node_id: str,
node_type: NodeType,
node_execution_id: str,
enclosing_node_id: str | None = None,
) -> DraftVariableSaver:
return NoopDraftVariableSaver()
return draft_var_saver_factory

View File

@@ -0,0 +1,219 @@
import logging
import queue
import threading
import time
from abc import abstractmethod
from enum import IntEnum, auto
from typing import Any
from cachetools import TTLCache, cachedmethod
from redis.exceptions import RedisError
from sqlalchemy.orm import DeclarativeMeta
from configs import dify_config
from core.app.entities.app_invoke_entities import InvokeFrom
from core.app.entities.queue_entities import (
AppQueueEvent,
MessageQueueMessage,
QueueErrorEvent,
QueuePingEvent,
QueueStopEvent,
WorkflowQueueMessage,
)
from core.workflow.runtime import GraphRuntimeState
from extensions.ext_redis import redis_client
logger = logging.getLogger(__name__)
class PublishFrom(IntEnum):
APPLICATION_MANAGER = auto()
TASK_PIPELINE = auto()
class AppQueueManager:
def __init__(self, task_id: str, user_id: str, invoke_from: InvokeFrom):
if not user_id:
raise ValueError("user is required")
self._task_id = task_id
self._user_id = user_id
self._invoke_from = invoke_from
self.invoke_from = invoke_from # Public accessor for invoke_from
user_prefix = "account" if self._invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER} else "end-user"
self._task_belong_cache_key = AppQueueManager._generate_task_belong_cache_key(self._task_id)
redis_client.setex(self._task_belong_cache_key, 1800, f"{user_prefix}-{self._user_id}")
q: queue.Queue[WorkflowQueueMessage | MessageQueueMessage | None] = queue.Queue()
self._q = q
self._graph_runtime_state: GraphRuntimeState | None = None
self._stopped_cache: TTLCache[tuple, bool] = TTLCache(maxsize=1, ttl=1)
self._cache_lock = threading.Lock()
def listen(self):
"""
Listen to queue
:return:
"""
# wait for APP_MAX_EXECUTION_TIME seconds to stop listen
listen_timeout = dify_config.APP_MAX_EXECUTION_TIME
start_time = time.time()
last_ping_time: int | float = 0
while True:
try:
message = self._q.get(timeout=1)
if message is None:
break
yield message
except queue.Empty:
continue
finally:
elapsed_time = time.time() - start_time
if elapsed_time >= listen_timeout or self._is_stopped():
# publish two messages to make sure the client can receive the stop signal
# and stop listening after the stop signal processed
self.publish(
QueueStopEvent(stopped_by=QueueStopEvent.StopBy.USER_MANUAL), PublishFrom.TASK_PIPELINE
)
if elapsed_time // 10 > last_ping_time:
self.publish(QueuePingEvent(), PublishFrom.TASK_PIPELINE)
last_ping_time = elapsed_time // 10
def stop_listen(self):
"""
Stop listen to queue
:return:
"""
self._clear_task_belong_cache()
self._q.put(None)
def _clear_task_belong_cache(self) -> None:
"""
Remove the task belong cache key once listening is finished.
"""
try:
redis_client.delete(self._task_belong_cache_key)
except RedisError:
logger.exception(
"Failed to clear task belong cache for task %s (key: %s)", self._task_id, self._task_belong_cache_key
)
def publish_error(self, e, pub_from: PublishFrom) -> None:
"""
Publish error
:param e: error
:param pub_from: publish from
:return:
"""
self.publish(QueueErrorEvent(error=e), pub_from)
@property
def graph_runtime_state(self) -> GraphRuntimeState | None:
"""Retrieve the attached graph runtime state, if available."""
return self._graph_runtime_state
@graph_runtime_state.setter
def graph_runtime_state(self, graph_runtime_state: GraphRuntimeState | None) -> None:
"""Attach the live graph runtime state reference for downstream consumers."""
self._graph_runtime_state = graph_runtime_state
def publish(self, event: AppQueueEvent, pub_from: PublishFrom):
"""
Publish event to queue
:param event:
:param pub_from:
:return:
"""
self._check_for_sqlalchemy_models(event.model_dump())
self._publish(event, pub_from)
@abstractmethod
def _publish(self, event: AppQueueEvent, pub_from: PublishFrom):
"""
Publish event to queue
:param event:
:param pub_from:
:return:
"""
raise NotImplementedError
@classmethod
def set_stop_flag(cls, task_id: str, invoke_from: InvokeFrom, user_id: str):
"""
Set task stop flag
:return:
"""
result: Any | None = redis_client.get(cls._generate_task_belong_cache_key(task_id))
if result is None:
return
user_prefix = "account" if invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER} else "end-user"
if result.decode("utf-8") != f"{user_prefix}-{user_id}":
return
stopped_cache_key = cls._generate_stopped_cache_key(task_id)
redis_client.setex(stopped_cache_key, 600, 1)
@classmethod
def set_stop_flag_no_user_check(cls, task_id: str) -> None:
"""
Set task stop flag without user permission check.
This method allows stopping workflows without user context.
:param task_id: The task ID to stop
:return:
"""
if not task_id:
return
stopped_cache_key = cls._generate_stopped_cache_key(task_id)
redis_client.setex(stopped_cache_key, 600, 1)
@cachedmethod(lambda self: self._stopped_cache, lock=lambda self: self._cache_lock)
def _is_stopped(self) -> bool:
"""
Check if task is stopped
:return:
"""
stopped_cache_key = AppQueueManager._generate_stopped_cache_key(self._task_id)
result = redis_client.get(stopped_cache_key)
if result is not None:
return True
return False
@classmethod
def _generate_task_belong_cache_key(cls, task_id: str) -> str:
"""
Generate task belong cache key
:param task_id: task id
:return:
"""
return f"generate_task_belong:{task_id}"
@classmethod
def _generate_stopped_cache_key(cls, task_id: str) -> str:
"""
Generate stopped cache key
:param task_id: task id
:return:
"""
return f"generate_task_stopped:{task_id}"
def _check_for_sqlalchemy_models(self, data: Any):
# from entity to dict or list
if isinstance(data, dict):
for value in data.values():
self._check_for_sqlalchemy_models(value)
elif isinstance(data, list):
for item in data:
self._check_for_sqlalchemy_models(item)
else:
if isinstance(data, DeclarativeMeta) or hasattr(data, "_sa_instance_state"):
raise TypeError(
"Critical Error: Passing SQLAlchemy Model instances that cause thread safety issues is not allowed."
)

View File

@@ -0,0 +1,388 @@
import logging
import time
from collections.abc import Generator, Mapping, Sequence
from typing import TYPE_CHECKING, Any, Union
from core.app.app_config.entities import ExternalDataVariableEntity, PromptTemplateEntity
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
from core.app.entities.app_invoke_entities import (
AppGenerateEntity,
EasyUIBasedAppGenerateEntity,
InvokeFrom,
ModelConfigWithCredentialsEntity,
)
from core.app.entities.queue_entities import QueueAgentMessageEvent, QueueLLMChunkEvent, QueueMessageEndEvent
from core.app.features.annotation_reply.annotation_reply import AnnotationReplyFeature
from core.app.features.hosting_moderation.hosting_moderation import HostingModerationFeature
from core.external_data_tool.external_data_fetch import ExternalDataFetch
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
ImagePromptMessageContent,
PromptMessage,
)
from core.model_runtime.entities.model_entities import ModelPropertyKey
from core.model_runtime.errors.invoke import InvokeBadRequestError
from core.moderation.input_moderation import InputModeration
from core.prompt.advanced_prompt_transform import AdvancedPromptTransform
from core.prompt.entities.advanced_prompt_entities import ChatModelMessage, CompletionModelPromptTemplate, MemoryConfig
from core.prompt.simple_prompt_transform import ModelMode, SimplePromptTransform
from models.model import App, AppMode, Message, MessageAnnotation
if TYPE_CHECKING:
from core.file.models import File
_logger = logging.getLogger(__name__)
class AppRunner:
def recalc_llm_max_tokens(
self, model_config: ModelConfigWithCredentialsEntity, prompt_messages: list[PromptMessage]
):
# recalc max_tokens if sum(prompt_token + max_tokens) over model token limit
model_instance = ModelInstance(
provider_model_bundle=model_config.provider_model_bundle, model=model_config.model
)
model_context_tokens = model_config.model_schema.model_properties.get(ModelPropertyKey.CONTEXT_SIZE)
max_tokens = 0
for parameter_rule in model_config.model_schema.parameter_rules:
if parameter_rule.name == "max_tokens" or (
parameter_rule.use_template and parameter_rule.use_template == "max_tokens"
):
max_tokens = (
model_config.parameters.get(parameter_rule.name)
or model_config.parameters.get(parameter_rule.use_template or "")
) or 0
if model_context_tokens is None:
return -1
prompt_tokens = model_instance.get_llm_num_tokens(prompt_messages)
if prompt_tokens + max_tokens > model_context_tokens:
max_tokens = max(model_context_tokens - prompt_tokens, 16)
for parameter_rule in model_config.model_schema.parameter_rules:
if parameter_rule.name == "max_tokens" or (
parameter_rule.use_template and parameter_rule.use_template == "max_tokens"
):
model_config.parameters[parameter_rule.name] = max_tokens
def organize_prompt_messages(
self,
app_record: App,
model_config: ModelConfigWithCredentialsEntity,
prompt_template_entity: PromptTemplateEntity,
inputs: Mapping[str, str],
files: Sequence["File"],
query: str = "",
context: str | None = None,
memory: TokenBufferMemory | None = None,
image_detail_config: ImagePromptMessageContent.DETAIL | None = None,
) -> tuple[list[PromptMessage], list[str] | None]:
"""
Organize prompt messages
:param context:
:param app_record: app record
:param model_config: model config entity
:param prompt_template_entity: prompt template entity
:param inputs: inputs
:param files: files
:param query: query
:param memory: memory
:param image_detail_config: the image quality config
:return:
"""
# get prompt without memory and context
if prompt_template_entity.prompt_type == PromptTemplateEntity.PromptType.SIMPLE:
prompt_transform: Union[SimplePromptTransform, AdvancedPromptTransform]
prompt_transform = SimplePromptTransform()
prompt_messages, stop = prompt_transform.get_prompt(
app_mode=AppMode.value_of(app_record.mode),
prompt_template_entity=prompt_template_entity,
inputs=inputs,
query=query,
files=files,
context=context,
memory=memory,
model_config=model_config,
image_detail_config=image_detail_config,
)
else:
memory_config = MemoryConfig(window=MemoryConfig.WindowConfig(enabled=False))
model_mode = ModelMode(model_config.mode)
prompt_template: Union[CompletionModelPromptTemplate, list[ChatModelMessage]]
if model_mode == ModelMode.COMPLETION:
advanced_completion_prompt_template = prompt_template_entity.advanced_completion_prompt_template
if not advanced_completion_prompt_template:
raise InvokeBadRequestError("Advanced completion prompt template is required.")
prompt_template = CompletionModelPromptTemplate(text=advanced_completion_prompt_template.prompt)
if advanced_completion_prompt_template.role_prefix:
memory_config.role_prefix = MemoryConfig.RolePrefix(
user=advanced_completion_prompt_template.role_prefix.user,
assistant=advanced_completion_prompt_template.role_prefix.assistant,
)
else:
if not prompt_template_entity.advanced_chat_prompt_template:
raise InvokeBadRequestError("Advanced chat prompt template is required.")
prompt_template = []
for message in prompt_template_entity.advanced_chat_prompt_template.messages:
prompt_template.append(ChatModelMessage(text=message.text, role=message.role))
prompt_transform = AdvancedPromptTransform()
prompt_messages = prompt_transform.get_prompt(
prompt_template=prompt_template,
inputs=inputs,
query=query or "",
files=files,
context=context,
memory_config=memory_config,
memory=memory,
model_config=model_config,
image_detail_config=image_detail_config,
)
stop = model_config.stop
return prompt_messages, stop
def direct_output(
self,
queue_manager: AppQueueManager,
app_generate_entity: EasyUIBasedAppGenerateEntity,
prompt_messages: list,
text: str,
stream: bool,
usage: LLMUsage | None = None,
):
"""
Direct output
:param queue_manager: application queue manager
:param app_generate_entity: app generate entity
:param prompt_messages: prompt messages
:param text: text
:param stream: stream
:param usage: usage
:return:
"""
if stream:
index = 0
for token in text:
chunk = LLMResultChunk(
model=app_generate_entity.model_conf.model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(index=index, message=AssistantPromptMessage(content=token)),
)
queue_manager.publish(QueueLLMChunkEvent(chunk=chunk), PublishFrom.APPLICATION_MANAGER)
index += 1
time.sleep(0.01)
queue_manager.publish(
QueueMessageEndEvent(
llm_result=LLMResult(
model=app_generate_entity.model_conf.model,
prompt_messages=prompt_messages,
message=AssistantPromptMessage(content=text),
usage=usage or LLMUsage.empty_usage(),
),
),
PublishFrom.APPLICATION_MANAGER,
)
def _handle_invoke_result(
self,
invoke_result: Union[LLMResult, Generator[Any, None, None]],
queue_manager: AppQueueManager,
stream: bool,
agent: bool = False,
):
"""
Handle invoke result
:param invoke_result: invoke result
:param queue_manager: application queue manager
:param stream: stream
:param agent: agent
:return:
"""
if not stream and isinstance(invoke_result, LLMResult):
self._handle_invoke_result_direct(invoke_result=invoke_result, queue_manager=queue_manager, agent=agent)
elif stream and isinstance(invoke_result, Generator):
self._handle_invoke_result_stream(invoke_result=invoke_result, queue_manager=queue_manager, agent=agent)
else:
raise NotImplementedError(f"unsupported invoke result type: {type(invoke_result)}")
def _handle_invoke_result_direct(self, invoke_result: LLMResult, queue_manager: AppQueueManager, agent: bool):
"""
Handle invoke result direct
:param invoke_result: invoke result
:param queue_manager: application queue manager
:param agent: agent
:return:
"""
queue_manager.publish(
QueueMessageEndEvent(
llm_result=invoke_result,
),
PublishFrom.APPLICATION_MANAGER,
)
def _handle_invoke_result_stream(
self, invoke_result: Generator[LLMResultChunk, None, None], queue_manager: AppQueueManager, agent: bool
):
"""
Handle invoke result
:param invoke_result: invoke result
:param queue_manager: application queue manager
:param agent: agent
:return:
"""
model: str = ""
prompt_messages: list[PromptMessage] = []
text = ""
usage = None
for result in invoke_result:
if not agent:
queue_manager.publish(QueueLLMChunkEvent(chunk=result), PublishFrom.APPLICATION_MANAGER)
else:
queue_manager.publish(QueueAgentMessageEvent(chunk=result), PublishFrom.APPLICATION_MANAGER)
message = result.delta.message
if isinstance(message.content, str):
text += message.content
elif isinstance(message.content, list):
for content in message.content:
if not isinstance(content, str):
# TODO(QuantumGhost): Add multimodal output support for easy ui.
_logger.warning("received multimodal output, type=%s", type(content))
text += content.data
else:
text += content # failback to str
if not model:
model = result.model
if not prompt_messages:
prompt_messages = list(result.prompt_messages)
if result.delta.usage:
usage = result.delta.usage
if usage is None:
usage = LLMUsage.empty_usage()
llm_result = LLMResult(
model=model, prompt_messages=prompt_messages, message=AssistantPromptMessage(content=text), usage=usage
)
queue_manager.publish(
QueueMessageEndEvent(
llm_result=llm_result,
),
PublishFrom.APPLICATION_MANAGER,
)
def moderation_for_inputs(
self,
*,
app_id: str,
tenant_id: str,
app_generate_entity: AppGenerateEntity,
inputs: Mapping[str, Any],
query: str | None = None,
message_id: str,
) -> tuple[bool, Mapping[str, Any], str]:
"""
Process sensitive_word_avoidance.
:param app_id: app id
:param tenant_id: tenant id
:param app_generate_entity: app generate entity
:param inputs: inputs
:param query: query
:param message_id: message id
:return:
"""
moderation_feature = InputModeration()
return moderation_feature.check(
app_id=app_id,
tenant_id=tenant_id,
app_config=app_generate_entity.app_config,
inputs=dict(inputs),
query=query or "",
message_id=message_id,
trace_manager=app_generate_entity.trace_manager,
)
def check_hosting_moderation(
self,
application_generate_entity: EasyUIBasedAppGenerateEntity,
queue_manager: AppQueueManager,
prompt_messages: list[PromptMessage],
) -> bool:
"""
Check hosting moderation
:param application_generate_entity: application generate entity
:param queue_manager: queue manager
:param prompt_messages: prompt messages
:return:
"""
hosting_moderation_feature = HostingModerationFeature()
moderation_result = hosting_moderation_feature.check(
application_generate_entity=application_generate_entity, prompt_messages=prompt_messages
)
if moderation_result:
self.direct_output(
queue_manager=queue_manager,
app_generate_entity=application_generate_entity,
prompt_messages=prompt_messages,
text="I apologize for any confusion, but I'm an AI assistant to be helpful, harmless, and honest.",
stream=application_generate_entity.stream,
)
return moderation_result
def fill_in_inputs_from_external_data_tools(
self,
tenant_id: str,
app_id: str,
external_data_tools: list[ExternalDataVariableEntity],
inputs: Mapping[str, Any],
query: str,
) -> Mapping[str, Any]:
"""
Fill in variable inputs from external data tools if exists.
:param tenant_id: workspace id
:param app_id: app id
:param external_data_tools: external data tools configs
:param inputs: the inputs
:param query: the query
:return: the filled inputs
"""
external_data_fetch_feature = ExternalDataFetch()
return external_data_fetch_feature.fetch(
tenant_id=tenant_id, app_id=app_id, external_data_tools=external_data_tools, inputs=inputs, query=query
)
def query_app_annotations_to_reply(
self, app_record: App, message: Message, query: str, user_id: str, invoke_from: InvokeFrom
) -> MessageAnnotation | None:
"""
Query app annotations to reply
:param app_record: app record
:param message: message
:param query: query
:param user_id: user id
:param invoke_from: invoke from
:return:
"""
annotation_reply_feature = AnnotationReplyFeature()
return annotation_reply_feature.query(
app_record=app_record, message=message, query=query, user_id=user_id, invoke_from=invoke_from
)

View File

View File

@@ -0,0 +1,148 @@
from core.app.app_config.base_app_config_manager import BaseAppConfigManager
from core.app.app_config.common.sensitive_word_avoidance.manager import SensitiveWordAvoidanceConfigManager
from core.app.app_config.easy_ui_based_app.dataset.manager import DatasetConfigManager
from core.app.app_config.easy_ui_based_app.model_config.manager import ModelConfigManager
from core.app.app_config.easy_ui_based_app.prompt_template.manager import PromptTemplateConfigManager
from core.app.app_config.easy_ui_based_app.variables.manager import BasicVariablesConfigManager
from core.app.app_config.entities import EasyUIBasedAppConfig, EasyUIBasedAppModelConfigFrom
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.app.app_config.features.opening_statement.manager import OpeningStatementConfigManager
from core.app.app_config.features.retrieval_resource.manager import RetrievalResourceConfigManager
from core.app.app_config.features.speech_to_text.manager import SpeechToTextConfigManager
from core.app.app_config.features.suggested_questions_after_answer.manager import (
SuggestedQuestionsAfterAnswerConfigManager,
)
from core.app.app_config.features.text_to_speech.manager import TextToSpeechConfigManager
from models.model import App, AppMode, AppModelConfig, Conversation
class ChatAppConfig(EasyUIBasedAppConfig):
"""
Chatbot App Config Entity.
"""
pass
class ChatAppConfigManager(BaseAppConfigManager):
@classmethod
def get_app_config(
cls,
app_model: App,
app_model_config: AppModelConfig,
conversation: Conversation | None = None,
override_config_dict: dict | None = None,
) -> ChatAppConfig:
"""
Convert app model config to chat app config
:param app_model: app model
:param app_model_config: app model config
:param conversation: conversation
:param override_config_dict: app model config dict
:return:
"""
if override_config_dict:
config_from = EasyUIBasedAppModelConfigFrom.ARGS
elif conversation:
config_from = EasyUIBasedAppModelConfigFrom.CONVERSATION_SPECIFIC_CONFIG
else:
config_from = EasyUIBasedAppModelConfigFrom.APP_LATEST_CONFIG
if config_from != EasyUIBasedAppModelConfigFrom.ARGS:
app_model_config_dict = app_model_config.to_dict()
config_dict = app_model_config_dict.copy()
else:
if not override_config_dict:
raise Exception("override_config_dict is required when config_from is ARGS")
config_dict = override_config_dict
app_mode = AppMode.value_of(app_model.mode)
app_config = ChatAppConfig(
tenant_id=app_model.tenant_id,
app_id=app_model.id,
app_mode=app_mode,
app_model_config_from=config_from,
app_model_config_id=app_model_config.id,
app_model_config_dict=config_dict,
model=ModelConfigManager.convert(config=config_dict),
prompt_template=PromptTemplateConfigManager.convert(config=config_dict),
sensitive_word_avoidance=SensitiveWordAvoidanceConfigManager.convert(config=config_dict),
dataset=DatasetConfigManager.convert(config=config_dict),
additional_features=cls.convert_features(config_dict, app_mode),
)
app_config.variables, app_config.external_data_variables = BasicVariablesConfigManager.convert(
config=config_dict
)
return app_config
@classmethod
def config_validate(cls, tenant_id: str, config: dict):
"""
Validate for chat app model config
:param tenant_id: tenant id
:param config: app model config args
"""
app_mode = AppMode.CHAT
related_config_keys = []
# model
config, current_related_config_keys = ModelConfigManager.validate_and_set_defaults(tenant_id, config)
related_config_keys.extend(current_related_config_keys)
# user_input_form
config, current_related_config_keys = BasicVariablesConfigManager.validate_and_set_defaults(tenant_id, config)
related_config_keys.extend(current_related_config_keys)
# file upload validation
config, current_related_config_keys = FileUploadConfigManager.validate_and_set_defaults(config)
related_config_keys.extend(current_related_config_keys)
# prompt
config, current_related_config_keys = PromptTemplateConfigManager.validate_and_set_defaults(app_mode, config)
related_config_keys.extend(current_related_config_keys)
# dataset_query_variable
config, current_related_config_keys = DatasetConfigManager.validate_and_set_defaults(
tenant_id, app_mode, config
)
related_config_keys.extend(current_related_config_keys)
# opening_statement
config, current_related_config_keys = OpeningStatementConfigManager.validate_and_set_defaults(config)
related_config_keys.extend(current_related_config_keys)
# suggested_questions_after_answer
config, current_related_config_keys = SuggestedQuestionsAfterAnswerConfigManager.validate_and_set_defaults(
config
)
related_config_keys.extend(current_related_config_keys)
# speech_to_text
config, current_related_config_keys = SpeechToTextConfigManager.validate_and_set_defaults(config)
related_config_keys.extend(current_related_config_keys)
# text_to_speech
config, current_related_config_keys = TextToSpeechConfigManager.validate_and_set_defaults(config)
related_config_keys.extend(current_related_config_keys)
# return retriever resource
config, current_related_config_keys = RetrievalResourceConfigManager.validate_and_set_defaults(config)
related_config_keys.extend(current_related_config_keys)
# moderation validation
config, current_related_config_keys = SensitiveWordAvoidanceConfigManager.validate_and_set_defaults(
tenant_id, config
)
related_config_keys.extend(current_related_config_keys)
related_config_keys = list(set(related_config_keys))
# Filter out extra parameters
filtered_config = {key: config.get(key) for key in related_config_keys}
return filtered_config

View File

@@ -0,0 +1,255 @@
import logging
import threading
import uuid
from collections.abc import Generator, Mapping
from typing import Any, Literal, Union, overload
from flask import Flask, copy_current_request_context, current_app
from pydantic import ValidationError
from configs import dify_config
from constants import UUID_NIL
from core.app.app_config.easy_ui_based_app.model_config.converter import ModelConfigConverter
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
from core.app.apps.chat.app_config_manager import ChatAppConfigManager
from core.app.apps.chat.app_runner import ChatAppRunner
from core.app.apps.chat.generate_response_converter import ChatAppGenerateResponseConverter
from core.app.apps.exc import GenerateTaskStoppedError
from core.app.apps.message_based_app_generator import MessageBasedAppGenerator
from core.app.apps.message_based_app_queue_manager import MessageBasedAppQueueManager
from core.app.entities.app_invoke_entities import ChatAppGenerateEntity, InvokeFrom
from core.model_runtime.errors.invoke import InvokeAuthorizationError
from core.ops.ops_trace_manager import TraceQueueManager
from extensions.ext_database import db
from factories import file_factory
from models import Account
from models.model import App, EndUser
from services.conversation_service import ConversationService
logger = logging.getLogger(__name__)
class ChatAppGenerator(MessageBasedAppGenerator):
@overload
def generate(
self,
app_model: App,
user: Union[Account, EndUser],
args: Mapping[str, Any],
invoke_from: InvokeFrom,
streaming: Literal[True],
) -> Generator[Mapping | str, None, None]: ...
@overload
def generate(
self,
app_model: App,
user: Union[Account, EndUser],
args: Mapping[str, Any],
invoke_from: InvokeFrom,
streaming: Literal[False],
) -> Mapping[str, Any]: ...
@overload
def generate(
self,
app_model: App,
user: Union[Account, EndUser],
args: Mapping[str, Any],
invoke_from: InvokeFrom,
streaming: bool,
) -> Union[Mapping[str, Any], Generator[Mapping[str, Any] | str, None, None]]: ...
def generate(
self,
app_model: App,
user: Union[Account, EndUser],
args: Mapping[str, Any],
invoke_from: InvokeFrom,
streaming: bool = True,
) -> Union[Mapping[str, Any], Generator[Mapping[str, Any] | str, None, None]]:
"""
Generate App response.
:param app_model: App
:param user: account or end user
:param args: request args
:param invoke_from: invoke from source
:param streaming: is stream
"""
if not args.get("query"):
raise ValueError("query is required")
query = args["query"]
if not isinstance(query, str):
raise ValueError("query must be a string")
query = query.replace("\x00", "")
inputs = args["inputs"]
extras = {"auto_generate_conversation_name": args.get("auto_generate_name", True)}
# get conversation
conversation = None
conversation_id = args.get("conversation_id")
if conversation_id:
conversation = ConversationService.get_conversation(
app_model=app_model, conversation_id=conversation_id, user=user
)
# get app model config
app_model_config = self._get_app_model_config(app_model=app_model, conversation=conversation)
# validate override model config
override_model_config_dict = None
if args.get("model_config"):
if invoke_from != InvokeFrom.DEBUGGER:
raise ValueError("Only in App debug mode can override model config")
# validate config
override_model_config_dict = ChatAppConfigManager.config_validate(
tenant_id=app_model.tenant_id, config=args.get("model_config", {})
)
# always enable retriever resource in debugger mode
override_model_config_dict["retriever_resource"] = {"enabled": True}
# parse files
# TODO(QuantumGhost): Move file parsing logic to the API controller layer
# for better separation of concerns.
#
# For implementation reference, see the `_parse_file` function and
# `DraftWorkflowNodeRunApi` class which handle this properly.
files = args["files"] if args.get("files") else []
file_extra_config = FileUploadConfigManager.convert(override_model_config_dict or app_model_config.to_dict())
if file_extra_config:
file_objs = file_factory.build_from_mappings(
mappings=files,
tenant_id=app_model.tenant_id,
config=file_extra_config,
)
else:
file_objs = []
# convert to app config
app_config = ChatAppConfigManager.get_app_config(
app_model=app_model,
app_model_config=app_model_config,
conversation=conversation,
override_config_dict=override_model_config_dict,
)
# get tracing instance
trace_manager = TraceQueueManager(
app_id=app_model.id, user_id=user.id if isinstance(user, Account) else user.session_id
)
# init application generate entity
application_generate_entity = ChatAppGenerateEntity(
task_id=str(uuid.uuid4()),
app_config=app_config,
model_conf=ModelConfigConverter.convert(app_config),
file_upload_config=file_extra_config,
conversation_id=conversation.id if conversation else None,
inputs=self._prepare_user_inputs(
user_inputs=inputs, variables=app_config.variables, tenant_id=app_model.tenant_id
),
query=query,
files=list(file_objs),
parent_message_id=args.get("parent_message_id") if invoke_from != InvokeFrom.SERVICE_API else UUID_NIL,
user_id=user.id,
invoke_from=invoke_from,
extras=extras,
trace_manager=trace_manager,
stream=streaming,
)
# init generate records
(conversation, message) = self._init_generate_records(application_generate_entity, conversation)
# init queue manager
queue_manager = MessageBasedAppQueueManager(
task_id=application_generate_entity.task_id,
user_id=application_generate_entity.user_id,
invoke_from=application_generate_entity.invoke_from,
conversation_id=conversation.id,
app_mode=conversation.mode,
message_id=message.id,
)
# new thread with request context
@copy_current_request_context
def worker_with_context():
return self._generate_worker(
flask_app=current_app._get_current_object(), # type: ignore
application_generate_entity=application_generate_entity,
queue_manager=queue_manager,
conversation_id=conversation.id,
message_id=message.id,
)
worker_thread = threading.Thread(target=worker_with_context)
worker_thread.start()
# return response or stream generator
response = self._handle_response(
application_generate_entity=application_generate_entity,
queue_manager=queue_manager,
conversation=conversation,
message=message,
user=user,
stream=streaming,
)
return ChatAppGenerateResponseConverter.convert(response=response, invoke_from=invoke_from)
def _generate_worker(
self,
flask_app: Flask,
application_generate_entity: ChatAppGenerateEntity,
queue_manager: AppQueueManager,
conversation_id: str,
message_id: str,
):
"""
Generate worker in a new thread.
:param flask_app: Flask app
:param application_generate_entity: application generate entity
:param queue_manager: queue manager
:param conversation_id: conversation ID
:param message_id: message ID
:return:
"""
with flask_app.app_context():
try:
# get conversation and message
conversation = self._get_conversation(conversation_id)
message = self._get_message(message_id)
# chatbot app
runner = ChatAppRunner()
runner.run(
application_generate_entity=application_generate_entity,
queue_manager=queue_manager,
conversation=conversation,
message=message,
)
except GenerateTaskStoppedError:
pass
except InvokeAuthorizationError:
queue_manager.publish_error(
InvokeAuthorizationError("Incorrect API key provided"), PublishFrom.APPLICATION_MANAGER
)
except ValidationError as e:
logger.exception("Validation Error when generating")
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
except ValueError as e:
if dify_config.DEBUG:
logger.exception("Error when generating")
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
except Exception as e:
logger.exception("Unknown Error when generating")
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
finally:
db.session.close()

View File

@@ -0,0 +1,223 @@
import logging
from typing import cast
from sqlalchemy import select
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
from core.app.apps.base_app_runner import AppRunner
from core.app.apps.chat.app_config_manager import ChatAppConfig
from core.app.entities.app_invoke_entities import (
ChatAppGenerateEntity,
)
from core.app.entities.queue_entities import QueueAnnotationReplyEvent
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance
from core.model_runtime.entities.message_entities import ImagePromptMessageContent
from core.moderation.base import ModerationError
from core.rag.retrieval.dataset_retrieval import DatasetRetrieval
from extensions.ext_database import db
from models.model import App, Conversation, Message
logger = logging.getLogger(__name__)
class ChatAppRunner(AppRunner):
"""
Chat Application Runner
"""
def run(
self,
application_generate_entity: ChatAppGenerateEntity,
queue_manager: AppQueueManager,
conversation: Conversation,
message: Message,
):
"""
Run application
:param application_generate_entity: application generate entity
:param queue_manager: application queue manager
:param conversation: conversation
:param message: message
:return:
"""
app_config = application_generate_entity.app_config
app_config = cast(ChatAppConfig, app_config)
stmt = select(App).where(App.id == app_config.app_id)
app_record = db.session.scalar(stmt)
if not app_record:
raise ValueError("App not found")
inputs = application_generate_entity.inputs
query = application_generate_entity.query
files = application_generate_entity.files
image_detail_config = (
application_generate_entity.file_upload_config.image_config.detail
if (
application_generate_entity.file_upload_config
and application_generate_entity.file_upload_config.image_config
)
else None
)
image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
memory = None
if application_generate_entity.conversation_id:
# get memory of conversation (read-only)
model_instance = ModelInstance(
provider_model_bundle=application_generate_entity.model_conf.provider_model_bundle,
model=application_generate_entity.model_conf.model,
)
memory = TokenBufferMemory(conversation=conversation, model_instance=model_instance)
# organize all inputs and template to prompt messages
# Include: prompt template, inputs, query(optional), files(optional)
# memory(optional)
prompt_messages, stop = self.organize_prompt_messages(
app_record=app_record,
model_config=application_generate_entity.model_conf,
prompt_template_entity=app_config.prompt_template,
inputs=inputs,
files=files,
query=query,
memory=memory,
image_detail_config=image_detail_config,
)
# moderation
try:
# process sensitive_word_avoidance
_, inputs, query = self.moderation_for_inputs(
app_id=app_record.id,
tenant_id=app_config.tenant_id,
app_generate_entity=application_generate_entity,
inputs=inputs,
query=query,
message_id=message.id,
)
except ModerationError as e:
self.direct_output(
queue_manager=queue_manager,
app_generate_entity=application_generate_entity,
prompt_messages=prompt_messages,
text=str(e),
stream=application_generate_entity.stream,
)
return
if query:
# annotation reply
annotation_reply = self.query_app_annotations_to_reply(
app_record=app_record,
message=message,
query=query,
user_id=application_generate_entity.user_id,
invoke_from=application_generate_entity.invoke_from,
)
if annotation_reply:
queue_manager.publish(
QueueAnnotationReplyEvent(message_annotation_id=annotation_reply.id),
PublishFrom.APPLICATION_MANAGER,
)
self.direct_output(
queue_manager=queue_manager,
app_generate_entity=application_generate_entity,
prompt_messages=prompt_messages,
text=annotation_reply.content,
stream=application_generate_entity.stream,
)
return
# fill in variable inputs from external data tools if exists
external_data_tools = app_config.external_data_variables
if external_data_tools:
inputs = self.fill_in_inputs_from_external_data_tools(
tenant_id=app_record.tenant_id,
app_id=app_record.id,
external_data_tools=external_data_tools,
inputs=inputs,
query=query,
)
# get context from datasets
context = None
if app_config.dataset and app_config.dataset.dataset_ids:
hit_callback = DatasetIndexToolCallbackHandler(
queue_manager,
app_record.id,
message.id,
application_generate_entity.user_id,
application_generate_entity.invoke_from,
)
dataset_retrieval = DatasetRetrieval(application_generate_entity)
context = dataset_retrieval.retrieve(
app_id=app_record.id,
user_id=application_generate_entity.user_id,
tenant_id=app_record.tenant_id,
model_config=application_generate_entity.model_conf,
config=app_config.dataset,
query=query,
invoke_from=application_generate_entity.invoke_from,
show_retrieve_source=(
app_config.additional_features.show_retrieve_source if app_config.additional_features else False
),
hit_callback=hit_callback,
memory=memory,
message_id=message.id,
inputs=inputs,
)
# reorganize all inputs and template to prompt messages
# Include: prompt template, inputs, query(optional), files(optional)
# memory(optional), external data, dataset context(optional)
prompt_messages, stop = self.organize_prompt_messages(
app_record=app_record,
model_config=application_generate_entity.model_conf,
prompt_template_entity=app_config.prompt_template,
inputs=inputs,
files=files,
query=query,
context=context,
memory=memory,
image_detail_config=image_detail_config,
)
# check hosting moderation
hosting_moderation_result = self.check_hosting_moderation(
application_generate_entity=application_generate_entity,
queue_manager=queue_manager,
prompt_messages=prompt_messages,
)
if hosting_moderation_result:
return
# Re-calculate the max tokens if sum(prompt_token + max_tokens) over model token limit
self.recalc_llm_max_tokens(model_config=application_generate_entity.model_conf, prompt_messages=prompt_messages)
# Invoke model
model_instance = ModelInstance(
provider_model_bundle=application_generate_entity.model_conf.provider_model_bundle,
model=application_generate_entity.model_conf.model,
)
db.session.close()
invoke_result = model_instance.invoke_llm(
prompt_messages=prompt_messages,
model_parameters=application_generate_entity.model_conf.parameters,
stop=stop,
stream=application_generate_entity.stream,
user=application_generate_entity.user_id,
)
# handle invoke result
self._handle_invoke_result(
invoke_result=invoke_result, queue_manager=queue_manager, stream=application_generate_entity.stream
)

View File

@@ -0,0 +1,122 @@
from collections.abc import Generator
from typing import cast
from core.app.apps.base_app_generate_response_converter import AppGenerateResponseConverter
from core.app.entities.task_entities import (
AppStreamResponse,
ChatbotAppBlockingResponse,
ChatbotAppStreamResponse,
ErrorStreamResponse,
MessageEndStreamResponse,
PingStreamResponse,
)
class ChatAppGenerateResponseConverter(AppGenerateResponseConverter):
_blocking_response_type = ChatbotAppBlockingResponse
@classmethod
def convert_blocking_full_response(cls, blocking_response: ChatbotAppBlockingResponse): # type: ignore[override]
"""
Convert blocking full response.
:param blocking_response: blocking response
:return:
"""
response = {
"event": "message",
"task_id": blocking_response.task_id,
"id": blocking_response.data.id,
"message_id": blocking_response.data.message_id,
"conversation_id": blocking_response.data.conversation_id,
"mode": blocking_response.data.mode,
"answer": blocking_response.data.answer,
"metadata": blocking_response.data.metadata,
"created_at": blocking_response.data.created_at,
}
return response
@classmethod
def convert_blocking_simple_response(cls, blocking_response: ChatbotAppBlockingResponse): # type: ignore[override]
"""
Convert blocking simple response.
:param blocking_response: blocking response
:return:
"""
response = cls.convert_blocking_full_response(blocking_response)
metadata = response.get("metadata", {})
if isinstance(metadata, dict):
response["metadata"] = cls._get_simple_metadata(metadata)
else:
response["metadata"] = {}
return response
@classmethod
def convert_stream_full_response(
cls, stream_response: Generator[AppStreamResponse, None, None]
) -> Generator[dict | str, None, None]:
"""
Convert stream full response.
:param stream_response: stream response
:return:
"""
for chunk in stream_response:
chunk = cast(ChatbotAppStreamResponse, chunk)
sub_stream_response = chunk.stream_response
if isinstance(sub_stream_response, PingStreamResponse):
yield "ping"
continue
response_chunk = {
"event": sub_stream_response.event.value,
"conversation_id": chunk.conversation_id,
"message_id": chunk.message_id,
"created_at": chunk.created_at,
}
if isinstance(sub_stream_response, ErrorStreamResponse):
data = cls._error_to_stream_response(sub_stream_response.err)
response_chunk.update(data)
else:
response_chunk.update(sub_stream_response.model_dump(mode="json"))
yield response_chunk
@classmethod
def convert_stream_simple_response(
cls, stream_response: Generator[AppStreamResponse, None, None]
) -> Generator[dict | str, None, None]:
"""
Convert stream simple response.
:param stream_response: stream response
:return:
"""
for chunk in stream_response:
chunk = cast(ChatbotAppStreamResponse, chunk)
sub_stream_response = chunk.stream_response
if isinstance(sub_stream_response, PingStreamResponse):
yield "ping"
continue
response_chunk = {
"event": sub_stream_response.event.value,
"conversation_id": chunk.conversation_id,
"message_id": chunk.message_id,
"created_at": chunk.created_at,
}
if isinstance(sub_stream_response, MessageEndStreamResponse):
sub_stream_response_dict = sub_stream_response.model_dump(mode="json")
metadata = sub_stream_response_dict.get("metadata", {})
sub_stream_response_dict["metadata"] = cls._get_simple_metadata(metadata)
response_chunk.update(sub_stream_response_dict)
if isinstance(sub_stream_response, ErrorStreamResponse):
data = cls._error_to_stream_response(sub_stream_response.err)
response_chunk.update(data)
else:
response_chunk.update(sub_stream_response.model_dump(mode="json"))
yield response_chunk

View File

@@ -0,0 +1,55 @@
"""Shared helpers for managing GraphRuntimeState across task pipelines."""
from __future__ import annotations
from typing import TYPE_CHECKING
from core.workflow.runtime import GraphRuntimeState
if TYPE_CHECKING:
from core.app.task_pipeline.based_generate_task_pipeline import BasedGenerateTaskPipeline
class GraphRuntimeStateSupport:
"""
Mixin that centralises common GraphRuntimeState access patterns used by task pipelines.
Subclasses are expected to provide:
* `_base_task_pipeline` exposing the queue manager with an optional cached runtime state.
* `_graph_runtime_state` attribute used as the local cache for the runtime state.
"""
_base_task_pipeline: BasedGenerateTaskPipeline
_graph_runtime_state: GraphRuntimeState | None = None
def _ensure_graph_runtime_initialized(
self,
graph_runtime_state: GraphRuntimeState | None = None,
) -> GraphRuntimeState:
"""Validate and return the active graph runtime state."""
return self._resolve_graph_runtime_state(graph_runtime_state)
def _extract_workflow_run_id(self, graph_runtime_state: GraphRuntimeState) -> str:
system_variables = graph_runtime_state.variable_pool.system_variables
if not system_variables or not system_variables.workflow_execution_id:
raise ValueError("workflow_execution_id missing from runtime state")
return str(system_variables.workflow_execution_id)
def _resolve_graph_runtime_state(
self,
graph_runtime_state: GraphRuntimeState | None = None,
) -> GraphRuntimeState:
"""Return the cached runtime state or bootstrap it from the queue manager."""
if graph_runtime_state is not None:
self._graph_runtime_state = graph_runtime_state
return graph_runtime_state
if self._graph_runtime_state is None:
candidate = self._base_task_pipeline.queue_manager.graph_runtime_state
if candidate is not None:
self._graph_runtime_state = candidate
if self._graph_runtime_state is None:
raise ValueError("graph runtime state not initialized.")
return self._graph_runtime_state

View File

@@ -0,0 +1,677 @@
import time
from collections.abc import Mapping, Sequence
from dataclasses import dataclass
from datetime import datetime
from typing import Any, NewType, Union
from core.app.entities.app_invoke_entities import AdvancedChatAppGenerateEntity, InvokeFrom, WorkflowAppGenerateEntity
from core.app.entities.queue_entities import (
QueueAgentLogEvent,
QueueIterationCompletedEvent,
QueueIterationNextEvent,
QueueIterationStartEvent,
QueueLoopCompletedEvent,
QueueLoopNextEvent,
QueueLoopStartEvent,
QueueNodeExceptionEvent,
QueueNodeFailedEvent,
QueueNodeRetryEvent,
QueueNodeStartedEvent,
QueueNodeSucceededEvent,
)
from core.app.entities.task_entities import (
AgentLogStreamResponse,
IterationNodeCompletedStreamResponse,
IterationNodeNextStreamResponse,
IterationNodeStartStreamResponse,
LoopNodeCompletedStreamResponse,
LoopNodeNextStreamResponse,
LoopNodeStartStreamResponse,
NodeFinishStreamResponse,
NodeRetryStreamResponse,
NodeStartStreamResponse,
WorkflowFinishStreamResponse,
WorkflowStartStreamResponse,
)
from core.file import FILE_MODEL_IDENTITY, File
from core.plugin.impl.datasource import PluginDatasourceManager
from core.tools.entities.tool_entities import ToolProviderType
from core.tools.tool_manager import ToolManager
from core.trigger.trigger_manager import TriggerManager
from core.variables.segments import ArrayFileSegment, FileSegment, Segment
from core.workflow.enums import (
NodeType,
SystemVariableKey,
WorkflowExecutionStatus,
WorkflowNodeExecutionMetadataKey,
WorkflowNodeExecutionStatus,
)
from core.workflow.runtime import GraphRuntimeState
from core.workflow.system_variable import SystemVariable
from core.workflow.workflow_entry import WorkflowEntry
from core.workflow.workflow_type_encoder import WorkflowRuntimeTypeConverter
from libs.datetime_utils import naive_utc_now
from models import Account, EndUser
from services.variable_truncator import BaseTruncator, DummyVariableTruncator, VariableTruncator
NodeExecutionId = NewType("NodeExecutionId", str)
@dataclass(slots=True)
class _NodeSnapshot:
"""In-memory cache for node metadata between start and completion events."""
title: str
index: int
start_at: datetime
iteration_id: str = ""
"""Empty string means the node is not executing inside an iteration."""
loop_id: str = ""
"""Empty string means the node is not executing inside a loop."""
class WorkflowResponseConverter:
_truncator: BaseTruncator
def __init__(
self,
*,
application_generate_entity: Union[AdvancedChatAppGenerateEntity, WorkflowAppGenerateEntity],
user: Union[Account, EndUser],
system_variables: SystemVariable,
):
self._application_generate_entity = application_generate_entity
self._user = user
self._system_variables = system_variables
self._workflow_inputs = self._prepare_workflow_inputs()
# Disable truncation for SERVICE_API calls to keep backward compatibility.
if application_generate_entity.invoke_from == InvokeFrom.SERVICE_API:
self._truncator = DummyVariableTruncator()
else:
self._truncator = VariableTruncator.default()
self._node_snapshots: dict[NodeExecutionId, _NodeSnapshot] = {}
self._workflow_execution_id: str | None = None
self._workflow_started_at: datetime | None = None
# ------------------------------------------------------------------
# Workflow lifecycle helpers
# ------------------------------------------------------------------
def _prepare_workflow_inputs(self) -> Mapping[str, Any]:
inputs = dict(self._application_generate_entity.inputs)
for field_name, value in self._system_variables.to_dict().items():
# TODO(@future-refactor): store system variables separately from user inputs so we don't
# need to flatten `sys.*` entries into the input payload just for rerun/export tooling.
if field_name == SystemVariableKey.CONVERSATION_ID:
# Conversation IDs are session-scoped; omitting them keeps workflow inputs
# reusable without pinning new runs to a prior conversation.
continue
inputs[f"sys.{field_name}"] = value
handled = WorkflowEntry.handle_special_values(inputs)
return dict(handled or {})
def _ensure_workflow_run_id(self, workflow_run_id: str | None = None) -> str:
"""Return the memoized workflow run id, optionally seeding it during start events."""
if workflow_run_id is not None:
self._workflow_execution_id = workflow_run_id
if not self._workflow_execution_id:
raise ValueError("workflow_run_id missing before streaming workflow events")
return self._workflow_execution_id
# ------------------------------------------------------------------
# Node snapshot helpers
# ------------------------------------------------------------------
def _store_snapshot(self, event: QueueNodeStartedEvent) -> _NodeSnapshot:
snapshot = _NodeSnapshot(
title=event.node_title,
index=event.node_run_index,
start_at=event.start_at,
iteration_id=event.in_iteration_id or "",
loop_id=event.in_loop_id or "",
)
node_execution_id = NodeExecutionId(event.node_execution_id)
self._node_snapshots[node_execution_id] = snapshot
return snapshot
def _get_snapshot(self, node_execution_id: str) -> _NodeSnapshot | None:
return self._node_snapshots.get(NodeExecutionId(node_execution_id))
def _pop_snapshot(self, node_execution_id: str) -> _NodeSnapshot | None:
return self._node_snapshots.pop(NodeExecutionId(node_execution_id), None)
@staticmethod
def _merge_metadata(
base_metadata: Mapping[WorkflowNodeExecutionMetadataKey, Any] | None,
snapshot: _NodeSnapshot | None,
) -> Mapping[WorkflowNodeExecutionMetadataKey, Any] | None:
if not base_metadata and not snapshot:
return base_metadata
merged: dict[WorkflowNodeExecutionMetadataKey, Any] = {}
if base_metadata:
merged.update(base_metadata)
if snapshot:
if snapshot.iteration_id:
merged[WorkflowNodeExecutionMetadataKey.ITERATION_ID] = snapshot.iteration_id
if snapshot.loop_id:
merged[WorkflowNodeExecutionMetadataKey.LOOP_ID] = snapshot.loop_id
return merged or None
def _truncate_mapping(
self,
mapping: Mapping[str, Any] | None,
) -> tuple[Mapping[str, Any] | None, bool]:
if mapping is None:
return None, False
if not mapping:
return {}, False
normalized = WorkflowEntry.handle_special_values(dict(mapping))
if normalized is None:
return None, False
truncated, is_truncated = self._truncator.truncate_variable_mapping(dict(normalized))
return truncated, is_truncated
@staticmethod
def _encode_outputs(outputs: Mapping[str, Any] | None) -> Mapping[str, Any] | None:
if outputs is None:
return None
converter = WorkflowRuntimeTypeConverter()
return converter.to_json_encodable(outputs)
def workflow_start_to_stream_response(
self,
*,
task_id: str,
workflow_run_id: str,
workflow_id: str,
) -> WorkflowStartStreamResponse:
run_id = self._ensure_workflow_run_id(workflow_run_id)
started_at = naive_utc_now()
self._workflow_started_at = started_at
return WorkflowStartStreamResponse(
task_id=task_id,
workflow_run_id=run_id,
data=WorkflowStartStreamResponse.Data(
id=run_id,
workflow_id=workflow_id,
inputs=self._workflow_inputs,
created_at=int(started_at.timestamp()),
),
)
def workflow_finish_to_stream_response(
self,
*,
task_id: str,
workflow_id: str,
status: WorkflowExecutionStatus,
graph_runtime_state: GraphRuntimeState,
error: str | None = None,
exceptions_count: int = 0,
) -> WorkflowFinishStreamResponse:
run_id = self._ensure_workflow_run_id()
started_at = self._workflow_started_at
if started_at is None:
raise ValueError(
"workflow_finish_to_stream_response called before workflow_start_to_stream_response",
)
finished_at = naive_utc_now()
elapsed_time = (finished_at - started_at).total_seconds()
outputs_mapping = graph_runtime_state.outputs or {}
encoded_outputs = WorkflowRuntimeTypeConverter().to_json_encodable(outputs_mapping)
created_by: Mapping[str, object] | None
user = self._user
if isinstance(user, Account):
created_by = {
"id": user.id,
"name": user.name,
"email": user.email,
}
else:
created_by = {
"id": user.id,
"user": user.session_id,
}
return WorkflowFinishStreamResponse(
task_id=task_id,
workflow_run_id=run_id,
data=WorkflowFinishStreamResponse.Data(
id=run_id,
workflow_id=workflow_id,
status=status.value,
outputs=encoded_outputs,
error=error,
elapsed_time=elapsed_time,
total_tokens=graph_runtime_state.total_tokens,
total_steps=graph_runtime_state.node_run_steps,
created_by=created_by,
created_at=int(started_at.timestamp()),
finished_at=int(finished_at.timestamp()),
files=self.fetch_files_from_node_outputs(outputs_mapping),
exceptions_count=exceptions_count,
),
)
def workflow_node_start_to_stream_response(
self,
*,
event: QueueNodeStartedEvent,
task_id: str,
) -> NodeStartStreamResponse | None:
if event.node_type in {NodeType.ITERATION, NodeType.LOOP}:
return None
run_id = self._ensure_workflow_run_id()
snapshot = self._store_snapshot(event)
response = NodeStartStreamResponse(
task_id=task_id,
workflow_run_id=run_id,
data=NodeStartStreamResponse.Data(
id=event.node_execution_id,
node_id=event.node_id,
node_type=event.node_type,
title=snapshot.title,
index=snapshot.index,
created_at=int(snapshot.start_at.timestamp()),
iteration_id=event.in_iteration_id,
loop_id=event.in_loop_id,
agent_strategy=event.agent_strategy,
),
)
if event.node_type == NodeType.TOOL:
response.data.extras["icon"] = ToolManager.get_tool_icon(
tenant_id=self._application_generate_entity.app_config.tenant_id,
provider_type=ToolProviderType(event.provider_type),
provider_id=event.provider_id,
)
elif event.node_type == NodeType.DATASOURCE:
manager = PluginDatasourceManager()
provider_entity = manager.fetch_datasource_provider(
self._application_generate_entity.app_config.tenant_id,
event.provider_id,
)
response.data.extras["icon"] = provider_entity.declaration.identity.generate_datasource_icon_url(
self._application_generate_entity.app_config.tenant_id
)
elif event.node_type == NodeType.TRIGGER_PLUGIN:
response.data.extras["icon"] = TriggerManager.get_trigger_plugin_icon(
self._application_generate_entity.app_config.tenant_id,
event.provider_id,
)
return response
def workflow_node_finish_to_stream_response(
self,
*,
event: QueueNodeSucceededEvent | QueueNodeFailedEvent | QueueNodeExceptionEvent,
task_id: str,
) -> NodeFinishStreamResponse | None:
if event.node_type in {NodeType.ITERATION, NodeType.LOOP}:
return None
run_id = self._ensure_workflow_run_id()
snapshot = self._pop_snapshot(event.node_execution_id)
start_at = snapshot.start_at if snapshot else event.start_at
finished_at = naive_utc_now()
elapsed_time = (finished_at - start_at).total_seconds()
inputs, inputs_truncated = self._truncate_mapping(event.inputs)
process_data, process_data_truncated = self._truncate_mapping(event.process_data)
encoded_outputs = self._encode_outputs(event.outputs)
outputs, outputs_truncated = self._truncate_mapping(encoded_outputs)
metadata = self._merge_metadata(event.execution_metadata, snapshot)
if isinstance(event, QueueNodeSucceededEvent):
status = WorkflowNodeExecutionStatus.SUCCEEDED.value
error_message = event.error
elif isinstance(event, QueueNodeFailedEvent):
status = WorkflowNodeExecutionStatus.FAILED.value
error_message = event.error
else:
status = WorkflowNodeExecutionStatus.EXCEPTION.value
error_message = event.error
return NodeFinishStreamResponse(
task_id=task_id,
workflow_run_id=run_id,
data=NodeFinishStreamResponse.Data(
id=event.node_execution_id,
node_id=event.node_id,
node_type=event.node_type,
index=snapshot.index if snapshot else 0,
title=snapshot.title if snapshot else "",
inputs=inputs,
inputs_truncated=inputs_truncated,
process_data=process_data,
process_data_truncated=process_data_truncated,
outputs=outputs,
outputs_truncated=outputs_truncated,
status=status,
error=error_message,
elapsed_time=elapsed_time,
execution_metadata=metadata,
created_at=int(start_at.timestamp()),
finished_at=int(finished_at.timestamp()),
files=self.fetch_files_from_node_outputs(event.outputs or {}),
iteration_id=event.in_iteration_id,
loop_id=event.in_loop_id,
),
)
def workflow_node_retry_to_stream_response(
self,
*,
event: QueueNodeRetryEvent,
task_id: str,
) -> NodeRetryStreamResponse | None:
if event.node_type in {NodeType.ITERATION, NodeType.LOOP}:
return None
run_id = self._ensure_workflow_run_id()
snapshot = self._get_snapshot(event.node_execution_id)
if snapshot is None:
raise AssertionError("node retry event arrived without a stored snapshot")
finished_at = naive_utc_now()
elapsed_time = (finished_at - event.start_at).total_seconds()
inputs, inputs_truncated = self._truncate_mapping(event.inputs)
process_data, process_data_truncated = self._truncate_mapping(event.process_data)
encoded_outputs = self._encode_outputs(event.outputs)
outputs, outputs_truncated = self._truncate_mapping(encoded_outputs)
metadata = self._merge_metadata(event.execution_metadata, snapshot)
return NodeRetryStreamResponse(
task_id=task_id,
workflow_run_id=run_id,
data=NodeRetryStreamResponse.Data(
id=event.node_execution_id,
node_id=event.node_id,
node_type=event.node_type,
index=snapshot.index,
title=snapshot.title,
inputs=inputs,
inputs_truncated=inputs_truncated,
process_data=process_data,
process_data_truncated=process_data_truncated,
outputs=outputs,
outputs_truncated=outputs_truncated,
status=WorkflowNodeExecutionStatus.RETRY.value,
error=event.error,
elapsed_time=elapsed_time,
execution_metadata=metadata,
created_at=int(snapshot.start_at.timestamp()),
finished_at=int(finished_at.timestamp()),
files=self.fetch_files_from_node_outputs(event.outputs or {}),
iteration_id=event.in_iteration_id,
loop_id=event.in_loop_id,
retry_index=event.retry_index,
),
)
def workflow_iteration_start_to_stream_response(
self,
*,
task_id: str,
workflow_execution_id: str,
event: QueueIterationStartEvent,
) -> IterationNodeStartStreamResponse:
new_inputs, truncated = self._truncator.truncate_variable_mapping(event.inputs or {})
return IterationNodeStartStreamResponse(
task_id=task_id,
workflow_run_id=workflow_execution_id,
data=IterationNodeStartStreamResponse.Data(
id=event.node_id,
node_id=event.node_id,
node_type=event.node_type.value,
title=event.node_title,
created_at=int(time.time()),
extras={},
inputs=new_inputs,
inputs_truncated=truncated,
metadata=event.metadata or {},
),
)
def workflow_iteration_next_to_stream_response(
self,
*,
task_id: str,
workflow_execution_id: str,
event: QueueIterationNextEvent,
) -> IterationNodeNextStreamResponse:
return IterationNodeNextStreamResponse(
task_id=task_id,
workflow_run_id=workflow_execution_id,
data=IterationNodeNextStreamResponse.Data(
id=event.node_id,
node_id=event.node_id,
node_type=event.node_type.value,
title=event.node_title,
index=event.index,
created_at=int(time.time()),
extras={},
),
)
def workflow_iteration_completed_to_stream_response(
self,
*,
task_id: str,
workflow_execution_id: str,
event: QueueIterationCompletedEvent,
) -> IterationNodeCompletedStreamResponse:
json_converter = WorkflowRuntimeTypeConverter()
new_inputs, inputs_truncated = self._truncator.truncate_variable_mapping(event.inputs or {})
new_outputs, outputs_truncated = self._truncator.truncate_variable_mapping(
json_converter.to_json_encodable(event.outputs) or {}
)
return IterationNodeCompletedStreamResponse(
task_id=task_id,
workflow_run_id=workflow_execution_id,
data=IterationNodeCompletedStreamResponse.Data(
id=event.node_id,
node_id=event.node_id,
node_type=event.node_type.value,
title=event.node_title,
outputs=new_outputs,
outputs_truncated=outputs_truncated,
created_at=int(time.time()),
extras={},
inputs=new_inputs,
inputs_truncated=inputs_truncated,
status=WorkflowNodeExecutionStatus.SUCCEEDED
if event.error is None
else WorkflowNodeExecutionStatus.FAILED,
error=None,
elapsed_time=(naive_utc_now() - event.start_at).total_seconds(),
total_tokens=(lambda x: x if isinstance(x, int) else 0)(event.metadata.get("total_tokens", 0)),
execution_metadata=event.metadata,
finished_at=int(time.time()),
steps=event.steps,
),
)
def workflow_loop_start_to_stream_response(
self, *, task_id: str, workflow_execution_id: str, event: QueueLoopStartEvent
) -> LoopNodeStartStreamResponse:
new_inputs, truncated = self._truncator.truncate_variable_mapping(event.inputs or {})
return LoopNodeStartStreamResponse(
task_id=task_id,
workflow_run_id=workflow_execution_id,
data=LoopNodeStartStreamResponse.Data(
id=event.node_id,
node_id=event.node_id,
node_type=event.node_type.value,
title=event.node_title,
created_at=int(time.time()),
extras={},
inputs=new_inputs,
inputs_truncated=truncated,
metadata=event.metadata or {},
),
)
def workflow_loop_next_to_stream_response(
self,
*,
task_id: str,
workflow_execution_id: str,
event: QueueLoopNextEvent,
) -> LoopNodeNextStreamResponse:
return LoopNodeNextStreamResponse(
task_id=task_id,
workflow_run_id=workflow_execution_id,
data=LoopNodeNextStreamResponse.Data(
id=event.node_id,
node_id=event.node_id,
node_type=event.node_type.value,
title=event.node_title,
index=event.index,
# The `pre_loop_output` field is not utilized by the frontend.
# Previously, it was assigned the value of `event.output`.
pre_loop_output={},
created_at=int(time.time()),
extras={},
),
)
def workflow_loop_completed_to_stream_response(
self,
*,
task_id: str,
workflow_execution_id: str,
event: QueueLoopCompletedEvent,
) -> LoopNodeCompletedStreamResponse:
json_converter = WorkflowRuntimeTypeConverter()
new_inputs, inputs_truncated = self._truncator.truncate_variable_mapping(event.inputs or {})
new_outputs, outputs_truncated = self._truncator.truncate_variable_mapping(
json_converter.to_json_encodable(event.outputs) or {}
)
return LoopNodeCompletedStreamResponse(
task_id=task_id,
workflow_run_id=workflow_execution_id,
data=LoopNodeCompletedStreamResponse.Data(
id=event.node_id,
node_id=event.node_id,
node_type=event.node_type.value,
title=event.node_title,
outputs=new_outputs,
outputs_truncated=outputs_truncated,
created_at=int(time.time()),
extras={},
inputs=new_inputs,
inputs_truncated=inputs_truncated,
status=WorkflowNodeExecutionStatus.SUCCEEDED
if event.error is None
else WorkflowNodeExecutionStatus.FAILED,
error=None,
elapsed_time=(naive_utc_now() - event.start_at).total_seconds(),
total_tokens=(lambda x: x if isinstance(x, int) else 0)(event.metadata.get("total_tokens", 0)),
execution_metadata=event.metadata,
finished_at=int(time.time()),
steps=event.steps,
),
)
def fetch_files_from_node_outputs(self, outputs_dict: Mapping[str, Any] | None) -> Sequence[Mapping[str, Any]]:
"""
Fetch files from node outputs
:param outputs_dict: node outputs dict
:return:
"""
if not outputs_dict:
return []
files = [self._fetch_files_from_variable_value(output_value) for output_value in outputs_dict.values()]
# Remove None
files = [file for file in files if file]
# Flatten list
# Flatten the list of sequences into a single list of mappings
flattened_files = [file for sublist in files if sublist for file in sublist]
# Convert to tuple to match Sequence type
return tuple(flattened_files)
@classmethod
def _fetch_files_from_variable_value(cls, value: Union[dict, list, Segment]) -> Sequence[Mapping[str, Any]]:
"""
Fetch files from variable value
:param value: variable value
:return:
"""
if not value:
return []
files: list[Mapping[str, Any]] = []
if isinstance(value, FileSegment):
files.append(value.value.to_dict())
elif isinstance(value, ArrayFileSegment):
files.extend([i.to_dict() for i in value.value])
elif isinstance(value, File):
files.append(value.to_dict())
elif isinstance(value, list):
for item in value:
file = cls._get_file_var_from_value(item)
if file:
files.append(file)
elif isinstance(
value,
dict,
):
file = cls._get_file_var_from_value(value)
if file:
files.append(file)
return files
@classmethod
def _get_file_var_from_value(cls, value: Union[dict, list]) -> Mapping[str, Any] | None:
"""
Get file var from value
:param value: variable value
:return:
"""
if not value:
return None
if isinstance(value, dict) and value.get("dify_model_identity") == FILE_MODEL_IDENTITY:
return value
elif isinstance(value, File):
return value.to_dict()
return None
def handle_agent_log(self, task_id: str, event: QueueAgentLogEvent) -> AgentLogStreamResponse:
"""
Handle agent log
:param task_id: task id
:param event: agent log event
:return:
"""
return AgentLogStreamResponse(
task_id=task_id,
data=AgentLogStreamResponse.Data(
node_execution_id=event.node_execution_id,
id=event.id,
parent_id=event.parent_id,
label=event.label,
error=event.error,
status=event.status,
data=event.data,
metadata=event.metadata,
node_id=event.node_id,
),
)

View File

@@ -0,0 +1,119 @@
from core.app.app_config.base_app_config_manager import BaseAppConfigManager
from core.app.app_config.common.sensitive_word_avoidance.manager import SensitiveWordAvoidanceConfigManager
from core.app.app_config.easy_ui_based_app.dataset.manager import DatasetConfigManager
from core.app.app_config.easy_ui_based_app.model_config.manager import ModelConfigManager
from core.app.app_config.easy_ui_based_app.prompt_template.manager import PromptTemplateConfigManager
from core.app.app_config.easy_ui_based_app.variables.manager import BasicVariablesConfigManager
from core.app.app_config.entities import EasyUIBasedAppConfig, EasyUIBasedAppModelConfigFrom
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.app.app_config.features.more_like_this.manager import MoreLikeThisConfigManager
from core.app.app_config.features.text_to_speech.manager import TextToSpeechConfigManager
from models.model import App, AppMode, AppModelConfig
class CompletionAppConfig(EasyUIBasedAppConfig):
"""
Completion App Config Entity.
"""
pass
class CompletionAppConfigManager(BaseAppConfigManager):
@classmethod
def get_app_config(
cls, app_model: App, app_model_config: AppModelConfig, override_config_dict: dict | None = None
) -> CompletionAppConfig:
"""
Convert app model config to completion app config
:param app_model: app model
:param app_model_config: app model config
:param override_config_dict: app model config dict
:return:
"""
if override_config_dict:
config_from = EasyUIBasedAppModelConfigFrom.ARGS
else:
config_from = EasyUIBasedAppModelConfigFrom.APP_LATEST_CONFIG
if config_from != EasyUIBasedAppModelConfigFrom.ARGS:
app_model_config_dict = app_model_config.to_dict()
config_dict = app_model_config_dict.copy()
else:
config_dict = override_config_dict or {}
app_mode = AppMode.value_of(app_model.mode)
app_config = CompletionAppConfig(
tenant_id=app_model.tenant_id,
app_id=app_model.id,
app_mode=app_mode,
app_model_config_from=config_from,
app_model_config_id=app_model_config.id,
app_model_config_dict=config_dict,
model=ModelConfigManager.convert(config=config_dict),
prompt_template=PromptTemplateConfigManager.convert(config=config_dict),
sensitive_word_avoidance=SensitiveWordAvoidanceConfigManager.convert(config=config_dict),
dataset=DatasetConfigManager.convert(config=config_dict),
additional_features=cls.convert_features(config_dict, app_mode),
)
app_config.variables, app_config.external_data_variables = BasicVariablesConfigManager.convert(
config=config_dict
)
return app_config
@classmethod
def config_validate(cls, tenant_id: str, config: dict):
"""
Validate for completion app model config
:param tenant_id: tenant id
:param config: app model config args
"""
app_mode = AppMode.COMPLETION
related_config_keys = []
# model
config, current_related_config_keys = ModelConfigManager.validate_and_set_defaults(tenant_id, config)
related_config_keys.extend(current_related_config_keys)
# user_input_form
config, current_related_config_keys = BasicVariablesConfigManager.validate_and_set_defaults(tenant_id, config)
related_config_keys.extend(current_related_config_keys)
# file upload validation
config, current_related_config_keys = FileUploadConfigManager.validate_and_set_defaults(config)
related_config_keys.extend(current_related_config_keys)
# prompt
config, current_related_config_keys = PromptTemplateConfigManager.validate_and_set_defaults(app_mode, config)
related_config_keys.extend(current_related_config_keys)
# dataset_query_variable
config, current_related_config_keys = DatasetConfigManager.validate_and_set_defaults(
tenant_id, app_mode, config
)
related_config_keys.extend(current_related_config_keys)
# text_to_speech
config, current_related_config_keys = TextToSpeechConfigManager.validate_and_set_defaults(config)
related_config_keys.extend(current_related_config_keys)
# more_like_this
config, current_related_config_keys = MoreLikeThisConfigManager.validate_and_set_defaults(config)
related_config_keys.extend(current_related_config_keys)
# moderation validation
config, current_related_config_keys = SensitiveWordAvoidanceConfigManager.validate_and_set_defaults(
tenant_id, config
)
related_config_keys.extend(current_related_config_keys)
related_config_keys = list(set(related_config_keys))
# Filter out extra parameters
filtered_config = {key: config.get(key) for key in related_config_keys}
return filtered_config

View File

@@ -0,0 +1,350 @@
import logging
import threading
import uuid
from collections.abc import Generator, Mapping
from typing import Any, Literal, Union, overload
from flask import Flask, copy_current_request_context, current_app
from pydantic import ValidationError
from sqlalchemy import select
from configs import dify_config
from core.app.app_config.easy_ui_based_app.model_config.converter import ModelConfigConverter
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
from core.app.apps.completion.app_config_manager import CompletionAppConfigManager
from core.app.apps.completion.app_runner import CompletionAppRunner
from core.app.apps.completion.generate_response_converter import CompletionAppGenerateResponseConverter
from core.app.apps.exc import GenerateTaskStoppedError
from core.app.apps.message_based_app_generator import MessageBasedAppGenerator
from core.app.apps.message_based_app_queue_manager import MessageBasedAppQueueManager
from core.app.entities.app_invoke_entities import CompletionAppGenerateEntity, InvokeFrom
from core.model_runtime.errors.invoke import InvokeAuthorizationError
from core.ops.ops_trace_manager import TraceQueueManager
from extensions.ext_database import db
from factories import file_factory
from models import Account, App, EndUser, Message
from services.errors.app import MoreLikeThisDisabledError
from services.errors.message import MessageNotExistsError
logger = logging.getLogger(__name__)
class CompletionAppGenerator(MessageBasedAppGenerator):
@overload
def generate(
self,
app_model: App,
user: Union[Account, EndUser],
args: Mapping[str, Any],
invoke_from: InvokeFrom,
streaming: Literal[True],
) -> Generator[str | Mapping[str, Any], None, None]: ...
@overload
def generate(
self,
app_model: App,
user: Union[Account, EndUser],
args: Mapping[str, Any],
invoke_from: InvokeFrom,
streaming: Literal[False],
) -> Mapping[str, Any]: ...
@overload
def generate(
self,
app_model: App,
user: Union[Account, EndUser],
args: Mapping[str, Any],
invoke_from: InvokeFrom,
streaming: bool = False,
) -> Union[Mapping[str, Any], Generator[str | Mapping[str, Any], None, None]]: ...
def generate(
self,
app_model: App,
user: Union[Account, EndUser],
args: Mapping[str, Any],
invoke_from: InvokeFrom,
streaming: bool = True,
) -> Union[Mapping[str, Any], Generator[str | Mapping[str, Any], None, None]]:
"""
Generate App response.
:param app_model: App
:param user: account or end user
:param args: request args
:param invoke_from: invoke from source
:param streaming: is stream
"""
query = args["query"]
if not isinstance(query, str):
raise ValueError("query must be a string")
query = query.replace("\x00", "")
inputs = args["inputs"]
# get conversation
conversation = None
# get app model config
app_model_config = self._get_app_model_config(app_model=app_model, conversation=conversation)
# validate override model config
override_model_config_dict = None
if args.get("model_config"):
if invoke_from != InvokeFrom.DEBUGGER:
raise ValueError("Only in App debug mode can override model config")
# validate config
override_model_config_dict = CompletionAppConfigManager.config_validate(
tenant_id=app_model.tenant_id, config=args.get("model_config", {})
)
# parse files
# TODO(QuantumGhost): Move file parsing logic to the API controller layer
# for better separation of concerns.
#
# For implementation reference, see the `_parse_file` function and
# `DraftWorkflowNodeRunApi` class which handle this properly.
files = args["files"] if args.get("files") else []
file_extra_config = FileUploadConfigManager.convert(override_model_config_dict or app_model_config.to_dict())
if file_extra_config:
file_objs = file_factory.build_from_mappings(
mappings=files,
tenant_id=app_model.tenant_id,
config=file_extra_config,
)
else:
file_objs = []
# convert to app config
app_config = CompletionAppConfigManager.get_app_config(
app_model=app_model, app_model_config=app_model_config, override_config_dict=override_model_config_dict
)
# get tracing instance
trace_manager = TraceQueueManager(
app_id=app_model.id, user_id=user.id if isinstance(user, Account) else user.session_id
)
# init application generate entity
application_generate_entity = CompletionAppGenerateEntity(
task_id=str(uuid.uuid4()),
app_config=app_config,
model_conf=ModelConfigConverter.convert(app_config),
file_upload_config=file_extra_config,
inputs=self._prepare_user_inputs(
user_inputs=inputs, variables=app_config.variables, tenant_id=app_model.tenant_id
),
query=query,
files=list(file_objs),
user_id=user.id,
stream=streaming,
invoke_from=invoke_from,
extras={},
trace_manager=trace_manager,
)
# init generate records
(conversation, message) = self._init_generate_records(application_generate_entity)
# init queue manager
queue_manager = MessageBasedAppQueueManager(
task_id=application_generate_entity.task_id,
user_id=application_generate_entity.user_id,
invoke_from=application_generate_entity.invoke_from,
conversation_id=conversation.id,
app_mode=conversation.mode,
message_id=message.id,
)
# new thread with request context
@copy_current_request_context
def worker_with_context():
return self._generate_worker(
flask_app=current_app._get_current_object(), # type: ignore
application_generate_entity=application_generate_entity,
queue_manager=queue_manager,
message_id=message.id,
)
worker_thread = threading.Thread(target=worker_with_context)
worker_thread.start()
# return response or stream generator
response = self._handle_response(
application_generate_entity=application_generate_entity,
queue_manager=queue_manager,
conversation=conversation,
message=message,
user=user,
stream=streaming,
)
return CompletionAppGenerateResponseConverter.convert(response=response, invoke_from=invoke_from)
def _generate_worker(
self,
flask_app: Flask,
application_generate_entity: CompletionAppGenerateEntity,
queue_manager: AppQueueManager,
message_id: str,
):
"""
Generate worker in a new thread.
:param flask_app: Flask app
:param application_generate_entity: application generate entity
:param queue_manager: queue manager
:param message_id: message ID
:return:
"""
with flask_app.app_context():
try:
# get message
message = self._get_message(message_id)
# chatbot app
runner = CompletionAppRunner()
runner.run(
application_generate_entity=application_generate_entity,
queue_manager=queue_manager,
message=message,
)
except GenerateTaskStoppedError:
pass
except InvokeAuthorizationError:
queue_manager.publish_error(
InvokeAuthorizationError("Incorrect API key provided"), PublishFrom.APPLICATION_MANAGER
)
except ValidationError as e:
logger.exception("Validation Error when generating")
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
except ValueError as e:
if dify_config.DEBUG:
logger.exception("Error when generating")
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
except Exception as e:
logger.exception("Unknown Error when generating")
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
finally:
db.session.close()
def generate_more_like_this(
self,
app_model: App,
message_id: str,
user: Union[Account, EndUser],
invoke_from: InvokeFrom,
stream: bool = True,
) -> Union[Mapping, Generator[Mapping | str, None, None]]:
"""
Generate App response.
:param app_model: App
:param message_id: message ID
:param user: account or end user
:param invoke_from: invoke from source
:param stream: is stream
"""
stmt = select(Message).where(
Message.id == message_id,
Message.app_id == app_model.id,
Message.from_source == ("api" if isinstance(user, EndUser) else "console"),
Message.from_end_user_id == (user.id if isinstance(user, EndUser) else None),
Message.from_account_id == (user.id if isinstance(user, Account) else None),
)
message = db.session.scalar(stmt)
if not message:
raise MessageNotExistsError()
current_app_model_config = app_model.app_model_config
if not current_app_model_config:
raise MoreLikeThisDisabledError()
more_like_this = current_app_model_config.more_like_this_dict
if not current_app_model_config.more_like_this or more_like_this.get("enabled", False) is False:
raise MoreLikeThisDisabledError()
app_model_config = message.app_model_config
if not app_model_config:
raise ValueError("Message app_model_config is None")
override_model_config_dict = app_model_config.to_dict()
model_dict = override_model_config_dict["model"]
completion_params = model_dict.get("completion_params")
completion_params["temperature"] = 0.9
model_dict["completion_params"] = completion_params
override_model_config_dict["model"] = model_dict
# parse files
file_extra_config = FileUploadConfigManager.convert(override_model_config_dict)
if file_extra_config:
file_objs = file_factory.build_from_mappings(
mappings=message.message_files,
tenant_id=app_model.tenant_id,
config=file_extra_config,
)
else:
file_objs = []
# convert to app config
app_config = CompletionAppConfigManager.get_app_config(
app_model=app_model, app_model_config=app_model_config, override_config_dict=override_model_config_dict
)
# init application generate entity
application_generate_entity = CompletionAppGenerateEntity(
task_id=str(uuid.uuid4()),
app_config=app_config,
model_conf=ModelConfigConverter.convert(app_config),
inputs=message.inputs,
query=message.query,
files=list(file_objs),
user_id=user.id,
stream=stream,
invoke_from=invoke_from,
extras={},
)
# init generate records
(conversation, message) = self._init_generate_records(application_generate_entity)
# init queue manager
queue_manager = MessageBasedAppQueueManager(
task_id=application_generate_entity.task_id,
user_id=application_generate_entity.user_id,
invoke_from=application_generate_entity.invoke_from,
conversation_id=conversation.id,
app_mode=conversation.mode,
message_id=message.id,
)
# new thread with request context
@copy_current_request_context
def worker_with_context():
return self._generate_worker(
flask_app=current_app._get_current_object(), # type: ignore
application_generate_entity=application_generate_entity,
queue_manager=queue_manager,
message_id=message.id,
)
worker_thread = threading.Thread(target=worker_with_context)
worker_thread.start()
# return response or stream generator
response = self._handle_response(
application_generate_entity=application_generate_entity,
queue_manager=queue_manager,
conversation=conversation,
message=message,
user=user,
stream=stream,
)
return CompletionAppGenerateResponseConverter.convert(response=response, invoke_from=invoke_from)

View File

@@ -0,0 +1,181 @@
import logging
from typing import cast
from sqlalchemy import select
from core.app.apps.base_app_queue_manager import AppQueueManager
from core.app.apps.base_app_runner import AppRunner
from core.app.apps.completion.app_config_manager import CompletionAppConfig
from core.app.entities.app_invoke_entities import (
CompletionAppGenerateEntity,
)
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
from core.model_manager import ModelInstance
from core.model_runtime.entities.message_entities import ImagePromptMessageContent
from core.moderation.base import ModerationError
from core.rag.retrieval.dataset_retrieval import DatasetRetrieval
from extensions.ext_database import db
from models.model import App, Message
logger = logging.getLogger(__name__)
class CompletionAppRunner(AppRunner):
"""
Completion Application Runner
"""
def run(
self, application_generate_entity: CompletionAppGenerateEntity, queue_manager: AppQueueManager, message: Message
):
"""
Run application
:param application_generate_entity: application generate entity
:param queue_manager: application queue manager
:param message: message
:return:
"""
app_config = application_generate_entity.app_config
app_config = cast(CompletionAppConfig, app_config)
stmt = select(App).where(App.id == app_config.app_id)
app_record = db.session.scalar(stmt)
if not app_record:
raise ValueError("App not found")
inputs = application_generate_entity.inputs
query = application_generate_entity.query
files = application_generate_entity.files
image_detail_config = (
application_generate_entity.file_upload_config.image_config.detail
if (
application_generate_entity.file_upload_config
and application_generate_entity.file_upload_config.image_config
)
else None
)
image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
# organize all inputs and template to prompt messages
# Include: prompt template, inputs, query(optional), files(optional)
prompt_messages, stop = self.organize_prompt_messages(
app_record=app_record,
model_config=application_generate_entity.model_conf,
prompt_template_entity=app_config.prompt_template,
inputs=inputs,
files=files,
query=query,
image_detail_config=image_detail_config,
)
# moderation
try:
# process sensitive_word_avoidance
_, inputs, query = self.moderation_for_inputs(
app_id=app_record.id,
tenant_id=app_config.tenant_id,
app_generate_entity=application_generate_entity,
inputs=inputs,
query=query or "",
message_id=message.id,
)
except ModerationError as e:
self.direct_output(
queue_manager=queue_manager,
app_generate_entity=application_generate_entity,
prompt_messages=prompt_messages,
text=str(e),
stream=application_generate_entity.stream,
)
return
# fill in variable inputs from external data tools if exists
external_data_tools = app_config.external_data_variables
if external_data_tools:
inputs = self.fill_in_inputs_from_external_data_tools(
tenant_id=app_record.tenant_id,
app_id=app_record.id,
external_data_tools=external_data_tools,
inputs=inputs,
query=query,
)
# get context from datasets
context = None
if app_config.dataset and app_config.dataset.dataset_ids:
hit_callback = DatasetIndexToolCallbackHandler(
queue_manager,
app_record.id,
message.id,
application_generate_entity.user_id,
application_generate_entity.invoke_from,
)
dataset_config = app_config.dataset
if dataset_config and dataset_config.retrieve_config.query_variable:
query = inputs.get(dataset_config.retrieve_config.query_variable, "")
dataset_retrieval = DatasetRetrieval(application_generate_entity)
context = dataset_retrieval.retrieve(
app_id=app_record.id,
user_id=application_generate_entity.user_id,
tenant_id=app_record.tenant_id,
model_config=application_generate_entity.model_conf,
config=dataset_config,
query=query or "",
invoke_from=application_generate_entity.invoke_from,
show_retrieve_source=app_config.additional_features.show_retrieve_source
if app_config.additional_features
else False,
hit_callback=hit_callback,
message_id=message.id,
inputs=inputs,
)
# reorganize all inputs and template to prompt messages
# Include: prompt template, inputs, query(optional), files(optional)
# memory(optional), external data, dataset context(optional)
prompt_messages, stop = self.organize_prompt_messages(
app_record=app_record,
model_config=application_generate_entity.model_conf,
prompt_template_entity=app_config.prompt_template,
inputs=inputs,
files=files,
query=query,
context=context,
image_detail_config=image_detail_config,
)
# check hosting moderation
hosting_moderation_result = self.check_hosting_moderation(
application_generate_entity=application_generate_entity,
queue_manager=queue_manager,
prompt_messages=prompt_messages,
)
if hosting_moderation_result:
return
# Re-calculate the max tokens if sum(prompt_token + max_tokens) over model token limit
self.recalc_llm_max_tokens(model_config=application_generate_entity.model_conf, prompt_messages=prompt_messages)
# Invoke model
model_instance = ModelInstance(
provider_model_bundle=application_generate_entity.model_conf.provider_model_bundle,
model=application_generate_entity.model_conf.model,
)
db.session.close()
invoke_result = model_instance.invoke_llm(
prompt_messages=prompt_messages,
model_parameters=application_generate_entity.model_conf.parameters,
stop=stop,
stream=application_generate_entity.stream,
user=application_generate_entity.user_id,
)
# handle invoke result
self._handle_invoke_result(
invoke_result=invoke_result, queue_manager=queue_manager, stream=application_generate_entity.stream
)

View File

@@ -0,0 +1,121 @@
from collections.abc import Generator
from typing import cast
from core.app.apps.base_app_generate_response_converter import AppGenerateResponseConverter
from core.app.entities.task_entities import (
AppStreamResponse,
CompletionAppBlockingResponse,
CompletionAppStreamResponse,
ErrorStreamResponse,
MessageEndStreamResponse,
PingStreamResponse,
)
class CompletionAppGenerateResponseConverter(AppGenerateResponseConverter):
_blocking_response_type = CompletionAppBlockingResponse
@classmethod
def convert_blocking_full_response(cls, blocking_response: CompletionAppBlockingResponse): # type: ignore[override]
"""
Convert blocking full response.
:param blocking_response: blocking response
:return:
"""
response = {
"event": "message",
"task_id": blocking_response.task_id,
"id": blocking_response.data.id,
"message_id": blocking_response.data.message_id,
"mode": blocking_response.data.mode,
"answer": blocking_response.data.answer,
"metadata": blocking_response.data.metadata,
"created_at": blocking_response.data.created_at,
}
return response
@classmethod
def convert_blocking_simple_response(cls, blocking_response: CompletionAppBlockingResponse): # type: ignore[override]
"""
Convert blocking simple response.
:param blocking_response: blocking response
:return:
"""
response = cls.convert_blocking_full_response(blocking_response)
metadata = response.get("metadata", {})
if isinstance(metadata, dict):
response["metadata"] = cls._get_simple_metadata(metadata)
else:
response["metadata"] = {}
return response
@classmethod
def convert_stream_full_response(
cls, stream_response: Generator[AppStreamResponse, None, None]
) -> Generator[dict | str, None, None]:
"""
Convert stream full response.
:param stream_response: stream response
:return:
"""
for chunk in stream_response:
chunk = cast(CompletionAppStreamResponse, chunk)
sub_stream_response = chunk.stream_response
if isinstance(sub_stream_response, PingStreamResponse):
yield "ping"
continue
response_chunk = {
"event": sub_stream_response.event.value,
"message_id": chunk.message_id,
"created_at": chunk.created_at,
}
if isinstance(sub_stream_response, ErrorStreamResponse):
data = cls._error_to_stream_response(sub_stream_response.err)
response_chunk.update(data)
else:
response_chunk.update(sub_stream_response.model_dump(mode="json"))
yield response_chunk
@classmethod
def convert_stream_simple_response(
cls, stream_response: Generator[AppStreamResponse, None, None]
) -> Generator[dict | str, None, None]:
"""
Convert stream simple response.
:param stream_response: stream response
:return:
"""
for chunk in stream_response:
chunk = cast(CompletionAppStreamResponse, chunk)
sub_stream_response = chunk.stream_response
if isinstance(sub_stream_response, PingStreamResponse):
yield "ping"
continue
response_chunk = {
"event": sub_stream_response.event.value,
"message_id": chunk.message_id,
"created_at": chunk.created_at,
}
if isinstance(sub_stream_response, MessageEndStreamResponse):
sub_stream_response_dict = sub_stream_response.model_dump(mode="json")
metadata = sub_stream_response_dict.get("metadata", {})
if not isinstance(metadata, dict):
metadata = {}
sub_stream_response_dict["metadata"] = cls._get_simple_metadata(metadata)
response_chunk.update(sub_stream_response_dict)
elif isinstance(sub_stream_response, ErrorStreamResponse):
data = cls._error_to_stream_response(sub_stream_response.err)
response_chunk.update(data)
else:
response_chunk.update(sub_stream_response.model_dump(mode="json"))
yield response_chunk

View File

@@ -0,0 +1,2 @@
class GenerateTaskStoppedError(Exception):
pass

View File

@@ -0,0 +1,279 @@
import json
import logging
from collections.abc import Generator
from typing import Union, cast
from sqlalchemy import select
from sqlalchemy.orm import Session
from core.app.app_config.entities import EasyUIBasedAppConfig, EasyUIBasedAppModelConfigFrom
from core.app.apps.base_app_generator import BaseAppGenerator
from core.app.apps.base_app_queue_manager import AppQueueManager
from core.app.apps.exc import GenerateTaskStoppedError
from core.app.entities.app_invoke_entities import (
AdvancedChatAppGenerateEntity,
AgentChatAppGenerateEntity,
AppGenerateEntity,
ChatAppGenerateEntity,
CompletionAppGenerateEntity,
InvokeFrom,
)
from core.app.entities.task_entities import (
ChatbotAppBlockingResponse,
ChatbotAppStreamResponse,
CompletionAppBlockingResponse,
CompletionAppStreamResponse,
)
from core.app.task_pipeline.easy_ui_based_generate_task_pipeline import EasyUIBasedGenerateTaskPipeline
from core.prompt.utils.prompt_template_parser import PromptTemplateParser
from extensions.ext_database import db
from libs.datetime_utils import naive_utc_now
from models import Account
from models.enums import CreatorUserRole
from models.model import App, AppMode, AppModelConfig, Conversation, EndUser, Message, MessageFile
from services.errors.app_model_config import AppModelConfigBrokenError
from services.errors.conversation import ConversationNotExistsError
from services.errors.message import MessageNotExistsError
logger = logging.getLogger(__name__)
class MessageBasedAppGenerator(BaseAppGenerator):
def _handle_response(
self,
application_generate_entity: Union[
ChatAppGenerateEntity,
CompletionAppGenerateEntity,
AgentChatAppGenerateEntity,
],
queue_manager: AppQueueManager,
conversation: Conversation,
message: Message,
user: Union[Account, EndUser],
stream: bool = False,
) -> Union[
ChatbotAppBlockingResponse,
CompletionAppBlockingResponse,
Generator[Union[ChatbotAppStreamResponse, CompletionAppStreamResponse], None, None],
]:
"""
Handle response.
:param application_generate_entity: application generate entity
:param queue_manager: queue manager
:param conversation: conversation
:param message: message
:param user: user
:param stream: is stream
:return:
"""
# init generate task pipeline
generate_task_pipeline = EasyUIBasedGenerateTaskPipeline(
application_generate_entity=application_generate_entity,
queue_manager=queue_manager,
conversation=conversation,
message=message,
stream=stream,
)
try:
return generate_task_pipeline.process()
except ValueError as e:
if len(e.args) > 0 and e.args[0] == "I/O operation on closed file.": # ignore this error
raise GenerateTaskStoppedError()
else:
logger.exception("Failed to handle response, conversation_id: %s", conversation.id)
raise e
def _get_app_model_config(self, app_model: App, conversation: Conversation | None = None) -> AppModelConfig:
if conversation:
stmt = select(AppModelConfig).where(
AppModelConfig.id == conversation.app_model_config_id, AppModelConfig.app_id == app_model.id
)
app_model_config = db.session.scalar(stmt)
if not app_model_config:
raise AppModelConfigBrokenError()
else:
if app_model.app_model_config_id is None:
raise AppModelConfigBrokenError()
app_model_config = app_model.app_model_config
if not app_model_config:
raise AppModelConfigBrokenError()
return app_model_config
def _init_generate_records(
self,
application_generate_entity: Union[
ChatAppGenerateEntity,
CompletionAppGenerateEntity,
AgentChatAppGenerateEntity,
AdvancedChatAppGenerateEntity,
],
conversation: Conversation | None = None,
) -> tuple[Conversation, Message]:
"""
Initialize generate records
:param application_generate_entity: application generate entity
:conversation conversation
:return:
"""
app_config: EasyUIBasedAppConfig = cast(EasyUIBasedAppConfig, application_generate_entity.app_config)
# get from source
end_user_id = None
account_id = None
if application_generate_entity.invoke_from in {InvokeFrom.WEB_APP, InvokeFrom.SERVICE_API}:
from_source = "api"
end_user_id = application_generate_entity.user_id
else:
from_source = "console"
account_id = application_generate_entity.user_id
if isinstance(application_generate_entity, AdvancedChatAppGenerateEntity):
app_model_config_id = None
override_model_configs = None
model_provider = None
model_id = None
else:
app_model_config_id = app_config.app_model_config_id
model_provider = application_generate_entity.model_conf.provider
model_id = application_generate_entity.model_conf.model
override_model_configs = None
if app_config.app_model_config_from == EasyUIBasedAppModelConfigFrom.ARGS and app_config.app_mode in {
AppMode.AGENT_CHAT,
AppMode.CHAT,
AppMode.COMPLETION,
}:
override_model_configs = app_config.app_model_config_dict
# get conversation introduction
introduction = self._get_conversation_introduction(application_generate_entity)
# get conversation name
query = application_generate_entity.query or "New conversation"
conversation_name = (query[:20] + "") if len(query) > 20 else query
if not conversation:
conversation = Conversation(
app_id=app_config.app_id,
app_model_config_id=app_model_config_id,
model_provider=model_provider,
model_id=model_id,
override_model_configs=json.dumps(override_model_configs) if override_model_configs else None,
mode=app_config.app_mode.value,
name=conversation_name,
inputs=application_generate_entity.inputs,
introduction=introduction,
system_instruction="",
system_instruction_tokens=0,
status="normal",
invoke_from=application_generate_entity.invoke_from.value,
from_source=from_source,
from_end_user_id=end_user_id,
from_account_id=account_id,
)
db.session.add(conversation)
db.session.commit()
db.session.refresh(conversation)
else:
conversation.updated_at = naive_utc_now()
db.session.commit()
message = Message(
app_id=app_config.app_id,
model_provider=model_provider,
model_id=model_id,
override_model_configs=json.dumps(override_model_configs) if override_model_configs else None,
conversation_id=conversation.id,
inputs=application_generate_entity.inputs,
query=application_generate_entity.query,
message="",
message_tokens=0,
message_unit_price=0,
message_price_unit=0,
answer="",
answer_tokens=0,
answer_unit_price=0,
answer_price_unit=0,
parent_message_id=getattr(application_generate_entity, "parent_message_id", None),
provider_response_latency=0,
total_price=0,
currency="USD",
invoke_from=application_generate_entity.invoke_from.value,
from_source=from_source,
from_end_user_id=end_user_id,
from_account_id=account_id,
app_mode=app_config.app_mode,
)
db.session.add(message)
db.session.commit()
db.session.refresh(message)
for file in application_generate_entity.files:
message_file = MessageFile(
message_id=message.id,
type=file.type,
transfer_method=file.transfer_method,
belongs_to="user",
url=file.remote_url,
upload_file_id=file.related_id,
created_by_role=(CreatorUserRole.ACCOUNT if account_id else CreatorUserRole.END_USER),
created_by=account_id or end_user_id or "",
)
db.session.add(message_file)
db.session.commit()
return conversation, message
def _get_conversation_introduction(self, application_generate_entity: AppGenerateEntity) -> str:
"""
Get conversation introduction
:param application_generate_entity: application generate entity
:return: conversation introduction
"""
app_config = application_generate_entity.app_config
introduction = app_config.additional_features.opening_statement
if introduction:
try:
inputs = application_generate_entity.inputs
prompt_template = PromptTemplateParser(template=introduction)
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
introduction = prompt_template.format(prompt_inputs)
except KeyError:
pass
return introduction or ""
def _get_conversation(self, conversation_id: str) -> Conversation:
"""
Get conversation by conversation id
:param conversation_id: conversation id
:return: conversation
"""
with Session(db.engine, expire_on_commit=False) as session:
conversation = session.scalar(select(Conversation).where(Conversation.id == conversation_id))
if not conversation:
raise ConversationNotExistsError("Conversation not exists")
return conversation
def _get_message(self, message_id: str) -> Message:
"""
Get message by message id
:param message_id: message id
:return: message
"""
with Session(db.engine, expire_on_commit=False) as session:
message = session.scalar(select(Message).where(Message.id == message_id))
if message is None:
raise MessageNotExistsError("Message not exists")
return message

View File

@@ -0,0 +1,47 @@
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
from core.app.apps.exc import GenerateTaskStoppedError
from core.app.entities.app_invoke_entities import InvokeFrom
from core.app.entities.queue_entities import (
AppQueueEvent,
MessageQueueMessage,
QueueAdvancedChatMessageEndEvent,
QueueErrorEvent,
QueueMessageEndEvent,
QueueStopEvent,
)
class MessageBasedAppQueueManager(AppQueueManager):
def __init__(
self, task_id: str, user_id: str, invoke_from: InvokeFrom, conversation_id: str, app_mode: str, message_id: str
):
super().__init__(task_id, user_id, invoke_from)
self._conversation_id = str(conversation_id)
self._app_mode = app_mode
self._message_id = str(message_id)
def _publish(self, event: AppQueueEvent, pub_from: PublishFrom):
"""
Publish event to queue
:param event:
:param pub_from:
:return:
"""
message = MessageQueueMessage(
task_id=self._task_id,
message_id=self._message_id,
conversation_id=self._conversation_id,
app_mode=self._app_mode,
event=event,
)
self._q.put(message)
if isinstance(
event, QueueStopEvent | QueueErrorEvent | QueueMessageEndEvent | QueueAdvancedChatMessageEndEvent
):
self.stop_listen()
if pub_from == PublishFrom.APPLICATION_MANAGER and self._is_stopped():
raise GenerateTaskStoppedError()

View File

@@ -0,0 +1,95 @@
from collections.abc import Generator
from typing import cast
from core.app.apps.base_app_generate_response_converter import AppGenerateResponseConverter
from core.app.entities.task_entities import (
AppStreamResponse,
ErrorStreamResponse,
NodeFinishStreamResponse,
NodeStartStreamResponse,
PingStreamResponse,
WorkflowAppBlockingResponse,
WorkflowAppStreamResponse,
)
class WorkflowAppGenerateResponseConverter(AppGenerateResponseConverter):
_blocking_response_type = WorkflowAppBlockingResponse
@classmethod
def convert_blocking_full_response(cls, blocking_response: WorkflowAppBlockingResponse) -> dict: # type: ignore[override]
"""
Convert blocking full response.
:param blocking_response: blocking response
:return:
"""
return dict(blocking_response.model_dump())
@classmethod
def convert_blocking_simple_response(cls, blocking_response: WorkflowAppBlockingResponse) -> dict: # type: ignore[override]
"""
Convert blocking simple response.
:param blocking_response: blocking response
:return:
"""
return cls.convert_blocking_full_response(blocking_response)
@classmethod
def convert_stream_full_response(
cls, stream_response: Generator[AppStreamResponse, None, None]
) -> Generator[dict | str, None, None]:
"""
Convert stream full response.
:param stream_response: stream response
:return:
"""
for chunk in stream_response:
chunk = cast(WorkflowAppStreamResponse, chunk)
sub_stream_response = chunk.stream_response
if isinstance(sub_stream_response, PingStreamResponse):
yield "ping"
continue
response_chunk = {
"event": sub_stream_response.event.value,
"workflow_run_id": chunk.workflow_run_id,
}
if isinstance(sub_stream_response, ErrorStreamResponse):
data = cls._error_to_stream_response(sub_stream_response.err)
response_chunk.update(cast(dict, data))
else:
response_chunk.update(sub_stream_response.model_dump())
yield response_chunk
@classmethod
def convert_stream_simple_response(
cls, stream_response: Generator[AppStreamResponse, None, None]
) -> Generator[dict | str, None, None]:
"""
Convert stream simple response.
:param stream_response: stream response
:return:
"""
for chunk in stream_response:
chunk = cast(WorkflowAppStreamResponse, chunk)
sub_stream_response = chunk.stream_response
if isinstance(sub_stream_response, PingStreamResponse):
yield "ping"
continue
response_chunk = {
"event": sub_stream_response.event.value,
"workflow_run_id": chunk.workflow_run_id,
}
if isinstance(sub_stream_response, ErrorStreamResponse):
data = cls._error_to_stream_response(sub_stream_response.err)
response_chunk.update(cast(dict, data))
elif isinstance(sub_stream_response, NodeStartStreamResponse | NodeFinishStreamResponse):
response_chunk.update(cast(dict, sub_stream_response.to_ignore_detail_dict()))
else:
response_chunk.update(sub_stream_response.model_dump())
yield response_chunk

View File

@@ -0,0 +1,66 @@
from core.app.app_config.base_app_config_manager import BaseAppConfigManager
from core.app.app_config.common.sensitive_word_avoidance.manager import SensitiveWordAvoidanceConfigManager
from core.app.app_config.entities import RagPipelineVariableEntity, WorkflowUIBasedAppConfig
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.app.app_config.features.text_to_speech.manager import TextToSpeechConfigManager
from core.app.app_config.workflow_ui_based_app.variables.manager import WorkflowVariablesConfigManager
from models.dataset import Pipeline
from models.model import AppMode
from models.workflow import Workflow
class PipelineConfig(WorkflowUIBasedAppConfig):
"""
Pipeline Config Entity.
"""
rag_pipeline_variables: list[RagPipelineVariableEntity] = []
pass
class PipelineConfigManager(BaseAppConfigManager):
@classmethod
def get_pipeline_config(cls, pipeline: Pipeline, workflow: Workflow, start_node_id: str) -> PipelineConfig:
pipeline_config = PipelineConfig(
tenant_id=pipeline.tenant_id,
app_id=pipeline.id,
app_mode=AppMode.RAG_PIPELINE,
workflow_id=workflow.id,
rag_pipeline_variables=WorkflowVariablesConfigManager.convert_rag_pipeline_variable(
workflow=workflow, start_node_id=start_node_id
),
)
return pipeline_config
@classmethod
def config_validate(cls, tenant_id: str, config: dict, only_structure_validate: bool = False) -> dict:
"""
Validate for pipeline config
:param tenant_id: tenant id
:param config: app model config args
:param only_structure_validate: only validate the structure of the config
"""
related_config_keys = []
# file upload validation
config, current_related_config_keys = FileUploadConfigManager.validate_and_set_defaults(config=config)
related_config_keys.extend(current_related_config_keys)
# text_to_speech
config, current_related_config_keys = TextToSpeechConfigManager.validate_and_set_defaults(config)
related_config_keys.extend(current_related_config_keys)
# moderation validation
config, current_related_config_keys = SensitiveWordAvoidanceConfigManager.validate_and_set_defaults(
tenant_id=tenant_id, config=config, only_structure_validate=only_structure_validate
)
related_config_keys.extend(current_related_config_keys)
related_config_keys = list(set(related_config_keys))
# Filter out extra parameters
filtered_config = {key: config.get(key) for key in related_config_keys}
return filtered_config

View File

@@ -0,0 +1,824 @@
import contextvars
import datetime
import json
import logging
import secrets
import threading
import time
import uuid
from collections.abc import Generator, Mapping
from typing import Any, Literal, Union, cast, overload
from flask import Flask, current_app
from pydantic import ValidationError
from sqlalchemy import select
from sqlalchemy.orm import Session, sessionmaker
import contexts
from configs import dify_config
from core.app.apps.base_app_generator import BaseAppGenerator
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
from core.app.apps.exc import GenerateTaskStoppedError
from core.app.apps.pipeline.pipeline_config_manager import PipelineConfigManager
from core.app.apps.pipeline.pipeline_queue_manager import PipelineQueueManager
from core.app.apps.pipeline.pipeline_runner import PipelineRunner
from core.app.apps.workflow.generate_response_converter import WorkflowAppGenerateResponseConverter
from core.app.apps.workflow.generate_task_pipeline import WorkflowAppGenerateTaskPipeline
from core.app.entities.app_invoke_entities import InvokeFrom, RagPipelineGenerateEntity
from core.app.entities.rag_pipeline_invoke_entities import RagPipelineInvokeEntity
from core.app.entities.task_entities import WorkflowAppBlockingResponse, WorkflowAppStreamResponse
from core.datasource.entities.datasource_entities import (
DatasourceProviderType,
OnlineDriveBrowseFilesRequest,
)
from core.datasource.online_drive.online_drive_plugin import OnlineDriveDatasourcePlugin
from core.entities.knowledge_entities import PipelineDataset, PipelineDocument
from core.model_runtime.errors.invoke import InvokeAuthorizationError
from core.rag.index_processor.constant.built_in_field import BuiltInField
from core.repositories.factory import DifyCoreRepositoryFactory
from core.workflow.repositories.draft_variable_repository import DraftVariableSaverFactory
from core.workflow.repositories.workflow_execution_repository import WorkflowExecutionRepository
from core.workflow.repositories.workflow_node_execution_repository import WorkflowNodeExecutionRepository
from core.workflow.variable_loader import DUMMY_VARIABLE_LOADER, VariableLoader
from extensions.ext_database import db
from libs.flask_utils import preserve_flask_contexts
from models import Account, EndUser, Workflow, WorkflowNodeExecutionTriggeredFrom
from models.dataset import Document, DocumentPipelineExecutionLog, Pipeline
from models.enums import WorkflowRunTriggeredFrom
from models.model import AppMode
from services.datasource_provider_service import DatasourceProviderService
from services.rag_pipeline.rag_pipeline_task_proxy import RagPipelineTaskProxy
from services.workflow_draft_variable_service import DraftVarLoader, WorkflowDraftVariableService
logger = logging.getLogger(__name__)
class PipelineGenerator(BaseAppGenerator):
@overload
def generate(
self,
*,
pipeline: Pipeline,
workflow: Workflow,
user: Union[Account, EndUser],
args: Mapping[str, Any],
invoke_from: InvokeFrom,
streaming: Literal[True],
call_depth: int,
workflow_thread_pool_id: str | None,
is_retry: bool = False,
) -> Generator[Mapping | str, None, None]: ...
@overload
def generate(
self,
*,
pipeline: Pipeline,
workflow: Workflow,
user: Union[Account, EndUser],
args: Mapping[str, Any],
invoke_from: InvokeFrom,
streaming: Literal[False],
call_depth: int,
workflow_thread_pool_id: str | None,
is_retry: bool = False,
) -> Mapping[str, Any]: ...
@overload
def generate(
self,
*,
pipeline: Pipeline,
workflow: Workflow,
user: Union[Account, EndUser],
args: Mapping[str, Any],
invoke_from: InvokeFrom,
streaming: bool,
call_depth: int,
workflow_thread_pool_id: str | None,
is_retry: bool = False,
) -> Union[Mapping[str, Any], Generator[Mapping | str, None, None]]: ...
def generate(
self,
*,
pipeline: Pipeline,
workflow: Workflow,
user: Union[Account, EndUser],
args: Mapping[str, Any],
invoke_from: InvokeFrom,
streaming: bool = True,
call_depth: int = 0,
workflow_thread_pool_id: str | None = None,
is_retry: bool = False,
) -> Union[Mapping[str, Any], Generator[Mapping | str, None, None], None]:
# Add null check for dataset
with Session(db.engine, expire_on_commit=False) as session:
dataset = pipeline.retrieve_dataset(session)
if not dataset:
raise ValueError("Pipeline dataset is required")
inputs: Mapping[str, Any] = args["inputs"]
start_node_id: str = args["start_node_id"]
datasource_type: str = args["datasource_type"]
datasource_info_list: list[Mapping[str, Any]] = self._format_datasource_info_list(
datasource_type, args["datasource_info_list"], pipeline, workflow, start_node_id, user
)
batch = time.strftime("%Y%m%d%H%M%S") + str(secrets.randbelow(900000) + 100000)
# convert to app config
pipeline_config = PipelineConfigManager.get_pipeline_config(
pipeline=pipeline, workflow=workflow, start_node_id=start_node_id
)
documents: list[Document] = []
if invoke_from == InvokeFrom.PUBLISHED and not is_retry and not args.get("original_document_id"):
from services.dataset_service import DocumentService
for datasource_info in datasource_info_list:
position = DocumentService.get_documents_position(dataset.id)
document = self._build_document(
tenant_id=pipeline.tenant_id,
dataset_id=dataset.id,
built_in_field_enabled=dataset.built_in_field_enabled,
datasource_type=datasource_type,
datasource_info=datasource_info,
created_from="rag-pipeline",
position=position,
account=user,
batch=batch,
document_form=dataset.chunk_structure,
)
db.session.add(document)
documents.append(document)
db.session.commit()
# run in child thread
rag_pipeline_invoke_entities = []
for i, datasource_info in enumerate(datasource_info_list):
workflow_run_id = str(uuid.uuid4())
document_id = args.get("original_document_id") or None
if invoke_from == InvokeFrom.PUBLISHED and not is_retry:
document_id = document_id or documents[i].id
document_pipeline_execution_log = DocumentPipelineExecutionLog(
document_id=document_id,
datasource_type=datasource_type,
datasource_info=json.dumps(datasource_info),
datasource_node_id=start_node_id,
input_data=dict(inputs),
pipeline_id=pipeline.id,
created_by=user.id,
)
db.session.add(document_pipeline_execution_log)
db.session.commit()
application_generate_entity = RagPipelineGenerateEntity(
task_id=str(uuid.uuid4()),
app_config=pipeline_config,
pipeline_config=pipeline_config,
datasource_type=datasource_type,
datasource_info=datasource_info,
dataset_id=dataset.id,
original_document_id=args.get("original_document_id"),
start_node_id=start_node_id,
batch=batch,
document_id=document_id,
inputs=self._prepare_user_inputs(
user_inputs=inputs,
variables=pipeline_config.rag_pipeline_variables,
tenant_id=pipeline.tenant_id,
strict_type_validation=True if invoke_from == InvokeFrom.SERVICE_API else False,
),
files=[],
user_id=user.id,
stream=streaming,
invoke_from=invoke_from,
call_depth=call_depth,
workflow_execution_id=workflow_run_id,
)
contexts.plugin_tool_providers.set({})
contexts.plugin_tool_providers_lock.set(threading.Lock())
if invoke_from == InvokeFrom.DEBUGGER:
workflow_triggered_from = WorkflowRunTriggeredFrom.RAG_PIPELINE_DEBUGGING
else:
workflow_triggered_from = WorkflowRunTriggeredFrom.RAG_PIPELINE_RUN
# Create workflow node execution repository
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
session_factory=session_factory,
user=user,
app_id=application_generate_entity.app_config.app_id,
triggered_from=workflow_triggered_from,
)
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
session_factory=session_factory,
user=user,
app_id=application_generate_entity.app_config.app_id,
triggered_from=WorkflowNodeExecutionTriggeredFrom.RAG_PIPELINE_RUN,
)
if invoke_from == InvokeFrom.DEBUGGER or is_retry:
return self._generate(
flask_app=current_app._get_current_object(), # type: ignore
context=contextvars.copy_context(),
pipeline=pipeline,
workflow_id=workflow.id,
user=user,
application_generate_entity=application_generate_entity,
invoke_from=invoke_from,
workflow_execution_repository=workflow_execution_repository,
workflow_node_execution_repository=workflow_node_execution_repository,
streaming=streaming,
workflow_thread_pool_id=workflow_thread_pool_id,
)
else:
rag_pipeline_invoke_entities.append(
RagPipelineInvokeEntity(
pipeline_id=pipeline.id,
user_id=user.id,
tenant_id=pipeline.tenant_id,
workflow_id=workflow.id,
streaming=streaming,
workflow_execution_id=workflow_run_id,
workflow_thread_pool_id=workflow_thread_pool_id,
application_generate_entity=application_generate_entity.model_dump(),
)
)
if rag_pipeline_invoke_entities:
RagPipelineTaskProxy(dataset.tenant_id, user.id, rag_pipeline_invoke_entities).delay()
# return batch, dataset, documents
return {
"batch": batch,
"dataset": PipelineDataset(
id=dataset.id,
name=dataset.name,
description=dataset.description,
chunk_structure=dataset.chunk_structure,
).model_dump(),
"documents": [
PipelineDocument(
id=document.id,
position=document.position,
data_source_type=document.data_source_type,
data_source_info=json.loads(document.data_source_info) if document.data_source_info else None,
name=document.name,
indexing_status=document.indexing_status,
error=document.error,
enabled=document.enabled,
).model_dump()
for document in documents
],
}
def _generate(
self,
*,
flask_app: Flask,
context: contextvars.Context,
pipeline: Pipeline,
workflow_id: str,
user: Union[Account, EndUser],
application_generate_entity: RagPipelineGenerateEntity,
invoke_from: InvokeFrom,
workflow_execution_repository: WorkflowExecutionRepository,
workflow_node_execution_repository: WorkflowNodeExecutionRepository,
streaming: bool = True,
variable_loader: VariableLoader = DUMMY_VARIABLE_LOADER,
workflow_thread_pool_id: str | None = None,
) -> Union[Mapping[str, Any], Generator[str | Mapping[str, Any], None, None]]:
"""
Generate App response.
:param pipeline: Pipeline
:param workflow: Workflow
:param user: account or end user
:param application_generate_entity: application generate entity
:param invoke_from: invoke from source
:param workflow_execution_repository: repository for workflow execution
:param workflow_node_execution_repository: repository for workflow node execution
:param streaming: is stream
:param workflow_thread_pool_id: workflow thread pool id
"""
with preserve_flask_contexts(flask_app, context_vars=context):
# init queue manager
workflow = db.session.query(Workflow).where(Workflow.id == workflow_id).first()
if not workflow:
raise ValueError(f"Workflow not found: {workflow_id}")
queue_manager = PipelineQueueManager(
task_id=application_generate_entity.task_id,
user_id=application_generate_entity.user_id,
invoke_from=application_generate_entity.invoke_from,
app_mode=AppMode.RAG_PIPELINE,
)
context = contextvars.copy_context()
# new thread
worker_thread = threading.Thread(
target=self._generate_worker,
kwargs={
"flask_app": current_app._get_current_object(), # type: ignore
"context": context,
"queue_manager": queue_manager,
"application_generate_entity": application_generate_entity,
"workflow_thread_pool_id": workflow_thread_pool_id,
"variable_loader": variable_loader,
"workflow_execution_repository": workflow_execution_repository,
"workflow_node_execution_repository": workflow_node_execution_repository,
},
)
worker_thread.start()
draft_var_saver_factory = self._get_draft_var_saver_factory(
invoke_from,
user,
)
# return response or stream generator
response = self._handle_response(
application_generate_entity=application_generate_entity,
workflow=workflow,
queue_manager=queue_manager,
user=user,
stream=streaming,
draft_var_saver_factory=draft_var_saver_factory,
)
return WorkflowAppGenerateResponseConverter.convert(response=response, invoke_from=invoke_from)
def single_iteration_generate(
self,
pipeline: Pipeline,
workflow: Workflow,
node_id: str,
user: Account | EndUser,
args: Mapping[str, Any],
streaming: bool = True,
) -> Mapping[str, Any] | Generator[str | Mapping[str, Any], None, None]:
"""
Generate App response.
:param app_model: App
:param workflow: Workflow
:param node_id: the node id
:param user: account or end user
:param args: request args
:param streaming: is streamed
"""
if not node_id:
raise ValueError("node_id is required")
if args.get("inputs") is None:
raise ValueError("inputs is required")
# convert to app config
pipeline_config = PipelineConfigManager.get_pipeline_config(
pipeline=pipeline, workflow=workflow, start_node_id=args.get("start_node_id", "shared")
)
with Session(db.engine) as session:
dataset = pipeline.retrieve_dataset(session)
if not dataset:
raise ValueError("Pipeline dataset is required")
# init application generate entity - use RagPipelineGenerateEntity instead
application_generate_entity = RagPipelineGenerateEntity(
task_id=str(uuid.uuid4()),
app_config=pipeline_config,
pipeline_config=pipeline_config,
datasource_type=args.get("datasource_type", ""),
datasource_info=args.get("datasource_info", {}),
dataset_id=dataset.id,
batch=args.get("batch", ""),
document_id=args.get("document_id"),
inputs={},
files=[],
user_id=user.id,
stream=streaming,
invoke_from=InvokeFrom.DEBUGGER,
call_depth=0,
workflow_execution_id=str(uuid.uuid4()),
single_iteration_run=RagPipelineGenerateEntity.SingleIterationRunEntity(
node_id=node_id, inputs=args["inputs"]
),
)
contexts.plugin_tool_providers.set({})
contexts.plugin_tool_providers_lock.set(threading.Lock())
# Create workflow node execution repository
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
session_factory=session_factory,
user=user,
app_id=application_generate_entity.app_config.app_id,
triggered_from=WorkflowRunTriggeredFrom.RAG_PIPELINE_DEBUGGING,
)
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
session_factory=session_factory,
user=user,
app_id=application_generate_entity.app_config.app_id,
triggered_from=WorkflowNodeExecutionTriggeredFrom.SINGLE_STEP,
)
draft_var_srv = WorkflowDraftVariableService(db.session())
draft_var_srv.prefill_conversation_variable_default_values(workflow)
var_loader = DraftVarLoader(
engine=db.engine,
app_id=application_generate_entity.app_config.app_id,
tenant_id=application_generate_entity.app_config.tenant_id,
)
return self._generate(
flask_app=current_app._get_current_object(), # type: ignore
pipeline=pipeline,
workflow_id=workflow.id,
user=user,
invoke_from=InvokeFrom.DEBUGGER,
application_generate_entity=application_generate_entity,
workflow_execution_repository=workflow_execution_repository,
workflow_node_execution_repository=workflow_node_execution_repository,
streaming=streaming,
variable_loader=var_loader,
context=contextvars.copy_context(),
)
def single_loop_generate(
self,
pipeline: Pipeline,
workflow: Workflow,
node_id: str,
user: Account | EndUser,
args: Mapping[str, Any],
streaming: bool = True,
) -> Mapping[str, Any] | Generator[str | Mapping[str, Any], None, None]:
"""
Generate App response.
:param app_model: App
:param workflow: Workflow
:param node_id: the node id
:param user: account or end user
:param args: request args
:param streaming: is streamed
"""
if not node_id:
raise ValueError("node_id is required")
if args.get("inputs") is None:
raise ValueError("inputs is required")
with Session(db.engine) as session:
dataset = pipeline.retrieve_dataset(session)
if not dataset:
raise ValueError("Pipeline dataset is required")
# convert to app config
pipeline_config = PipelineConfigManager.get_pipeline_config(
pipeline=pipeline, workflow=workflow, start_node_id=args.get("start_node_id", "shared")
)
# init application generate entity
application_generate_entity = RagPipelineGenerateEntity(
task_id=str(uuid.uuid4()),
app_config=pipeline_config,
pipeline_config=pipeline_config,
datasource_type=args.get("datasource_type", ""),
datasource_info=args.get("datasource_info", {}),
batch=args.get("batch", ""),
document_id=args.get("document_id"),
dataset_id=dataset.id,
inputs={},
files=[],
user_id=user.id,
stream=streaming,
invoke_from=InvokeFrom.DEBUGGER,
extras={"auto_generate_conversation_name": False},
single_loop_run=RagPipelineGenerateEntity.SingleLoopRunEntity(node_id=node_id, inputs=args["inputs"]),
workflow_execution_id=str(uuid.uuid4()),
)
contexts.plugin_tool_providers.set({})
contexts.plugin_tool_providers_lock.set(threading.Lock())
# Create workflow node execution repository
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
session_factory=session_factory,
user=user,
app_id=application_generate_entity.app_config.app_id,
triggered_from=WorkflowRunTriggeredFrom.RAG_PIPELINE_DEBUGGING,
)
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
session_factory=session_factory,
user=user,
app_id=application_generate_entity.app_config.app_id,
triggered_from=WorkflowNodeExecutionTriggeredFrom.SINGLE_STEP,
)
draft_var_srv = WorkflowDraftVariableService(db.session())
draft_var_srv.prefill_conversation_variable_default_values(workflow)
var_loader = DraftVarLoader(
engine=db.engine,
app_id=application_generate_entity.app_config.app_id,
tenant_id=application_generate_entity.app_config.tenant_id,
)
return self._generate(
flask_app=current_app._get_current_object(), # type: ignore
pipeline=pipeline,
workflow_id=workflow.id,
user=user,
invoke_from=InvokeFrom.DEBUGGER,
application_generate_entity=application_generate_entity,
workflow_execution_repository=workflow_execution_repository,
workflow_node_execution_repository=workflow_node_execution_repository,
streaming=streaming,
variable_loader=var_loader,
context=contextvars.copy_context(),
)
def _generate_worker(
self,
flask_app: Flask,
application_generate_entity: RagPipelineGenerateEntity,
queue_manager: AppQueueManager,
context: contextvars.Context,
variable_loader: VariableLoader,
workflow_execution_repository: WorkflowExecutionRepository,
workflow_node_execution_repository: WorkflowNodeExecutionRepository,
workflow_thread_pool_id: str | None = None,
) -> None:
"""
Generate worker in a new thread.
:param flask_app: Flask app
:param application_generate_entity: application generate entity
:param queue_manager: queue manager
:param workflow_thread_pool_id: workflow thread pool id
:return:
"""
with preserve_flask_contexts(flask_app, context_vars=context):
try:
with Session(db.engine, expire_on_commit=False) as session:
workflow = session.scalar(
select(Workflow).where(
Workflow.tenant_id == application_generate_entity.app_config.tenant_id,
Workflow.app_id == application_generate_entity.app_config.app_id,
Workflow.id == application_generate_entity.app_config.workflow_id,
)
)
if workflow is None:
raise ValueError("Workflow not found")
# Determine system_user_id based on invocation source
is_external_api_call = application_generate_entity.invoke_from in {
InvokeFrom.WEB_APP,
InvokeFrom.SERVICE_API,
}
if is_external_api_call:
# For external API calls, use end user's session ID
end_user = session.scalar(
select(EndUser).where(EndUser.id == application_generate_entity.user_id)
)
system_user_id = end_user.session_id if end_user else ""
else:
# For internal calls, use the original user ID
system_user_id = application_generate_entity.user_id
# workflow app
runner = PipelineRunner(
application_generate_entity=application_generate_entity,
queue_manager=queue_manager,
workflow_thread_pool_id=workflow_thread_pool_id,
variable_loader=variable_loader,
workflow=workflow,
system_user_id=system_user_id,
workflow_execution_repository=workflow_execution_repository,
workflow_node_execution_repository=workflow_node_execution_repository,
)
runner.run()
except GenerateTaskStoppedError:
pass
except InvokeAuthorizationError:
queue_manager.publish_error(
InvokeAuthorizationError("Incorrect API key provided"), PublishFrom.APPLICATION_MANAGER
)
except ValidationError as e:
logger.exception("Validation Error when generating")
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
except ValueError as e:
if dify_config.DEBUG:
logger.exception("Error when generating")
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
except Exception as e:
logger.exception("Unknown Error when generating")
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
finally:
db.session.close()
def _handle_response(
self,
application_generate_entity: RagPipelineGenerateEntity,
workflow: Workflow,
queue_manager: AppQueueManager,
user: Union[Account, EndUser],
draft_var_saver_factory: DraftVariableSaverFactory,
stream: bool = False,
) -> Union[WorkflowAppBlockingResponse, Generator[WorkflowAppStreamResponse, None, None]]:
"""
Handle response.
:param application_generate_entity: application generate entity
:param workflow: workflow
:param queue_manager: queue manager
:param user: account or end user
:param stream: is stream
:return:
"""
# init generate task pipeline
generate_task_pipeline = WorkflowAppGenerateTaskPipeline(
application_generate_entity=application_generate_entity,
workflow=workflow,
queue_manager=queue_manager,
user=user,
stream=stream,
draft_var_saver_factory=draft_var_saver_factory,
)
try:
return generate_task_pipeline.process()
except ValueError as e:
if len(e.args) > 0 and e.args[0] == "I/O operation on closed file.": # ignore this error
raise GenerateTaskStoppedError()
else:
logger.exception(
"Fails to process generate task pipeline, task_id: %r",
application_generate_entity.task_id,
)
raise e
def _build_document(
self,
tenant_id: str,
dataset_id: str,
built_in_field_enabled: bool,
datasource_type: str,
datasource_info: Mapping[str, Any],
created_from: str,
position: int,
account: Union[Account, EndUser],
batch: str,
document_form: str,
):
if datasource_type == "local_file":
name = datasource_info.get("name", "untitled")
elif datasource_type == "online_document":
name = datasource_info.get("page", {}).get("page_name", "untitled")
elif datasource_type == "website_crawl":
name = datasource_info.get("title", "untitled")
elif datasource_type == "online_drive":
name = datasource_info.get("name", "untitled")
else:
raise ValueError(f"Unsupported datasource type: {datasource_type}")
document = Document(
tenant_id=tenant_id,
dataset_id=dataset_id,
position=position,
data_source_type=datasource_type,
data_source_info=json.dumps(datasource_info),
batch=batch,
name=name,
created_from=created_from,
created_by=account.id,
doc_form=document_form,
)
doc_metadata = {}
if built_in_field_enabled:
doc_metadata = {
BuiltInField.document_name: name,
BuiltInField.uploader: account.name,
BuiltInField.upload_date: datetime.datetime.now(datetime.UTC).strftime("%Y-%m-%d %H:%M:%S"),
BuiltInField.last_update_date: datetime.datetime.now(datetime.UTC).strftime("%Y-%m-%d %H:%M:%S"),
BuiltInField.source: datasource_type,
}
if doc_metadata:
document.doc_metadata = doc_metadata
return document
def _format_datasource_info_list(
self,
datasource_type: str,
datasource_info_list: list[Mapping[str, Any]],
pipeline: Pipeline,
workflow: Workflow,
start_node_id: str,
user: Union[Account, EndUser],
) -> list[Mapping[str, Any]]:
"""
Format datasource info list.
"""
if datasource_type == "online_drive":
all_files: list[Mapping[str, Any]] = []
datasource_node_data = None
datasource_nodes = workflow.graph_dict.get("nodes", [])
for datasource_node in datasource_nodes:
if datasource_node.get("id") == start_node_id:
datasource_node_data = datasource_node.get("data", {})
break
if not datasource_node_data:
raise ValueError("Datasource node data not found")
from core.datasource.datasource_manager import DatasourceManager
datasource_runtime = DatasourceManager.get_datasource_runtime(
provider_id=f"{datasource_node_data.get('plugin_id')}/{datasource_node_data.get('provider_name')}",
datasource_name=datasource_node_data.get("datasource_name"),
tenant_id=pipeline.tenant_id,
datasource_type=DatasourceProviderType(datasource_type),
)
datasource_provider_service = DatasourceProviderService()
credentials = datasource_provider_service.get_datasource_credentials(
tenant_id=pipeline.tenant_id,
provider=datasource_node_data.get("provider_name"),
plugin_id=datasource_node_data.get("plugin_id"),
credential_id=datasource_node_data.get("credential_id"),
)
if credentials:
datasource_runtime.runtime.credentials = credentials
datasource_runtime = cast(OnlineDriveDatasourcePlugin, datasource_runtime)
for datasource_info in datasource_info_list:
if datasource_info.get("id") and datasource_info.get("type") == "folder":
# get all files in the folder
self._get_files_in_folder(
datasource_runtime,
datasource_info.get("id", ""),
datasource_info.get("bucket", None),
user.id,
all_files,
datasource_info,
None,
)
else:
all_files.append(
{
"id": datasource_info.get("id", ""),
"name": datasource_info.get("name", "untitled"),
"bucket": datasource_info.get("bucket", None),
}
)
return all_files
else:
return datasource_info_list
def _get_files_in_folder(
self,
datasource_runtime: OnlineDriveDatasourcePlugin,
prefix: str,
bucket: str | None,
user_id: str,
all_files: list,
datasource_info: Mapping[str, Any],
next_page_parameters: dict | None = None,
):
"""
Get files in a folder.
"""
result_generator = datasource_runtime.online_drive_browse_files(
user_id=user_id,
request=OnlineDriveBrowseFilesRequest(
bucket=bucket,
prefix=prefix,
max_keys=20,
next_page_parameters=next_page_parameters,
),
provider_type=datasource_runtime.datasource_provider_type(),
)
is_truncated = False
for result in result_generator:
for files in result.result:
for file in files.files:
if file.type == "folder":
self._get_files_in_folder(
datasource_runtime,
file.id,
bucket,
user_id,
all_files,
datasource_info,
None,
)
else:
all_files.append(
{
"id": file.id,
"name": file.name,
"bucket": bucket,
}
)
is_truncated = files.is_truncated
next_page_parameters = files.next_page_parameters
if is_truncated:
self._get_files_in_folder(
datasource_runtime, prefix, bucket, user_id, all_files, datasource_info, next_page_parameters
)

View File

@@ -0,0 +1,45 @@
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
from core.app.apps.exc import GenerateTaskStoppedError
from core.app.entities.app_invoke_entities import InvokeFrom
from core.app.entities.queue_entities import (
AppQueueEvent,
QueueErrorEvent,
QueueMessageEndEvent,
QueueStopEvent,
QueueWorkflowFailedEvent,
QueueWorkflowPartialSuccessEvent,
QueueWorkflowSucceededEvent,
WorkflowQueueMessage,
)
class PipelineQueueManager(AppQueueManager):
def __init__(self, task_id: str, user_id: str, invoke_from: InvokeFrom, app_mode: str) -> None:
super().__init__(task_id, user_id, invoke_from)
self._app_mode = app_mode
def _publish(self, event: AppQueueEvent, pub_from: PublishFrom) -> None:
"""
Publish event to queue
:param event:
:param pub_from:
:return:
"""
message = WorkflowQueueMessage(task_id=self._task_id, app_mode=self._app_mode, event=event)
self._q.put(message)
if isinstance(
event,
QueueStopEvent
| QueueErrorEvent
| QueueMessageEndEvent
| QueueWorkflowSucceededEvent
| QueueWorkflowFailedEvent
| QueueWorkflowPartialSuccessEvent,
):
self.stop_listen()
if pub_from == PublishFrom.APPLICATION_MANAGER and self._is_stopped():
raise GenerateTaskStoppedError()

View File

@@ -0,0 +1,287 @@
import logging
import time
from typing import cast
from core.app.apps.base_app_queue_manager import AppQueueManager
from core.app.apps.pipeline.pipeline_config_manager import PipelineConfig
from core.app.apps.workflow_app_runner import WorkflowBasedAppRunner
from core.app.entities.app_invoke_entities import (
InvokeFrom,
RagPipelineGenerateEntity,
)
from core.variables.variables import RAGPipelineVariable, RAGPipelineVariableInput
from core.workflow.entities.graph_init_params import GraphInitParams
from core.workflow.enums import WorkflowType
from core.workflow.graph import Graph
from core.workflow.graph_engine.layers.persistence import PersistenceWorkflowInfo, WorkflowPersistenceLayer
from core.workflow.graph_events import GraphEngineEvent, GraphRunFailedEvent
from core.workflow.nodes.node_factory import DifyNodeFactory
from core.workflow.repositories.workflow_execution_repository import WorkflowExecutionRepository
from core.workflow.repositories.workflow_node_execution_repository import WorkflowNodeExecutionRepository
from core.workflow.runtime import GraphRuntimeState, VariablePool
from core.workflow.system_variable import SystemVariable
from core.workflow.variable_loader import VariableLoader
from core.workflow.workflow_entry import WorkflowEntry
from extensions.ext_database import db
from models.dataset import Document, Pipeline
from models.enums import UserFrom
from models.model import EndUser
from models.workflow import Workflow
logger = logging.getLogger(__name__)
class PipelineRunner(WorkflowBasedAppRunner):
"""
Pipeline Application Runner
"""
def __init__(
self,
application_generate_entity: RagPipelineGenerateEntity,
queue_manager: AppQueueManager,
variable_loader: VariableLoader,
workflow: Workflow,
system_user_id: str,
workflow_execution_repository: WorkflowExecutionRepository,
workflow_node_execution_repository: WorkflowNodeExecutionRepository,
workflow_thread_pool_id: str | None = None,
) -> None:
"""
:param application_generate_entity: application generate entity
:param queue_manager: application queue manager
:param workflow_thread_pool_id: workflow thread pool id
"""
super().__init__(
queue_manager=queue_manager,
variable_loader=variable_loader,
app_id=application_generate_entity.app_config.app_id,
)
self.application_generate_entity = application_generate_entity
self.workflow_thread_pool_id = workflow_thread_pool_id
self._workflow = workflow
self._sys_user_id = system_user_id
self._workflow_execution_repository = workflow_execution_repository
self._workflow_node_execution_repository = workflow_node_execution_repository
def _get_app_id(self) -> str:
return self.application_generate_entity.app_config.app_id
def run(self) -> None:
"""
Run application
"""
app_config = self.application_generate_entity.app_config
app_config = cast(PipelineConfig, app_config)
user_id = None
if self.application_generate_entity.invoke_from in {InvokeFrom.WEB_APP, InvokeFrom.SERVICE_API}:
end_user = db.session.query(EndUser).where(EndUser.id == self.application_generate_entity.user_id).first()
if end_user:
user_id = end_user.session_id
else:
user_id = self.application_generate_entity.user_id
pipeline = db.session.query(Pipeline).where(Pipeline.id == app_config.app_id).first()
if not pipeline:
raise ValueError("Pipeline not found")
workflow = self.get_workflow(pipeline=pipeline, workflow_id=app_config.workflow_id)
if not workflow:
raise ValueError("Workflow not initialized")
db.session.close()
# if only single iteration run is requested
if self.application_generate_entity.single_iteration_run or self.application_generate_entity.single_loop_run:
# Handle single iteration or single loop run
graph, variable_pool, graph_runtime_state = self._prepare_single_node_execution(
workflow=workflow,
single_iteration_run=self.application_generate_entity.single_iteration_run,
single_loop_run=self.application_generate_entity.single_loop_run,
)
else:
inputs = self.application_generate_entity.inputs
files = self.application_generate_entity.files
# Create a variable pool.
system_inputs = SystemVariable(
files=files,
user_id=user_id,
app_id=app_config.app_id,
workflow_id=app_config.workflow_id,
workflow_execution_id=self.application_generate_entity.workflow_execution_id,
document_id=self.application_generate_entity.document_id,
original_document_id=self.application_generate_entity.original_document_id,
batch=self.application_generate_entity.batch,
dataset_id=self.application_generate_entity.dataset_id,
datasource_type=self.application_generate_entity.datasource_type,
datasource_info=self.application_generate_entity.datasource_info,
invoke_from=self.application_generate_entity.invoke_from.value,
)
rag_pipeline_variables = []
if workflow.rag_pipeline_variables:
for v in workflow.rag_pipeline_variables:
rag_pipeline_variable = RAGPipelineVariable.model_validate(v)
if (
rag_pipeline_variable.belong_to_node_id
in (self.application_generate_entity.start_node_id, "shared")
) and rag_pipeline_variable.variable in inputs:
rag_pipeline_variables.append(
RAGPipelineVariableInput(
variable=rag_pipeline_variable,
value=inputs[rag_pipeline_variable.variable],
)
)
variable_pool = VariablePool(
system_variables=system_inputs,
user_inputs=inputs,
environment_variables=workflow.environment_variables,
conversation_variables=[],
rag_pipeline_variables=rag_pipeline_variables,
)
graph_runtime_state = GraphRuntimeState(variable_pool=variable_pool, start_at=time.perf_counter())
# init graph
graph = self._init_rag_pipeline_graph(
graph_runtime_state=graph_runtime_state,
start_node_id=self.application_generate_entity.start_node_id,
workflow=workflow,
)
# RUN WORKFLOW
workflow_entry = WorkflowEntry(
tenant_id=workflow.tenant_id,
app_id=workflow.app_id,
workflow_id=workflow.id,
graph=graph,
graph_config=workflow.graph_dict,
user_id=self.application_generate_entity.user_id,
user_from=(
UserFrom.ACCOUNT
if self.application_generate_entity.invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER}
else UserFrom.END_USER
),
invoke_from=self.application_generate_entity.invoke_from,
call_depth=self.application_generate_entity.call_depth,
graph_runtime_state=graph_runtime_state,
variable_pool=variable_pool,
)
self._queue_manager.graph_runtime_state = graph_runtime_state
persistence_layer = WorkflowPersistenceLayer(
application_generate_entity=self.application_generate_entity,
workflow_info=PersistenceWorkflowInfo(
workflow_id=workflow.id,
workflow_type=WorkflowType(workflow.type),
version=workflow.version,
graph_data=workflow.graph_dict,
),
workflow_execution_repository=self._workflow_execution_repository,
workflow_node_execution_repository=self._workflow_node_execution_repository,
trace_manager=self.application_generate_entity.trace_manager,
)
workflow_entry.graph_engine.layer(persistence_layer)
generator = workflow_entry.run()
for event in generator:
self._update_document_status(
event, self.application_generate_entity.document_id, self.application_generate_entity.dataset_id
)
self._handle_event(workflow_entry, event)
def get_workflow(self, pipeline: Pipeline, workflow_id: str) -> Workflow | None:
"""
Get workflow
"""
# fetch workflow by workflow_id
workflow = (
db.session.query(Workflow)
.where(Workflow.tenant_id == pipeline.tenant_id, Workflow.app_id == pipeline.id, Workflow.id == workflow_id)
.first()
)
# return workflow
return workflow
def _init_rag_pipeline_graph(
self, workflow: Workflow, graph_runtime_state: GraphRuntimeState, start_node_id: str | None = None
) -> Graph:
"""
Init pipeline graph
"""
graph_config = workflow.graph_dict
if "nodes" not in graph_config or "edges" not in graph_config:
raise ValueError("nodes or edges not found in workflow graph")
if not isinstance(graph_config.get("nodes"), list):
raise ValueError("nodes in workflow graph must be a list")
if not isinstance(graph_config.get("edges"), list):
raise ValueError("edges in workflow graph must be a list")
# nodes = graph_config.get("nodes", [])
# edges = graph_config.get("edges", [])
# real_run_nodes = []
# real_edges = []
# exclude_node_ids = []
# for node in nodes:
# node_id = node.get("id")
# node_type = node.get("data", {}).get("type", "")
# if node_type == "datasource":
# if start_node_id != node_id:
# exclude_node_ids.append(node_id)
# continue
# real_run_nodes.append(node)
# for edge in edges:
# if edge.get("source") in exclude_node_ids:
# continue
# real_edges.append(edge)
# graph_config = dict(graph_config)
# graph_config["nodes"] = real_run_nodes
# graph_config["edges"] = real_edges
# init graph
# Create required parameters for Graph.init
graph_init_params = GraphInitParams(
tenant_id=workflow.tenant_id,
app_id=self._app_id,
workflow_id=workflow.id,
graph_config=graph_config,
user_id=self.application_generate_entity.user_id,
user_from=UserFrom.ACCOUNT,
invoke_from=InvokeFrom.SERVICE_API,
call_depth=0,
)
node_factory = DifyNodeFactory(
graph_init_params=graph_init_params,
graph_runtime_state=graph_runtime_state,
)
graph = Graph.init(graph_config=graph_config, node_factory=node_factory, root_node_id=start_node_id)
if not graph:
raise ValueError("graph not found in workflow")
return graph
def _update_document_status(self, event: GraphEngineEvent, document_id: str | None, dataset_id: str | None) -> None:
"""
Update document status
"""
if isinstance(event, GraphRunFailedEvent):
if document_id and dataset_id:
document = (
db.session.query(Document)
.where(Document.id == document_id, Document.dataset_id == dataset_id)
.first()
)
if document:
document.indexing_status = "error"
document.error = event.error or "Unknown error"
db.session.add(document)
db.session.commit()

View File

@@ -0,0 +1,67 @@
from core.app.app_config.base_app_config_manager import BaseAppConfigManager
from core.app.app_config.common.sensitive_word_avoidance.manager import SensitiveWordAvoidanceConfigManager
from core.app.app_config.entities import WorkflowUIBasedAppConfig
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.app.app_config.features.text_to_speech.manager import TextToSpeechConfigManager
from core.app.app_config.workflow_ui_based_app.variables.manager import WorkflowVariablesConfigManager
from models.model import App, AppMode
from models.workflow import Workflow
class WorkflowAppConfig(WorkflowUIBasedAppConfig):
"""
Workflow App Config Entity.
"""
pass
class WorkflowAppConfigManager(BaseAppConfigManager):
@classmethod
def get_app_config(cls, app_model: App, workflow: Workflow) -> WorkflowAppConfig:
features_dict = workflow.features_dict
app_mode = AppMode.value_of(app_model.mode)
app_config = WorkflowAppConfig(
tenant_id=app_model.tenant_id,
app_id=app_model.id,
app_mode=app_mode,
workflow_id=workflow.id,
sensitive_word_avoidance=SensitiveWordAvoidanceConfigManager.convert(config=features_dict),
variables=WorkflowVariablesConfigManager.convert(workflow=workflow),
additional_features=cls.convert_features(features_dict, app_mode),
)
return app_config
@classmethod
def config_validate(cls, tenant_id: str, config: dict, only_structure_validate: bool = False):
"""
Validate for workflow app model config
:param tenant_id: tenant id
:param config: app model config args
:param only_structure_validate: only validate the structure of the config
"""
related_config_keys = []
# file upload validation
config, current_related_config_keys = FileUploadConfigManager.validate_and_set_defaults(config=config)
related_config_keys.extend(current_related_config_keys)
# text_to_speech
config, current_related_config_keys = TextToSpeechConfigManager.validate_and_set_defaults(config)
related_config_keys.extend(current_related_config_keys)
# moderation validation
config, current_related_config_keys = SensitiveWordAvoidanceConfigManager.validate_and_set_defaults(
tenant_id=tenant_id, config=config, only_structure_validate=only_structure_validate
)
related_config_keys.extend(current_related_config_keys)
related_config_keys = list(set(related_config_keys))
# Filter out extra parameters
filtered_config = {key: config.get(key) for key in related_config_keys}
return filtered_config

View File

@@ -0,0 +1,574 @@
import contextvars
import logging
import threading
import uuid
from collections.abc import Generator, Mapping, Sequence
from typing import Any, Literal, Union, overload
from flask import Flask, current_app
from pydantic import ValidationError
from sqlalchemy import select
from sqlalchemy.orm import Session, sessionmaker
import contexts
from configs import dify_config
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.app.apps.base_app_generator import BaseAppGenerator
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
from core.app.apps.exc import GenerateTaskStoppedError
from core.app.apps.workflow.app_config_manager import WorkflowAppConfigManager
from core.app.apps.workflow.app_queue_manager import WorkflowAppQueueManager
from core.app.apps.workflow.app_runner import WorkflowAppRunner
from core.app.apps.workflow.generate_response_converter import WorkflowAppGenerateResponseConverter
from core.app.apps.workflow.generate_task_pipeline import WorkflowAppGenerateTaskPipeline
from core.app.entities.app_invoke_entities import InvokeFrom, WorkflowAppGenerateEntity
from core.app.entities.task_entities import WorkflowAppBlockingResponse, WorkflowAppStreamResponse
from core.helper.trace_id_helper import extract_external_trace_id_from_args
from core.model_runtime.errors.invoke import InvokeAuthorizationError
from core.ops.ops_trace_manager import TraceQueueManager
from core.repositories import DifyCoreRepositoryFactory
from core.workflow.graph_engine.layers.base import GraphEngineLayer
from core.workflow.repositories.draft_variable_repository import DraftVariableSaverFactory
from core.workflow.repositories.workflow_execution_repository import WorkflowExecutionRepository
from core.workflow.repositories.workflow_node_execution_repository import WorkflowNodeExecutionRepository
from core.workflow.variable_loader import DUMMY_VARIABLE_LOADER, VariableLoader
from extensions.ext_database import db
from factories import file_factory
from libs.flask_utils import preserve_flask_contexts
from models import Account, App, EndUser, Workflow, WorkflowNodeExecutionTriggeredFrom
from models.enums import WorkflowRunTriggeredFrom
from services.workflow_draft_variable_service import DraftVarLoader, WorkflowDraftVariableService
SKIP_PREPARE_USER_INPUTS_KEY = "_skip_prepare_user_inputs"
logger = logging.getLogger(__name__)
class WorkflowAppGenerator(BaseAppGenerator):
@staticmethod
def _should_prepare_user_inputs(args: Mapping[str, Any]) -> bool:
return not bool(args.get(SKIP_PREPARE_USER_INPUTS_KEY))
@overload
def generate(
self,
*,
app_model: App,
workflow: Workflow,
user: Union[Account, EndUser],
args: Mapping[str, Any],
invoke_from: InvokeFrom,
streaming: Literal[True],
call_depth: int,
triggered_from: WorkflowRunTriggeredFrom | None = None,
root_node_id: str | None = None,
graph_engine_layers: Sequence[GraphEngineLayer] = (),
) -> Generator[Mapping[str, Any] | str, None, None]: ...
@overload
def generate(
self,
*,
app_model: App,
workflow: Workflow,
user: Union[Account, EndUser],
args: Mapping[str, Any],
invoke_from: InvokeFrom,
streaming: Literal[False],
call_depth: int,
triggered_from: WorkflowRunTriggeredFrom | None = None,
root_node_id: str | None = None,
graph_engine_layers: Sequence[GraphEngineLayer] = (),
) -> Mapping[str, Any]: ...
@overload
def generate(
self,
*,
app_model: App,
workflow: Workflow,
user: Union[Account, EndUser],
args: Mapping[str, Any],
invoke_from: InvokeFrom,
streaming: bool,
call_depth: int,
triggered_from: WorkflowRunTriggeredFrom | None = None,
root_node_id: str | None = None,
graph_engine_layers: Sequence[GraphEngineLayer] = (),
) -> Union[Mapping[str, Any], Generator[Mapping[str, Any] | str, None, None]]: ...
def generate(
self,
*,
app_model: App,
workflow: Workflow,
user: Union[Account, EndUser],
args: Mapping[str, Any],
invoke_from: InvokeFrom,
streaming: bool = True,
call_depth: int = 0,
triggered_from: WorkflowRunTriggeredFrom | None = None,
root_node_id: str | None = None,
graph_engine_layers: Sequence[GraphEngineLayer] = (),
) -> Union[Mapping[str, Any], Generator[Mapping[str, Any] | str, None, None]]:
files: Sequence[Mapping[str, Any]] = args.get("files") or []
# parse files
# TODO(QuantumGhost): Move file parsing logic to the API controller layer
# for better separation of concerns.
#
# For implementation reference, see the `_parse_file` function and
# `DraftWorkflowNodeRunApi` class which handle this properly.
file_extra_config = FileUploadConfigManager.convert(workflow.features_dict, is_vision=False)
system_files = file_factory.build_from_mappings(
mappings=files,
tenant_id=app_model.tenant_id,
config=file_extra_config,
strict_type_validation=True if invoke_from == InvokeFrom.SERVICE_API else False,
)
# convert to app config
app_config = WorkflowAppConfigManager.get_app_config(
app_model=app_model,
workflow=workflow,
)
# get tracing instance
trace_manager = TraceQueueManager(
app_id=app_model.id,
user_id=user.id if isinstance(user, Account) else user.session_id,
)
inputs: Mapping[str, Any] = args["inputs"]
extras = {
**extract_external_trace_id_from_args(args),
}
workflow_run_id = str(uuid.uuid4())
# FIXME (Yeuoly): we need to remove the SKIP_PREPARE_USER_INPUTS_KEY from the args
# trigger shouldn't prepare user inputs
if self._should_prepare_user_inputs(args):
inputs = self._prepare_user_inputs(
user_inputs=inputs,
variables=app_config.variables,
tenant_id=app_model.tenant_id,
strict_type_validation=True if invoke_from == InvokeFrom.SERVICE_API else False,
)
# init application generate entity
application_generate_entity = WorkflowAppGenerateEntity(
task_id=str(uuid.uuid4()),
app_config=app_config,
file_upload_config=file_extra_config,
inputs=inputs,
files=list(system_files),
user_id=user.id,
stream=streaming,
invoke_from=invoke_from,
call_depth=call_depth,
trace_manager=trace_manager,
workflow_execution_id=workflow_run_id,
extras=extras,
)
contexts.plugin_tool_providers.set({})
contexts.plugin_tool_providers_lock.set(threading.Lock())
# Create repositories
#
# Create session factory
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
# Create workflow execution(aka workflow run) repository
if triggered_from is not None:
# Use explicitly provided triggered_from (for async triggers)
workflow_triggered_from = triggered_from
elif invoke_from == InvokeFrom.DEBUGGER:
workflow_triggered_from = WorkflowRunTriggeredFrom.DEBUGGING
else:
workflow_triggered_from = WorkflowRunTriggeredFrom.APP_RUN
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
session_factory=session_factory,
user=user,
app_id=application_generate_entity.app_config.app_id,
triggered_from=workflow_triggered_from,
)
# Create workflow node execution repository
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
session_factory=session_factory,
user=user,
app_id=application_generate_entity.app_config.app_id,
triggered_from=WorkflowNodeExecutionTriggeredFrom.WORKFLOW_RUN,
)
return self._generate(
app_model=app_model,
workflow=workflow,
user=user,
application_generate_entity=application_generate_entity,
invoke_from=invoke_from,
workflow_execution_repository=workflow_execution_repository,
workflow_node_execution_repository=workflow_node_execution_repository,
streaming=streaming,
root_node_id=root_node_id,
graph_engine_layers=graph_engine_layers,
)
def resume(self, *, workflow_run_id: str) -> None:
"""
@TBD
"""
pass
def _generate(
self,
*,
app_model: App,
workflow: Workflow,
user: Union[Account, EndUser],
application_generate_entity: WorkflowAppGenerateEntity,
invoke_from: InvokeFrom,
workflow_execution_repository: WorkflowExecutionRepository,
workflow_node_execution_repository: WorkflowNodeExecutionRepository,
streaming: bool = True,
variable_loader: VariableLoader = DUMMY_VARIABLE_LOADER,
root_node_id: str | None = None,
graph_engine_layers: Sequence[GraphEngineLayer] = (),
) -> Union[Mapping[str, Any], Generator[str | Mapping[str, Any], None, None]]:
"""
Generate App response.
:param app_model: App
:param workflow: Workflow
:param user: account or end user
:param application_generate_entity: application generate entity
:param invoke_from: invoke from source
:param workflow_execution_repository: repository for workflow execution
:param workflow_node_execution_repository: repository for workflow node execution
:param streaming: is stream
"""
# init queue manager
queue_manager = WorkflowAppQueueManager(
task_id=application_generate_entity.task_id,
user_id=application_generate_entity.user_id,
invoke_from=application_generate_entity.invoke_from,
app_mode=app_model.mode,
)
# new thread with request context and contextvars
context = contextvars.copy_context()
# release database connection, because the following new thread operations may take a long time
db.session.close()
worker_thread = threading.Thread(
target=self._generate_worker,
kwargs={
"flask_app": current_app._get_current_object(), # type: ignore
"application_generate_entity": application_generate_entity,
"queue_manager": queue_manager,
"context": context,
"variable_loader": variable_loader,
"root_node_id": root_node_id,
"workflow_execution_repository": workflow_execution_repository,
"workflow_node_execution_repository": workflow_node_execution_repository,
"graph_engine_layers": graph_engine_layers,
},
)
worker_thread.start()
draft_var_saver_factory = self._get_draft_var_saver_factory(invoke_from, user)
# return response or stream generator
response = self._handle_response(
application_generate_entity=application_generate_entity,
workflow=workflow,
queue_manager=queue_manager,
user=user,
draft_var_saver_factory=draft_var_saver_factory,
stream=streaming,
)
return WorkflowAppGenerateResponseConverter.convert(response=response, invoke_from=invoke_from)
def single_iteration_generate(
self,
app_model: App,
workflow: Workflow,
node_id: str,
user: Account | EndUser,
args: Mapping[str, Any],
streaming: bool = True,
) -> Mapping[str, Any] | Generator[str | Mapping[str, Any], None, None]:
"""
Generate App response.
:param app_model: App
:param workflow: Workflow
:param node_id: the node id
:param user: account or end user
:param args: request args
:param streaming: is streamed
"""
if not node_id:
raise ValueError("node_id is required")
if args.get("inputs") is None:
raise ValueError("inputs is required")
# convert to app config
app_config = WorkflowAppConfigManager.get_app_config(app_model=app_model, workflow=workflow)
# init application generate entity
application_generate_entity = WorkflowAppGenerateEntity(
task_id=str(uuid.uuid4()),
app_config=app_config,
inputs={},
files=[],
user_id=user.id,
stream=streaming,
invoke_from=InvokeFrom.DEBUGGER,
extras={"auto_generate_conversation_name": False},
single_iteration_run=WorkflowAppGenerateEntity.SingleIterationRunEntity(
node_id=node_id, inputs=args["inputs"]
),
workflow_execution_id=str(uuid.uuid4()),
)
contexts.plugin_tool_providers.set({})
contexts.plugin_tool_providers_lock.set(threading.Lock())
# Create repositories
#
# Create session factory
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
# Create workflow execution(aka workflow run) repository
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
session_factory=session_factory,
user=user,
app_id=application_generate_entity.app_config.app_id,
triggered_from=WorkflowRunTriggeredFrom.DEBUGGING,
)
# Create workflow node execution repository
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
session_factory=session_factory,
user=user,
app_id=application_generate_entity.app_config.app_id,
triggered_from=WorkflowNodeExecutionTriggeredFrom.SINGLE_STEP,
)
draft_var_srv = WorkflowDraftVariableService(db.session())
draft_var_srv.prefill_conversation_variable_default_values(workflow)
var_loader = DraftVarLoader(
engine=db.engine,
app_id=application_generate_entity.app_config.app_id,
tenant_id=application_generate_entity.app_config.tenant_id,
)
return self._generate(
app_model=app_model,
workflow=workflow,
user=user,
invoke_from=InvokeFrom.DEBUGGER,
application_generate_entity=application_generate_entity,
workflow_execution_repository=workflow_execution_repository,
workflow_node_execution_repository=workflow_node_execution_repository,
streaming=streaming,
variable_loader=var_loader,
)
def single_loop_generate(
self,
app_model: App,
workflow: Workflow,
node_id: str,
user: Account | EndUser,
args: Mapping[str, Any],
streaming: bool = True,
) -> Mapping[str, Any] | Generator[str | Mapping[str, Any], None, None]:
"""
Generate App response.
:param app_model: App
:param workflow: Workflow
:param node_id: the node id
:param user: account or end user
:param args: request args
:param streaming: is streamed
"""
if not node_id:
raise ValueError("node_id is required")
if args.get("inputs") is None:
raise ValueError("inputs is required")
# convert to app config
app_config = WorkflowAppConfigManager.get_app_config(app_model=app_model, workflow=workflow)
# init application generate entity
application_generate_entity = WorkflowAppGenerateEntity(
task_id=str(uuid.uuid4()),
app_config=app_config,
inputs={},
files=[],
user_id=user.id,
stream=streaming,
invoke_from=InvokeFrom.DEBUGGER,
extras={"auto_generate_conversation_name": False},
single_loop_run=WorkflowAppGenerateEntity.SingleLoopRunEntity(node_id=node_id, inputs=args["inputs"]),
workflow_execution_id=str(uuid.uuid4()),
)
contexts.plugin_tool_providers.set({})
contexts.plugin_tool_providers_lock.set(threading.Lock())
# Create repositories
#
# Create session factory
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
# Create workflow execution(aka workflow run) repository
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
session_factory=session_factory,
user=user,
app_id=application_generate_entity.app_config.app_id,
triggered_from=WorkflowRunTriggeredFrom.DEBUGGING,
)
# Create workflow node execution repository
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
session_factory=session_factory,
user=user,
app_id=application_generate_entity.app_config.app_id,
triggered_from=WorkflowNodeExecutionTriggeredFrom.SINGLE_STEP,
)
draft_var_srv = WorkflowDraftVariableService(db.session())
draft_var_srv.prefill_conversation_variable_default_values(workflow)
var_loader = DraftVarLoader(
engine=db.engine,
app_id=application_generate_entity.app_config.app_id,
tenant_id=application_generate_entity.app_config.tenant_id,
)
return self._generate(
app_model=app_model,
workflow=workflow,
user=user,
invoke_from=InvokeFrom.DEBUGGER,
application_generate_entity=application_generate_entity,
workflow_execution_repository=workflow_execution_repository,
workflow_node_execution_repository=workflow_node_execution_repository,
streaming=streaming,
variable_loader=var_loader,
)
def _generate_worker(
self,
flask_app: Flask,
application_generate_entity: WorkflowAppGenerateEntity,
queue_manager: AppQueueManager,
context: contextvars.Context,
variable_loader: VariableLoader,
workflow_execution_repository: WorkflowExecutionRepository,
workflow_node_execution_repository: WorkflowNodeExecutionRepository,
root_node_id: str | None = None,
graph_engine_layers: Sequence[GraphEngineLayer] = (),
) -> None:
"""
Generate worker in a new thread.
:param flask_app: Flask app
:param application_generate_entity: application generate entity
:param queue_manager: queue manager
:param workflow_thread_pool_id: workflow thread pool id
:return:
"""
with preserve_flask_contexts(flask_app, context_vars=context):
with Session(db.engine, expire_on_commit=False) as session:
workflow = session.scalar(
select(Workflow).where(
Workflow.tenant_id == application_generate_entity.app_config.tenant_id,
Workflow.app_id == application_generate_entity.app_config.app_id,
Workflow.id == application_generate_entity.app_config.workflow_id,
)
)
if workflow is None:
raise ValueError("Workflow not found")
# Determine system_user_id based on invocation source
is_external_api_call = application_generate_entity.invoke_from in {
InvokeFrom.WEB_APP,
InvokeFrom.SERVICE_API,
}
if is_external_api_call:
# For external API calls, use end user's session ID
end_user = session.scalar(select(EndUser).where(EndUser.id == application_generate_entity.user_id))
system_user_id = end_user.session_id if end_user else ""
else:
# For internal calls, use the original user ID
system_user_id = application_generate_entity.user_id
runner = WorkflowAppRunner(
application_generate_entity=application_generate_entity,
queue_manager=queue_manager,
variable_loader=variable_loader,
workflow=workflow,
system_user_id=system_user_id,
workflow_execution_repository=workflow_execution_repository,
workflow_node_execution_repository=workflow_node_execution_repository,
root_node_id=root_node_id,
graph_engine_layers=graph_engine_layers,
)
try:
runner.run()
except GenerateTaskStoppedError as e:
logger.warning("Task stopped: %s", str(e))
pass
except InvokeAuthorizationError:
queue_manager.publish_error(
InvokeAuthorizationError("Incorrect API key provided"), PublishFrom.APPLICATION_MANAGER
)
except ValidationError as e:
logger.exception("Validation Error when generating")
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
except ValueError as e:
if dify_config.DEBUG:
logger.exception("Error when generating")
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
except Exception as e:
logger.exception("Unknown Error when generating")
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
def _handle_response(
self,
application_generate_entity: WorkflowAppGenerateEntity,
workflow: Workflow,
queue_manager: AppQueueManager,
user: Union[Account, EndUser],
draft_var_saver_factory: DraftVariableSaverFactory,
stream: bool = False,
) -> Union[WorkflowAppBlockingResponse, Generator[WorkflowAppStreamResponse, None, None]]:
"""
Handle response.
:param application_generate_entity: application generate entity
:param workflow: workflow
:param queue_manager: queue manager
:param user: account or end user
:param stream: is stream
:param workflow_node_execution_repository: optional repository for workflow node execution
:return:
"""
# init generate task pipeline
generate_task_pipeline = WorkflowAppGenerateTaskPipeline(
application_generate_entity=application_generate_entity,
workflow=workflow,
queue_manager=queue_manager,
user=user,
draft_var_saver_factory=draft_var_saver_factory,
stream=stream,
)
try:
return generate_task_pipeline.process()
except ValueError as e:
if len(e.args) > 0 and e.args[0] == "I/O operation on closed file.": # ignore this error
raise GenerateTaskStoppedError()
else:
logger.exception(
"Fails to process generate task pipeline, task_id: %s", application_generate_entity.task_id
)
raise e

View File

@@ -0,0 +1,45 @@
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
from core.app.apps.exc import GenerateTaskStoppedError
from core.app.entities.app_invoke_entities import InvokeFrom
from core.app.entities.queue_entities import (
AppQueueEvent,
QueueErrorEvent,
QueueMessageEndEvent,
QueueStopEvent,
QueueWorkflowFailedEvent,
QueueWorkflowPartialSuccessEvent,
QueueWorkflowSucceededEvent,
WorkflowQueueMessage,
)
class WorkflowAppQueueManager(AppQueueManager):
def __init__(self, task_id: str, user_id: str, invoke_from: InvokeFrom, app_mode: str):
super().__init__(task_id, user_id, invoke_from)
self._app_mode = app_mode
def _publish(self, event: AppQueueEvent, pub_from: PublishFrom):
"""
Publish event to queue
:param event:
:param pub_from:
:return:
"""
message = WorkflowQueueMessage(task_id=self._task_id, app_mode=self._app_mode, event=event)
self._q.put(message)
if isinstance(
event,
QueueStopEvent
| QueueErrorEvent
| QueueMessageEndEvent
| QueueWorkflowSucceededEvent
| QueueWorkflowFailedEvent
| QueueWorkflowPartialSuccessEvent,
):
self.stop_listen()
if pub_from == PublishFrom.APPLICATION_MANAGER and self._is_stopped():
raise GenerateTaskStoppedError()

View File

@@ -0,0 +1,153 @@
import logging
import time
from collections.abc import Sequence
from typing import cast
from core.app.apps.base_app_queue_manager import AppQueueManager
from core.app.apps.workflow.app_config_manager import WorkflowAppConfig
from core.app.apps.workflow_app_runner import WorkflowBasedAppRunner
from core.app.entities.app_invoke_entities import InvokeFrom, WorkflowAppGenerateEntity
from core.workflow.enums import WorkflowType
from core.workflow.graph_engine.command_channels.redis_channel import RedisChannel
from core.workflow.graph_engine.layers.base import GraphEngineLayer
from core.workflow.graph_engine.layers.persistence import PersistenceWorkflowInfo, WorkflowPersistenceLayer
from core.workflow.repositories.workflow_execution_repository import WorkflowExecutionRepository
from core.workflow.repositories.workflow_node_execution_repository import WorkflowNodeExecutionRepository
from core.workflow.runtime import GraphRuntimeState, VariablePool
from core.workflow.system_variable import SystemVariable
from core.workflow.variable_loader import VariableLoader
from core.workflow.workflow_entry import WorkflowEntry
from extensions.ext_redis import redis_client
from libs.datetime_utils import naive_utc_now
from models.enums import UserFrom
from models.workflow import Workflow
logger = logging.getLogger(__name__)
class WorkflowAppRunner(WorkflowBasedAppRunner):
"""
Workflow Application Runner
"""
def __init__(
self,
*,
application_generate_entity: WorkflowAppGenerateEntity,
queue_manager: AppQueueManager,
variable_loader: VariableLoader,
workflow: Workflow,
system_user_id: str,
root_node_id: str | None = None,
workflow_execution_repository: WorkflowExecutionRepository,
workflow_node_execution_repository: WorkflowNodeExecutionRepository,
graph_engine_layers: Sequence[GraphEngineLayer] = (),
):
super().__init__(
queue_manager=queue_manager,
variable_loader=variable_loader,
app_id=application_generate_entity.app_config.app_id,
graph_engine_layers=graph_engine_layers,
)
self.application_generate_entity = application_generate_entity
self._workflow = workflow
self._sys_user_id = system_user_id
self._root_node_id = root_node_id
self._workflow_execution_repository = workflow_execution_repository
self._workflow_node_execution_repository = workflow_node_execution_repository
def run(self):
"""
Run application
"""
app_config = self.application_generate_entity.app_config
app_config = cast(WorkflowAppConfig, app_config)
system_inputs = SystemVariable(
files=self.application_generate_entity.files,
user_id=self._sys_user_id,
app_id=app_config.app_id,
timestamp=int(naive_utc_now().timestamp()),
workflow_id=app_config.workflow_id,
workflow_execution_id=self.application_generate_entity.workflow_execution_id,
)
# if only single iteration or single loop run is requested
if self.application_generate_entity.single_iteration_run or self.application_generate_entity.single_loop_run:
graph, variable_pool, graph_runtime_state = self._prepare_single_node_execution(
workflow=self._workflow,
single_iteration_run=self.application_generate_entity.single_iteration_run,
single_loop_run=self.application_generate_entity.single_loop_run,
)
else:
inputs = self.application_generate_entity.inputs
# Create a variable pool.
variable_pool = VariablePool(
system_variables=system_inputs,
user_inputs=inputs,
environment_variables=self._workflow.environment_variables,
conversation_variables=[],
)
graph_runtime_state = GraphRuntimeState(variable_pool=variable_pool, start_at=time.perf_counter())
# init graph
graph = self._init_graph(
graph_config=self._workflow.graph_dict,
graph_runtime_state=graph_runtime_state,
workflow_id=self._workflow.id,
tenant_id=self._workflow.tenant_id,
user_id=self.application_generate_entity.user_id,
root_node_id=self._root_node_id,
)
# RUN WORKFLOW
# Create Redis command channel for this workflow execution
task_id = self.application_generate_entity.task_id
channel_key = f"workflow:{task_id}:commands"
command_channel = RedisChannel(redis_client, channel_key)
self._queue_manager.graph_runtime_state = graph_runtime_state
workflow_entry = WorkflowEntry(
tenant_id=self._workflow.tenant_id,
app_id=self._workflow.app_id,
workflow_id=self._workflow.id,
graph=graph,
graph_config=self._workflow.graph_dict,
user_id=self.application_generate_entity.user_id,
user_from=(
UserFrom.ACCOUNT
if self.application_generate_entity.invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER}
else UserFrom.END_USER
),
invoke_from=self.application_generate_entity.invoke_from,
call_depth=self.application_generate_entity.call_depth,
variable_pool=variable_pool,
graph_runtime_state=graph_runtime_state,
command_channel=command_channel,
)
persistence_layer = WorkflowPersistenceLayer(
application_generate_entity=self.application_generate_entity,
workflow_info=PersistenceWorkflowInfo(
workflow_id=self._workflow.id,
workflow_type=WorkflowType(self._workflow.type),
version=self._workflow.version,
graph_data=self._workflow.graph_dict,
),
workflow_execution_repository=self._workflow_execution_repository,
workflow_node_execution_repository=self._workflow_node_execution_repository,
trace_manager=self.application_generate_entity.trace_manager,
)
workflow_entry.graph_engine.layer(persistence_layer)
for layer in self._graph_engine_layers:
workflow_entry.graph_engine.layer(layer)
generator = workflow_entry.run()
for event in generator:
self._handle_event(workflow_entry, event)

View File

@@ -0,0 +1,95 @@
from collections.abc import Generator
from typing import cast
from core.app.apps.base_app_generate_response_converter import AppGenerateResponseConverter
from core.app.entities.task_entities import (
AppStreamResponse,
ErrorStreamResponse,
NodeFinishStreamResponse,
NodeStartStreamResponse,
PingStreamResponse,
WorkflowAppBlockingResponse,
WorkflowAppStreamResponse,
)
class WorkflowAppGenerateResponseConverter(AppGenerateResponseConverter):
_blocking_response_type = WorkflowAppBlockingResponse
@classmethod
def convert_blocking_full_response(cls, blocking_response: WorkflowAppBlockingResponse): # type: ignore[override]
"""
Convert blocking full response.
:param blocking_response: blocking response
:return:
"""
return blocking_response.model_dump()
@classmethod
def convert_blocking_simple_response(cls, blocking_response: WorkflowAppBlockingResponse): # type: ignore[override]
"""
Convert blocking simple response.
:param blocking_response: blocking response
:return:
"""
return cls.convert_blocking_full_response(blocking_response)
@classmethod
def convert_stream_full_response(
cls, stream_response: Generator[AppStreamResponse, None, None]
) -> Generator[dict | str, None, None]:
"""
Convert stream full response.
:param stream_response: stream response
:return:
"""
for chunk in stream_response:
chunk = cast(WorkflowAppStreamResponse, chunk)
sub_stream_response = chunk.stream_response
if isinstance(sub_stream_response, PingStreamResponse):
yield "ping"
continue
response_chunk: dict[str, object] = {
"event": sub_stream_response.event.value,
"workflow_run_id": chunk.workflow_run_id,
}
if isinstance(sub_stream_response, ErrorStreamResponse):
data = cls._error_to_stream_response(sub_stream_response.err)
response_chunk.update(data)
else:
response_chunk.update(sub_stream_response.model_dump(mode="json"))
yield response_chunk
@classmethod
def convert_stream_simple_response(
cls, stream_response: Generator[AppStreamResponse, None, None]
) -> Generator[dict | str, None, None]:
"""
Convert stream simple response.
:param stream_response: stream response
:return:
"""
for chunk in stream_response:
chunk = cast(WorkflowAppStreamResponse, chunk)
sub_stream_response = chunk.stream_response
if isinstance(sub_stream_response, PingStreamResponse):
yield "ping"
continue
response_chunk: dict[str, object] = {
"event": sub_stream_response.event.value,
"workflow_run_id": chunk.workflow_run_id,
}
if isinstance(sub_stream_response, ErrorStreamResponse):
data = cls._error_to_stream_response(sub_stream_response.err)
response_chunk.update(data)
elif isinstance(sub_stream_response, NodeStartStreamResponse | NodeFinishStreamResponse):
response_chunk.update(sub_stream_response.to_ignore_detail_dict())
else:
response_chunk.update(sub_stream_response.model_dump(mode="json"))
yield response_chunk

View File

@@ -0,0 +1,685 @@
import logging
import time
from collections.abc import Callable, Generator
from contextlib import contextmanager
from typing import Union
from sqlalchemy.orm import Session
from constants.tts_auto_play_timeout import TTS_AUTO_PLAY_TIMEOUT, TTS_AUTO_PLAY_YIELD_CPU_TIME
from core.app.apps.base_app_queue_manager import AppQueueManager
from core.app.apps.common.graph_runtime_state_support import GraphRuntimeStateSupport
from core.app.apps.common.workflow_response_converter import WorkflowResponseConverter
from core.app.entities.app_invoke_entities import InvokeFrom, WorkflowAppGenerateEntity
from core.app.entities.queue_entities import (
AppQueueEvent,
MessageQueueMessage,
QueueAgentLogEvent,
QueueErrorEvent,
QueueIterationCompletedEvent,
QueueIterationNextEvent,
QueueIterationStartEvent,
QueueLoopCompletedEvent,
QueueLoopNextEvent,
QueueLoopStartEvent,
QueueNodeExceptionEvent,
QueueNodeFailedEvent,
QueueNodeRetryEvent,
QueueNodeStartedEvent,
QueueNodeSucceededEvent,
QueuePingEvent,
QueueStopEvent,
QueueTextChunkEvent,
QueueWorkflowFailedEvent,
QueueWorkflowPartialSuccessEvent,
QueueWorkflowStartedEvent,
QueueWorkflowSucceededEvent,
WorkflowQueueMessage,
)
from core.app.entities.task_entities import (
ErrorStreamResponse,
MessageAudioEndStreamResponse,
MessageAudioStreamResponse,
PingStreamResponse,
StreamResponse,
TextChunkStreamResponse,
WorkflowAppBlockingResponse,
WorkflowAppStreamResponse,
WorkflowFinishStreamResponse,
WorkflowStartStreamResponse,
)
from core.app.task_pipeline.based_generate_task_pipeline import BasedGenerateTaskPipeline
from core.base.tts import AppGeneratorTTSPublisher, AudioTrunk
from core.ops.ops_trace_manager import TraceQueueManager
from core.workflow.enums import WorkflowExecutionStatus
from core.workflow.repositories.draft_variable_repository import DraftVariableSaverFactory
from core.workflow.runtime import GraphRuntimeState
from core.workflow.system_variable import SystemVariable
from extensions.ext_database import db
from models import Account
from models.enums import CreatorUserRole
from models.model import EndUser
from models.workflow import Workflow, WorkflowAppLog, WorkflowAppLogCreatedFrom
logger = logging.getLogger(__name__)
class WorkflowAppGenerateTaskPipeline(GraphRuntimeStateSupport):
"""
WorkflowAppGenerateTaskPipeline is a class that generate stream output and state management for Application.
"""
def __init__(
self,
application_generate_entity: WorkflowAppGenerateEntity,
workflow: Workflow,
queue_manager: AppQueueManager,
user: Union[Account, EndUser],
stream: bool,
draft_var_saver_factory: DraftVariableSaverFactory,
):
self._base_task_pipeline = BasedGenerateTaskPipeline(
application_generate_entity=application_generate_entity,
queue_manager=queue_manager,
stream=stream,
)
if isinstance(user, EndUser):
self._user_id = user.id
user_session_id = user.session_id
self._created_by_role = CreatorUserRole.END_USER
else:
self._user_id = user.id
user_session_id = user.id
self._created_by_role = CreatorUserRole.ACCOUNT
self._application_generate_entity = application_generate_entity
self._workflow_features_dict = workflow.features_dict
self._workflow_execution_id = ""
self._invoke_from = queue_manager.invoke_from
self._draft_var_saver_factory = draft_var_saver_factory
self._workflow = workflow
self._workflow_system_variables = SystemVariable(
files=application_generate_entity.files,
user_id=user_session_id,
app_id=application_generate_entity.app_config.app_id,
workflow_id=workflow.id,
workflow_execution_id=application_generate_entity.workflow_execution_id,
)
self._workflow_response_converter = WorkflowResponseConverter(
application_generate_entity=application_generate_entity,
user=user,
system_variables=self._workflow_system_variables,
)
self._graph_runtime_state: GraphRuntimeState | None = self._base_task_pipeline.queue_manager.graph_runtime_state
def process(self) -> Union[WorkflowAppBlockingResponse, Generator[WorkflowAppStreamResponse, None, None]]:
"""
Process generate task pipeline.
:return:
"""
generator = self._wrapper_process_stream_response(trace_manager=self._application_generate_entity.trace_manager)
if self._base_task_pipeline.stream:
return self._to_stream_response(generator)
else:
return self._to_blocking_response(generator)
def _to_blocking_response(self, generator: Generator[StreamResponse, None, None]) -> WorkflowAppBlockingResponse:
"""
To blocking response.
:return:
"""
for stream_response in generator:
if isinstance(stream_response, ErrorStreamResponse):
raise stream_response.err
elif isinstance(stream_response, WorkflowFinishStreamResponse):
response = WorkflowAppBlockingResponse(
task_id=self._application_generate_entity.task_id,
workflow_run_id=stream_response.data.id,
data=WorkflowAppBlockingResponse.Data(
id=stream_response.data.id,
workflow_id=stream_response.data.workflow_id,
status=stream_response.data.status,
outputs=stream_response.data.outputs,
error=stream_response.data.error,
elapsed_time=stream_response.data.elapsed_time,
total_tokens=stream_response.data.total_tokens,
total_steps=stream_response.data.total_steps,
created_at=int(stream_response.data.created_at),
finished_at=int(stream_response.data.finished_at),
),
)
return response
else:
continue
raise ValueError("queue listening stopped unexpectedly.")
def _to_stream_response(
self, generator: Generator[StreamResponse, None, None]
) -> Generator[WorkflowAppStreamResponse, None, None]:
"""
To stream response.
:return:
"""
workflow_run_id = None
for stream_response in generator:
if isinstance(stream_response, WorkflowStartStreamResponse):
workflow_run_id = stream_response.workflow_run_id
yield WorkflowAppStreamResponse(workflow_run_id=workflow_run_id, stream_response=stream_response)
def _listen_audio_msg(self, publisher: AppGeneratorTTSPublisher | None, task_id: str):
if not publisher:
return None
audio_msg = publisher.check_and_get_audio()
if audio_msg and isinstance(audio_msg, AudioTrunk) and audio_msg.status != "finish":
return MessageAudioStreamResponse(audio=audio_msg.audio, task_id=task_id)
return None
def _wrapper_process_stream_response(
self, trace_manager: TraceQueueManager | None = None
) -> Generator[StreamResponse, None, None]:
tts_publisher = None
task_id = self._application_generate_entity.task_id
tenant_id = self._application_generate_entity.app_config.tenant_id
features_dict = self._workflow_features_dict
if (
features_dict.get("text_to_speech")
and features_dict["text_to_speech"].get("enabled")
and features_dict["text_to_speech"].get("autoPlay") == "enabled"
):
tts_publisher = AppGeneratorTTSPublisher(
tenant_id, features_dict["text_to_speech"].get("voice"), features_dict["text_to_speech"].get("language")
)
for response in self._process_stream_response(tts_publisher=tts_publisher, trace_manager=trace_manager):
while True:
audio_response = self._listen_audio_msg(publisher=tts_publisher, task_id=task_id)
if audio_response:
yield audio_response
else:
break
yield response
start_listener_time = time.time()
while (time.time() - start_listener_time) < TTS_AUTO_PLAY_TIMEOUT:
try:
if not tts_publisher:
break
audio_trunk = tts_publisher.check_and_get_audio()
if audio_trunk is None:
# release cpu
# sleep 20 ms ( 40ms => 1280 byte audio file,20ms => 640 byte audio file)
time.sleep(TTS_AUTO_PLAY_YIELD_CPU_TIME)
continue
if audio_trunk.status == "finish":
break
else:
yield MessageAudioStreamResponse(audio=audio_trunk.audio, task_id=task_id)
except Exception:
logger.exception("Fails to get audio trunk, task_id: %s", task_id)
break
if tts_publisher:
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
@contextmanager
def _database_session(self):
"""Context manager for database sessions."""
with Session(db.engine, expire_on_commit=False) as session:
try:
yield session
session.commit()
except Exception:
session.rollback()
raise
def _ensure_workflow_initialized(self):
"""Fluent validation for workflow state."""
if not self._workflow_execution_id:
raise ValueError("workflow run not initialized.")
def _handle_ping_event(self, event: QueuePingEvent, **kwargs) -> Generator[PingStreamResponse, None, None]:
"""Handle ping events."""
yield self._base_task_pipeline.ping_stream_response()
def _handle_error_event(self, event: QueueErrorEvent, **kwargs) -> Generator[ErrorStreamResponse, None, None]:
"""Handle error events."""
err = self._base_task_pipeline.handle_error(event=event)
yield self._base_task_pipeline.error_to_stream_response(err)
def _handle_workflow_started_event(
self, event: QueueWorkflowStartedEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle workflow started events."""
runtime_state = self._resolve_graph_runtime_state()
run_id = self._extract_workflow_run_id(runtime_state)
self._workflow_execution_id = run_id
start_resp = self._workflow_response_converter.workflow_start_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_run_id=run_id,
workflow_id=self._workflow.id,
)
yield start_resp
def _handle_node_retry_event(self, event: QueueNodeRetryEvent, **kwargs) -> Generator[StreamResponse, None, None]:
"""Handle node retry events."""
self._ensure_workflow_initialized()
response = self._workflow_response_converter.workflow_node_retry_to_stream_response(
event=event,
task_id=self._application_generate_entity.task_id,
)
if response:
yield response
def _handle_node_started_event(
self, event: QueueNodeStartedEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle node started events."""
self._ensure_workflow_initialized()
node_start_response = self._workflow_response_converter.workflow_node_start_to_stream_response(
event=event,
task_id=self._application_generate_entity.task_id,
)
if node_start_response:
yield node_start_response
def _handle_node_succeeded_event(
self, event: QueueNodeSucceededEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle node succeeded events."""
node_success_response = self._workflow_response_converter.workflow_node_finish_to_stream_response(
event=event,
task_id=self._application_generate_entity.task_id,
)
self._save_output_for_event(event, event.node_execution_id)
if node_success_response:
yield node_success_response
def _handle_node_failed_events(
self,
event: Union[QueueNodeFailedEvent, QueueNodeExceptionEvent],
**kwargs,
) -> Generator[StreamResponse, None, None]:
"""Handle various node failure events."""
node_failed_response = self._workflow_response_converter.workflow_node_finish_to_stream_response(
event=event,
task_id=self._application_generate_entity.task_id,
)
if isinstance(event, QueueNodeExceptionEvent):
self._save_output_for_event(event, event.node_execution_id)
if node_failed_response:
yield node_failed_response
def _handle_iteration_start_event(
self, event: QueueIterationStartEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle iteration start events."""
self._ensure_workflow_initialized()
iter_start_resp = self._workflow_response_converter.workflow_iteration_start_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_execution_id,
event=event,
)
yield iter_start_resp
def _handle_iteration_next_event(
self, event: QueueIterationNextEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle iteration next events."""
self._ensure_workflow_initialized()
iter_next_resp = self._workflow_response_converter.workflow_iteration_next_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_execution_id,
event=event,
)
yield iter_next_resp
def _handle_iteration_completed_event(
self, event: QueueIterationCompletedEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle iteration completed events."""
self._ensure_workflow_initialized()
iter_finish_resp = self._workflow_response_converter.workflow_iteration_completed_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_execution_id,
event=event,
)
yield iter_finish_resp
def _handle_loop_start_event(self, event: QueueLoopStartEvent, **kwargs) -> Generator[StreamResponse, None, None]:
"""Handle loop start events."""
self._ensure_workflow_initialized()
loop_start_resp = self._workflow_response_converter.workflow_loop_start_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_execution_id,
event=event,
)
yield loop_start_resp
def _handle_loop_next_event(self, event: QueueLoopNextEvent, **kwargs) -> Generator[StreamResponse, None, None]:
"""Handle loop next events."""
self._ensure_workflow_initialized()
loop_next_resp = self._workflow_response_converter.workflow_loop_next_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_execution_id,
event=event,
)
yield loop_next_resp
def _handle_loop_completed_event(
self, event: QueueLoopCompletedEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle loop completed events."""
self._ensure_workflow_initialized()
loop_finish_resp = self._workflow_response_converter.workflow_loop_completed_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_execution_id,
event=event,
)
yield loop_finish_resp
def _handle_workflow_succeeded_event(
self,
event: QueueWorkflowSucceededEvent,
*,
trace_manager: TraceQueueManager | None = None,
**kwargs,
) -> Generator[StreamResponse, None, None]:
"""Handle workflow succeeded events."""
_ = trace_manager
self._ensure_workflow_initialized()
validated_state = self._ensure_graph_runtime_initialized()
workflow_finish_resp = self._workflow_response_converter.workflow_finish_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_id=self._workflow.id,
status=WorkflowExecutionStatus.SUCCEEDED,
graph_runtime_state=validated_state,
)
with self._database_session() as session:
self._save_workflow_app_log(session=session, workflow_run_id=self._workflow_execution_id)
yield workflow_finish_resp
def _handle_workflow_partial_success_event(
self,
event: QueueWorkflowPartialSuccessEvent,
*,
trace_manager: TraceQueueManager | None = None,
**kwargs,
) -> Generator[StreamResponse, None, None]:
"""Handle workflow partial success events."""
_ = trace_manager
self._ensure_workflow_initialized()
validated_state = self._ensure_graph_runtime_initialized()
workflow_finish_resp = self._workflow_response_converter.workflow_finish_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_id=self._workflow.id,
status=WorkflowExecutionStatus.PARTIAL_SUCCEEDED,
graph_runtime_state=validated_state,
exceptions_count=event.exceptions_count,
)
with self._database_session() as session:
self._save_workflow_app_log(session=session, workflow_run_id=self._workflow_execution_id)
yield workflow_finish_resp
def _handle_workflow_failed_and_stop_events(
self,
event: Union[QueueWorkflowFailedEvent, QueueStopEvent],
*,
trace_manager: TraceQueueManager | None = None,
**kwargs,
) -> Generator[StreamResponse, None, None]:
"""Handle workflow failed and stop events."""
_ = trace_manager
self._ensure_workflow_initialized()
validated_state = self._ensure_graph_runtime_initialized()
if isinstance(event, QueueWorkflowFailedEvent):
status = WorkflowExecutionStatus.FAILED
error = event.error
exceptions_count = event.exceptions_count
else:
status = WorkflowExecutionStatus.STOPPED
error = event.get_stop_reason()
exceptions_count = 0
workflow_finish_resp = self._workflow_response_converter.workflow_finish_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_id=self._workflow.id,
status=status,
graph_runtime_state=validated_state,
error=error,
exceptions_count=exceptions_count,
)
with self._database_session() as session:
self._save_workflow_app_log(session=session, workflow_run_id=self._workflow_execution_id)
yield workflow_finish_resp
def _handle_text_chunk_event(
self,
event: QueueTextChunkEvent,
*,
tts_publisher: AppGeneratorTTSPublisher | None = None,
queue_message: Union[WorkflowQueueMessage, MessageQueueMessage] | None = None,
**kwargs,
) -> Generator[StreamResponse, None, None]:
"""Handle text chunk events."""
delta_text = event.text
if delta_text is None:
return
# only publish tts message at text chunk streaming
if tts_publisher and queue_message:
tts_publisher.publish(queue_message)
yield self._text_chunk_to_stream_response(delta_text, from_variable_selector=event.from_variable_selector)
def _handle_agent_log_event(self, event: QueueAgentLogEvent, **kwargs) -> Generator[StreamResponse, None, None]:
"""Handle agent log events."""
yield self._workflow_response_converter.handle_agent_log(
task_id=self._application_generate_entity.task_id, event=event
)
def _get_event_handlers(self) -> dict[type, Callable]:
"""Get mapping of event types to their handlers using fluent pattern."""
return {
# Basic events
QueuePingEvent: self._handle_ping_event,
QueueErrorEvent: self._handle_error_event,
QueueTextChunkEvent: self._handle_text_chunk_event,
# Workflow events
QueueWorkflowStartedEvent: self._handle_workflow_started_event,
QueueWorkflowSucceededEvent: self._handle_workflow_succeeded_event,
QueueWorkflowPartialSuccessEvent: self._handle_workflow_partial_success_event,
# Node events
QueueNodeRetryEvent: self._handle_node_retry_event,
QueueNodeStartedEvent: self._handle_node_started_event,
QueueNodeSucceededEvent: self._handle_node_succeeded_event,
# Iteration events
QueueIterationStartEvent: self._handle_iteration_start_event,
QueueIterationNextEvent: self._handle_iteration_next_event,
QueueIterationCompletedEvent: self._handle_iteration_completed_event,
# Loop events
QueueLoopStartEvent: self._handle_loop_start_event,
QueueLoopNextEvent: self._handle_loop_next_event,
QueueLoopCompletedEvent: self._handle_loop_completed_event,
# Agent events
QueueAgentLogEvent: self._handle_agent_log_event,
}
def _dispatch_event(
self,
event: AppQueueEvent,
*,
tts_publisher: AppGeneratorTTSPublisher | None = None,
trace_manager: TraceQueueManager | None = None,
queue_message: Union[WorkflowQueueMessage, MessageQueueMessage] | None = None,
) -> Generator[StreamResponse, None, None]:
"""Dispatch events using elegant pattern matching."""
handlers = self._get_event_handlers()
event_type = type(event)
# Direct handler lookup
if handler := handlers.get(event_type):
yield from handler(
event,
tts_publisher=tts_publisher,
trace_manager=trace_manager,
queue_message=queue_message,
)
return
# Handle node failure events with isinstance check
if isinstance(
event,
(
QueueNodeFailedEvent,
QueueNodeExceptionEvent,
),
):
yield from self._handle_node_failed_events(
event,
tts_publisher=tts_publisher,
trace_manager=trace_manager,
queue_message=queue_message,
)
return
# Handle workflow failed and stop events with isinstance check
if isinstance(event, (QueueWorkflowFailedEvent, QueueStopEvent)):
yield from self._handle_workflow_failed_and_stop_events(
event,
tts_publisher=tts_publisher,
trace_manager=trace_manager,
queue_message=queue_message,
)
return
# For unhandled events, we continue (original behavior)
return
def _process_stream_response(
self,
tts_publisher: AppGeneratorTTSPublisher | None = None,
trace_manager: TraceQueueManager | None = None,
) -> Generator[StreamResponse, None, None]:
"""
Process stream response using elegant Fluent Python patterns.
Maintains exact same functionality as original 44-if-statement version.
"""
for queue_message in self._base_task_pipeline.queue_manager.listen():
event = queue_message.event
match event:
case QueueWorkflowStartedEvent():
self._resolve_graph_runtime_state()
yield from self._handle_workflow_started_event(event)
case QueueTextChunkEvent():
yield from self._handle_text_chunk_event(
event, tts_publisher=tts_publisher, queue_message=queue_message
)
case QueueErrorEvent():
yield from self._handle_error_event(event)
break
case QueueWorkflowFailedEvent():
yield from self._handle_workflow_failed_and_stop_events(event)
break
case QueueStopEvent():
yield from self._handle_workflow_failed_and_stop_events(event)
break
# Handle all other events through elegant dispatch
case _:
if responses := list(
self._dispatch_event(
event,
tts_publisher=tts_publisher,
trace_manager=trace_manager,
queue_message=queue_message,
)
):
yield from responses
if tts_publisher:
tts_publisher.publish(None)
def _save_workflow_app_log(self, *, session: Session, workflow_run_id: str | None):
invoke_from = self._application_generate_entity.invoke_from
if invoke_from == InvokeFrom.SERVICE_API:
created_from = WorkflowAppLogCreatedFrom.SERVICE_API
elif invoke_from == InvokeFrom.EXPLORE:
created_from = WorkflowAppLogCreatedFrom.INSTALLED_APP
elif invoke_from == InvokeFrom.WEB_APP:
created_from = WorkflowAppLogCreatedFrom.WEB_APP
else:
# not save log for debugging
return
if not workflow_run_id:
return
workflow_app_log = WorkflowAppLog(
tenant_id=self._application_generate_entity.app_config.tenant_id,
app_id=self._application_generate_entity.app_config.app_id,
workflow_id=self._workflow.id,
workflow_run_id=workflow_run_id,
created_from=created_from.value,
created_by_role=self._created_by_role,
created_by=self._user_id,
)
session.add(workflow_app_log)
session.commit()
def _text_chunk_to_stream_response(
self, text: str, from_variable_selector: list[str] | None = None
) -> TextChunkStreamResponse:
"""
Handle completed event.
:param text: text
:return:
"""
response = TextChunkStreamResponse(
task_id=self._application_generate_entity.task_id,
data=TextChunkStreamResponse.Data(text=text, from_variable_selector=from_variable_selector),
)
return response
def _save_output_for_event(self, event: QueueNodeSucceededEvent | QueueNodeExceptionEvent, node_execution_id: str):
with Session(db.engine) as session, session.begin():
saver = self._draft_var_saver_factory(
session=session,
app_id=self._application_generate_entity.app_config.app_id,
node_id=event.node_id,
node_type=event.node_type,
node_execution_id=node_execution_id,
enclosing_node_id=event.in_loop_id or event.in_iteration_id,
)
saver.save(event.process_data, event.outputs)

View File

@@ -0,0 +1,572 @@
import time
from collections.abc import Mapping, Sequence
from typing import Any, cast
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
from core.app.entities.app_invoke_entities import InvokeFrom
from core.app.entities.queue_entities import (
AppQueueEvent,
QueueAgentLogEvent,
QueueIterationCompletedEvent,
QueueIterationNextEvent,
QueueIterationStartEvent,
QueueLoopCompletedEvent,
QueueLoopNextEvent,
QueueLoopStartEvent,
QueueNodeExceptionEvent,
QueueNodeFailedEvent,
QueueNodeRetryEvent,
QueueNodeStartedEvent,
QueueNodeSucceededEvent,
QueueRetrieverResourcesEvent,
QueueTextChunkEvent,
QueueWorkflowFailedEvent,
QueueWorkflowPartialSuccessEvent,
QueueWorkflowStartedEvent,
QueueWorkflowSucceededEvent,
)
from core.workflow.entities import GraphInitParams
from core.workflow.graph import Graph
from core.workflow.graph_engine.layers.base import GraphEngineLayer
from core.workflow.graph_events import (
GraphEngineEvent,
GraphRunFailedEvent,
GraphRunPartialSucceededEvent,
GraphRunStartedEvent,
GraphRunSucceededEvent,
NodeRunAgentLogEvent,
NodeRunExceptionEvent,
NodeRunFailedEvent,
NodeRunIterationFailedEvent,
NodeRunIterationNextEvent,
NodeRunIterationStartedEvent,
NodeRunIterationSucceededEvent,
NodeRunLoopFailedEvent,
NodeRunLoopNextEvent,
NodeRunLoopStartedEvent,
NodeRunLoopSucceededEvent,
NodeRunRetrieverResourceEvent,
NodeRunRetryEvent,
NodeRunStartedEvent,
NodeRunStreamChunkEvent,
NodeRunSucceededEvent,
)
from core.workflow.graph_events.graph import GraphRunAbortedEvent
from core.workflow.nodes import NodeType
from core.workflow.nodes.node_factory import DifyNodeFactory
from core.workflow.nodes.node_mapping import NODE_TYPE_CLASSES_MAPPING
from core.workflow.runtime import GraphRuntimeState, VariablePool
from core.workflow.system_variable import SystemVariable
from core.workflow.variable_loader import DUMMY_VARIABLE_LOADER, VariableLoader, load_into_variable_pool
from core.workflow.workflow_entry import WorkflowEntry
from models.enums import UserFrom
from models.workflow import Workflow
class WorkflowBasedAppRunner:
def __init__(
self,
*,
queue_manager: AppQueueManager,
variable_loader: VariableLoader = DUMMY_VARIABLE_LOADER,
app_id: str,
graph_engine_layers: Sequence[GraphEngineLayer] = (),
):
self._queue_manager = queue_manager
self._variable_loader = variable_loader
self._app_id = app_id
self._graph_engine_layers = graph_engine_layers
def _init_graph(
self,
graph_config: Mapping[str, Any],
graph_runtime_state: GraphRuntimeState,
workflow_id: str = "",
tenant_id: str = "",
user_id: str = "",
root_node_id: str | None = None,
) -> Graph:
"""
Init graph
"""
if "nodes" not in graph_config or "edges" not in graph_config:
raise ValueError("nodes or edges not found in workflow graph")
if not isinstance(graph_config.get("nodes"), list):
raise ValueError("nodes in workflow graph must be a list")
if not isinstance(graph_config.get("edges"), list):
raise ValueError("edges in workflow graph must be a list")
# Create required parameters for Graph.init
graph_init_params = GraphInitParams(
tenant_id=tenant_id or "",
app_id=self._app_id,
workflow_id=workflow_id,
graph_config=graph_config,
user_id=user_id,
user_from=UserFrom.ACCOUNT,
invoke_from=InvokeFrom.SERVICE_API,
call_depth=0,
)
# Use the provided graph_runtime_state for consistent state management
node_factory = DifyNodeFactory(
graph_init_params=graph_init_params,
graph_runtime_state=graph_runtime_state,
)
# init graph
graph = Graph.init(graph_config=graph_config, node_factory=node_factory, root_node_id=root_node_id)
if not graph:
raise ValueError("graph not found in workflow")
return graph
def _prepare_single_node_execution(
self,
workflow: Workflow,
single_iteration_run: Any | None = None,
single_loop_run: Any | None = None,
) -> tuple[Graph, VariablePool, GraphRuntimeState]:
"""
Prepare graph, variable pool, and runtime state for single node execution
(either single iteration or single loop).
Args:
workflow: The workflow instance
single_iteration_run: SingleIterationRunEntity if running single iteration, None otherwise
single_loop_run: SingleLoopRunEntity if running single loop, None otherwise
Returns:
A tuple containing (graph, variable_pool, graph_runtime_state)
Raises:
ValueError: If neither single_iteration_run nor single_loop_run is specified
"""
# Create initial runtime state with variable pool containing environment variables
graph_runtime_state = GraphRuntimeState(
variable_pool=VariablePool(
system_variables=SystemVariable.empty(),
user_inputs={},
environment_variables=workflow.environment_variables,
),
start_at=time.time(),
)
# Determine which type of single node execution and get graph/variable_pool
if single_iteration_run:
graph, variable_pool = self._get_graph_and_variable_pool_of_single_iteration(
workflow=workflow,
node_id=single_iteration_run.node_id,
user_inputs=dict(single_iteration_run.inputs),
graph_runtime_state=graph_runtime_state,
)
elif single_loop_run:
graph, variable_pool = self._get_graph_and_variable_pool_of_single_loop(
workflow=workflow,
node_id=single_loop_run.node_id,
user_inputs=dict(single_loop_run.inputs),
graph_runtime_state=graph_runtime_state,
)
else:
raise ValueError("Neither single_iteration_run nor single_loop_run is specified")
# Return the graph, variable_pool, and the same graph_runtime_state used during graph creation
# This ensures all nodes in the graph reference the same GraphRuntimeState instance
return graph, variable_pool, graph_runtime_state
def _get_graph_and_variable_pool_for_single_node_run(
self,
workflow: Workflow,
node_id: str,
user_inputs: dict[str, Any],
graph_runtime_state: GraphRuntimeState,
node_type_filter_key: str, # 'iteration_id' or 'loop_id'
node_type_label: str = "node", # 'iteration' or 'loop' for error messages
) -> tuple[Graph, VariablePool]:
"""
Get graph and variable pool for single node execution (iteration or loop).
Args:
workflow: The workflow instance
node_id: The node ID to execute
user_inputs: User inputs for the node
graph_runtime_state: The graph runtime state
node_type_filter_key: The key to filter nodes ('iteration_id' or 'loop_id')
node_type_label: Label for error messages ('iteration' or 'loop')
Returns:
A tuple containing (graph, variable_pool)
"""
# fetch workflow graph
graph_config = workflow.graph_dict
if not graph_config:
raise ValueError("workflow graph not found")
graph_config = cast(dict[str, Any], graph_config)
if "nodes" not in graph_config or "edges" not in graph_config:
raise ValueError("nodes or edges not found in workflow graph")
if not isinstance(graph_config.get("nodes"), list):
raise ValueError("nodes in workflow graph must be a list")
if not isinstance(graph_config.get("edges"), list):
raise ValueError("edges in workflow graph must be a list")
# filter nodes only in the specified node type (iteration or loop)
main_node_config = next((n for n in graph_config.get("nodes", []) if n.get("id") == node_id), None)
start_node_id = main_node_config.get("data", {}).get("start_node_id") if main_node_config else None
node_configs = [
node
for node in graph_config.get("nodes", [])
if node.get("id") == node_id
or node.get("data", {}).get(node_type_filter_key, "") == node_id
or (start_node_id and node.get("id") == start_node_id)
]
graph_config["nodes"] = node_configs
node_ids = [node.get("id") for node in node_configs]
# filter edges only in the specified node type
edge_configs = [
edge
for edge in graph_config.get("edges", [])
if (edge.get("source") is None or edge.get("source") in node_ids)
and (edge.get("target") is None or edge.get("target") in node_ids)
]
graph_config["edges"] = edge_configs
# Create required parameters for Graph.init
graph_init_params = GraphInitParams(
tenant_id=workflow.tenant_id,
app_id=self._app_id,
workflow_id=workflow.id,
graph_config=graph_config,
user_id="",
user_from=UserFrom.ACCOUNT,
invoke_from=InvokeFrom.SERVICE_API,
call_depth=0,
)
node_factory = DifyNodeFactory(
graph_init_params=graph_init_params,
graph_runtime_state=graph_runtime_state,
)
# init graph
graph = Graph.init(graph_config=graph_config, node_factory=node_factory, root_node_id=node_id)
if not graph:
raise ValueError("graph not found in workflow")
# fetch node config from node id
target_node_config = None
for node in node_configs:
if node.get("id") == node_id:
target_node_config = node
break
if not target_node_config:
raise ValueError(f"{node_type_label} node id not found in workflow graph")
# Get node class
node_type = NodeType(target_node_config.get("data", {}).get("type"))
node_version = target_node_config.get("data", {}).get("version", "1")
node_cls = NODE_TYPE_CLASSES_MAPPING[node_type][node_version]
# Use the variable pool from graph_runtime_state instead of creating a new one
variable_pool = graph_runtime_state.variable_pool
try:
variable_mapping = node_cls.extract_variable_selector_to_variable_mapping(
graph_config=workflow.graph_dict, config=target_node_config
)
except NotImplementedError:
variable_mapping = {}
load_into_variable_pool(
variable_loader=self._variable_loader,
variable_pool=variable_pool,
variable_mapping=variable_mapping,
user_inputs=user_inputs,
)
WorkflowEntry.mapping_user_inputs_to_variable_pool(
variable_mapping=variable_mapping,
user_inputs=user_inputs,
variable_pool=variable_pool,
tenant_id=workflow.tenant_id,
)
return graph, variable_pool
def _get_graph_and_variable_pool_of_single_iteration(
self,
workflow: Workflow,
node_id: str,
user_inputs: dict[str, Any],
graph_runtime_state: GraphRuntimeState,
) -> tuple[Graph, VariablePool]:
"""
Get variable pool of single iteration
"""
return self._get_graph_and_variable_pool_for_single_node_run(
workflow=workflow,
node_id=node_id,
user_inputs=user_inputs,
graph_runtime_state=graph_runtime_state,
node_type_filter_key="iteration_id",
node_type_label="iteration",
)
def _get_graph_and_variable_pool_of_single_loop(
self,
workflow: Workflow,
node_id: str,
user_inputs: dict[str, Any],
graph_runtime_state: GraphRuntimeState,
) -> tuple[Graph, VariablePool]:
"""
Get variable pool of single loop
"""
return self._get_graph_and_variable_pool_for_single_node_run(
workflow=workflow,
node_id=node_id,
user_inputs=user_inputs,
graph_runtime_state=graph_runtime_state,
node_type_filter_key="loop_id",
node_type_label="loop",
)
def _handle_event(self, workflow_entry: WorkflowEntry, event: GraphEngineEvent):
"""
Handle event
:param workflow_entry: workflow entry
:param event: event
"""
if isinstance(event, GraphRunStartedEvent):
self._publish_event(QueueWorkflowStartedEvent())
elif isinstance(event, GraphRunSucceededEvent):
self._publish_event(QueueWorkflowSucceededEvent(outputs=event.outputs))
elif isinstance(event, GraphRunPartialSucceededEvent):
self._publish_event(
QueueWorkflowPartialSuccessEvent(outputs=event.outputs, exceptions_count=event.exceptions_count)
)
elif isinstance(event, GraphRunFailedEvent):
self._publish_event(QueueWorkflowFailedEvent(error=event.error, exceptions_count=event.exceptions_count))
elif isinstance(event, GraphRunAbortedEvent):
self._publish_event(QueueWorkflowFailedEvent(error=event.reason or "Unknown error", exceptions_count=0))
elif isinstance(event, NodeRunRetryEvent):
node_run_result = event.node_run_result
inputs = node_run_result.inputs
process_data = node_run_result.process_data
outputs = node_run_result.outputs
execution_metadata = node_run_result.metadata
self._publish_event(
QueueNodeRetryEvent(
node_execution_id=event.id,
node_id=event.node_id,
node_title=event.node_title,
node_type=event.node_type,
start_at=event.start_at,
in_iteration_id=event.in_iteration_id,
in_loop_id=event.in_loop_id,
inputs=inputs,
process_data=process_data,
outputs=outputs,
error=event.error,
execution_metadata=execution_metadata,
retry_index=event.retry_index,
provider_type=event.provider_type,
provider_id=event.provider_id,
)
)
elif isinstance(event, NodeRunStartedEvent):
self._publish_event(
QueueNodeStartedEvent(
node_execution_id=event.id,
node_id=event.node_id,
node_title=event.node_title,
node_type=event.node_type,
start_at=event.start_at,
in_iteration_id=event.in_iteration_id,
in_loop_id=event.in_loop_id,
agent_strategy=event.agent_strategy,
provider_type=event.provider_type,
provider_id=event.provider_id,
)
)
elif isinstance(event, NodeRunSucceededEvent):
node_run_result = event.node_run_result
inputs = node_run_result.inputs
process_data = node_run_result.process_data
outputs = node_run_result.outputs
execution_metadata = node_run_result.metadata
self._publish_event(
QueueNodeSucceededEvent(
node_execution_id=event.id,
node_id=event.node_id,
node_type=event.node_type,
start_at=event.start_at,
inputs=inputs,
process_data=process_data,
outputs=outputs,
execution_metadata=execution_metadata,
in_iteration_id=event.in_iteration_id,
in_loop_id=event.in_loop_id,
)
)
elif isinstance(event, NodeRunFailedEvent):
self._publish_event(
QueueNodeFailedEvent(
node_execution_id=event.id,
node_id=event.node_id,
node_type=event.node_type,
start_at=event.start_at,
inputs=event.node_run_result.inputs,
process_data=event.node_run_result.process_data,
outputs=event.node_run_result.outputs,
error=event.node_run_result.error or "Unknown error",
execution_metadata=event.node_run_result.metadata,
in_iteration_id=event.in_iteration_id,
in_loop_id=event.in_loop_id,
)
)
elif isinstance(event, NodeRunExceptionEvent):
self._publish_event(
QueueNodeExceptionEvent(
node_execution_id=event.id,
node_id=event.node_id,
node_type=event.node_type,
start_at=event.start_at,
inputs=event.node_run_result.inputs,
process_data=event.node_run_result.process_data,
outputs=event.node_run_result.outputs,
error=event.node_run_result.error or "Unknown error",
execution_metadata=event.node_run_result.metadata,
in_iteration_id=event.in_iteration_id,
in_loop_id=event.in_loop_id,
)
)
elif isinstance(event, NodeRunStreamChunkEvent):
self._publish_event(
QueueTextChunkEvent(
text=event.chunk,
from_variable_selector=list(event.selector),
in_iteration_id=event.in_iteration_id,
in_loop_id=event.in_loop_id,
)
)
elif isinstance(event, NodeRunRetrieverResourceEvent):
self._publish_event(
QueueRetrieverResourcesEvent(
retriever_resources=event.retriever_resources,
in_iteration_id=event.in_iteration_id,
in_loop_id=event.in_loop_id,
)
)
elif isinstance(event, NodeRunAgentLogEvent):
self._publish_event(
QueueAgentLogEvent(
id=event.message_id,
label=event.label,
node_execution_id=event.node_execution_id,
parent_id=event.parent_id,
error=event.error,
status=event.status,
data=event.data,
metadata=event.metadata,
node_id=event.node_id,
)
)
elif isinstance(event, NodeRunIterationStartedEvent):
self._publish_event(
QueueIterationStartEvent(
node_execution_id=event.id,
node_id=event.node_id,
node_type=event.node_type,
node_title=event.node_title,
start_at=event.start_at,
node_run_index=workflow_entry.graph_engine.graph_runtime_state.node_run_steps,
inputs=event.inputs,
metadata=event.metadata,
)
)
elif isinstance(event, NodeRunIterationNextEvent):
self._publish_event(
QueueIterationNextEvent(
node_execution_id=event.id,
node_id=event.node_id,
node_type=event.node_type,
node_title=event.node_title,
index=event.index,
node_run_index=workflow_entry.graph_engine.graph_runtime_state.node_run_steps,
output=event.pre_iteration_output,
)
)
elif isinstance(event, (NodeRunIterationSucceededEvent | NodeRunIterationFailedEvent)):
self._publish_event(
QueueIterationCompletedEvent(
node_execution_id=event.id,
node_id=event.node_id,
node_type=event.node_type,
node_title=event.node_title,
start_at=event.start_at,
node_run_index=workflow_entry.graph_engine.graph_runtime_state.node_run_steps,
inputs=event.inputs,
outputs=event.outputs,
metadata=event.metadata,
steps=event.steps,
error=event.error if isinstance(event, NodeRunIterationFailedEvent) else None,
)
)
elif isinstance(event, NodeRunLoopStartedEvent):
self._publish_event(
QueueLoopStartEvent(
node_execution_id=event.id,
node_id=event.node_id,
node_type=event.node_type,
node_title=event.node_title,
start_at=event.start_at,
node_run_index=workflow_entry.graph_engine.graph_runtime_state.node_run_steps,
inputs=event.inputs,
metadata=event.metadata,
)
)
elif isinstance(event, NodeRunLoopNextEvent):
self._publish_event(
QueueLoopNextEvent(
node_execution_id=event.id,
node_id=event.node_id,
node_type=event.node_type,
node_title=event.node_title,
index=event.index,
node_run_index=workflow_entry.graph_engine.graph_runtime_state.node_run_steps,
output=event.pre_loop_output,
)
)
elif isinstance(event, (NodeRunLoopSucceededEvent | NodeRunLoopFailedEvent)):
self._publish_event(
QueueLoopCompletedEvent(
node_execution_id=event.id,
node_id=event.node_id,
node_type=event.node_type,
node_title=event.node_title,
start_at=event.start_at,
node_run_index=workflow_entry.graph_engine.graph_runtime_state.node_run_steps,
inputs=event.inputs,
outputs=event.outputs,
metadata=event.metadata,
steps=event.steps,
error=event.error if isinstance(event, NodeRunLoopFailedEvent) else None,
)
)
def _publish_event(self, event: AppQueueEvent):
self._queue_manager.publish(event, PublishFrom.APPLICATION_MANAGER)

View File

View File

@@ -0,0 +1,290 @@
from collections.abc import Mapping, Sequence
from enum import StrEnum
from typing import TYPE_CHECKING, Any, Optional
from pydantic import BaseModel, ConfigDict, Field, ValidationInfo, field_validator
if TYPE_CHECKING:
from core.ops.ops_trace_manager import TraceQueueManager
from constants import UUID_NIL
from core.app.app_config.entities import EasyUIBasedAppConfig, WorkflowUIBasedAppConfig
from core.entities.provider_configuration import ProviderModelBundle
from core.file import File, FileUploadConfig
from core.model_runtime.entities.model_entities import AIModelEntity
class InvokeFrom(StrEnum):
"""
Invoke From.
"""
# SERVICE_API indicates that this invocation is from an API call to Dify app.
#
# Description of service api in Dify docs:
# https://docs.dify.ai/en/guides/application-publishing/developing-with-apis
SERVICE_API = "service-api"
# WEB_APP indicates that this invocation is from
# the web app of the workflow (or chatflow).
#
# Description of web app in Dify docs:
# https://docs.dify.ai/en/guides/application-publishing/launch-your-webapp-quickly/README
WEB_APP = "web-app"
# TRIGGER indicates that this invocation is from a trigger.
# this is used for plugin trigger and webhook trigger.
TRIGGER = "trigger"
# EXPLORE indicates that this invocation is from
# the workflow (or chatflow) explore page.
EXPLORE = "explore"
# DEBUGGER indicates that this invocation is from
# the workflow (or chatflow) edit page.
DEBUGGER = "debugger"
PUBLISHED = "published"
# VALIDATION indicates that this invocation is from validation.
VALIDATION = "validation"
@classmethod
def value_of(cls, value: str):
"""
Get value of given mode.
:param value: mode value
:return: mode
"""
for mode in cls:
if mode.value == value:
return mode
raise ValueError(f"invalid invoke from value {value}")
def to_source(self) -> str:
"""
Get source of invoke from.
:return: source
"""
if self == InvokeFrom.WEB_APP:
return "web_app"
elif self == InvokeFrom.DEBUGGER:
return "dev"
elif self == InvokeFrom.EXPLORE:
return "explore_app"
elif self == InvokeFrom.TRIGGER:
return "trigger"
elif self == InvokeFrom.SERVICE_API:
return "api"
return "dev"
class ModelConfigWithCredentialsEntity(BaseModel):
"""
Model Config With Credentials Entity.
"""
provider: str
model: str
model_schema: AIModelEntity
mode: str
provider_model_bundle: ProviderModelBundle
credentials: dict[str, Any] = Field(default_factory=dict)
parameters: dict[str, Any] = Field(default_factory=dict)
stop: list[str] = Field(default_factory=list)
# pydantic configs
model_config = ConfigDict(protected_namespaces=())
class AppGenerateEntity(BaseModel):
"""
App Generate Entity.
"""
model_config = ConfigDict(arbitrary_types_allowed=True)
task_id: str
# app config
app_config: Any = None
file_upload_config: FileUploadConfig | None = None
inputs: Mapping[str, Any]
files: Sequence[File]
# Unique identifier of the user initiating the execution.
# This corresponds to `Account.id` for platform users or `EndUser.id` for end users.
#
# Note: The `user_id` field does not indicate whether the user is a platform user or an end user.
user_id: str
# extras
stream: bool
invoke_from: InvokeFrom
# invoke call depth
call_depth: int = 0
# extra parameters, like: auto_generate_conversation_name
extras: dict[str, Any] = Field(default_factory=dict)
# tracing instance
trace_manager: Optional["TraceQueueManager"] = None
class EasyUIBasedAppGenerateEntity(AppGenerateEntity):
"""
Chat Application Generate Entity.
"""
# app config
app_config: EasyUIBasedAppConfig = None # type: ignore
model_conf: ModelConfigWithCredentialsEntity
query: str = ""
# pydantic configs
model_config = ConfigDict(protected_namespaces=())
class ConversationAppGenerateEntity(AppGenerateEntity):
"""
Base entity for conversation-based app generation.
"""
conversation_id: str | None = None
parent_message_id: str | None = Field(
default=None,
description=(
"Starting from v0.9.0, parent_message_id is used to support message regeneration for internal chat API."
"For service API, we need to ensure its forward compatibility, "
"so passing in the parent_message_id as request arg is not supported for now. "
"It needs to be set to UUID_NIL so that the subsequent processing will treat it as legacy messages."
),
)
@field_validator("parent_message_id")
@classmethod
def validate_parent_message_id(cls, v, info: ValidationInfo):
if info.data.get("invoke_from") == InvokeFrom.SERVICE_API and v != UUID_NIL:
raise ValueError("parent_message_id should be UUID_NIL for service API")
return v
class ChatAppGenerateEntity(ConversationAppGenerateEntity, EasyUIBasedAppGenerateEntity):
"""
Chat Application Generate Entity.
"""
pass
class CompletionAppGenerateEntity(EasyUIBasedAppGenerateEntity):
"""
Completion Application Generate Entity.
"""
pass
class AgentChatAppGenerateEntity(ConversationAppGenerateEntity, EasyUIBasedAppGenerateEntity):
"""
Agent Chat Application Generate Entity.
"""
pass
class AdvancedChatAppGenerateEntity(ConversationAppGenerateEntity):
"""
Advanced Chat Application Generate Entity.
"""
# app config
app_config: WorkflowUIBasedAppConfig = None # type: ignore
workflow_run_id: str | None = None
query: str
class SingleIterationRunEntity(BaseModel):
"""
Single Iteration Run Entity.
"""
node_id: str
inputs: Mapping
single_iteration_run: SingleIterationRunEntity | None = None
class SingleLoopRunEntity(BaseModel):
"""
Single Loop Run Entity.
"""
node_id: str
inputs: Mapping
single_loop_run: SingleLoopRunEntity | None = None
class WorkflowAppGenerateEntity(AppGenerateEntity):
"""
Workflow Application Generate Entity.
"""
# app config
app_config: WorkflowUIBasedAppConfig = None # type: ignore
workflow_execution_id: str
class SingleIterationRunEntity(BaseModel):
"""
Single Iteration Run Entity.
"""
node_id: str
inputs: dict
single_iteration_run: SingleIterationRunEntity | None = None
class SingleLoopRunEntity(BaseModel):
"""
Single Loop Run Entity.
"""
node_id: str
inputs: dict
single_loop_run: SingleLoopRunEntity | None = None
class RagPipelineGenerateEntity(WorkflowAppGenerateEntity):
"""
RAG Pipeline Application Generate Entity.
"""
# pipeline config
pipeline_config: WorkflowUIBasedAppConfig
datasource_type: str
datasource_info: Mapping[str, Any]
dataset_id: str
batch: str
document_id: str | None = None
original_document_id: str | None = None
start_node_id: str | None = None
# Import TraceQueueManager at runtime to resolve forward references
from core.ops.ops_trace_manager import TraceQueueManager
# Rebuild models that use forward references
AppGenerateEntity.model_rebuild()
EasyUIBasedAppGenerateEntity.model_rebuild()
ConversationAppGenerateEntity.model_rebuild()
ChatAppGenerateEntity.model_rebuild()
CompletionAppGenerateEntity.model_rebuild()
AgentChatAppGenerateEntity.model_rebuild()
AdvancedChatAppGenerateEntity.model_rebuild()
WorkflowAppGenerateEntity.model_rebuild()
RagPipelineGenerateEntity.model_rebuild()

View File

@@ -0,0 +1,511 @@
from collections.abc import Mapping, Sequence
from datetime import datetime
from enum import StrEnum, auto
from typing import Any
from pydantic import BaseModel, ConfigDict, Field
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk
from core.rag.entities.citation_metadata import RetrievalSourceMetadata
from core.workflow.entities import AgentNodeStrategyInit
from core.workflow.enums import WorkflowNodeExecutionMetadataKey
from core.workflow.nodes import NodeType
class QueueEvent(StrEnum):
"""
QueueEvent enum
"""
LLM_CHUNK = "llm_chunk"
TEXT_CHUNK = "text_chunk"
AGENT_MESSAGE = "agent_message"
MESSAGE_REPLACE = "message_replace"
MESSAGE_END = "message_end"
ADVANCED_CHAT_MESSAGE_END = "advanced_chat_message_end"
WORKFLOW_STARTED = "workflow_started"
WORKFLOW_SUCCEEDED = "workflow_succeeded"
WORKFLOW_FAILED = "workflow_failed"
WORKFLOW_PARTIAL_SUCCEEDED = "workflow_partial_succeeded"
ITERATION_START = "iteration_start"
ITERATION_NEXT = "iteration_next"
ITERATION_COMPLETED = "iteration_completed"
LOOP_START = "loop_start"
LOOP_NEXT = "loop_next"
LOOP_COMPLETED = "loop_completed"
NODE_STARTED = "node_started"
NODE_SUCCEEDED = "node_succeeded"
NODE_FAILED = "node_failed"
NODE_EXCEPTION = "node_exception"
RETRIEVER_RESOURCES = "retriever_resources"
ANNOTATION_REPLY = "annotation_reply"
AGENT_THOUGHT = "agent_thought"
MESSAGE_FILE = "message_file"
AGENT_LOG = "agent_log"
ERROR = "error"
PING = "ping"
STOP = "stop"
RETRY = "retry"
class AppQueueEvent(BaseModel):
"""
QueueEvent abstract entity
"""
event: QueueEvent
model_config = ConfigDict(arbitrary_types_allowed=True)
class QueueLLMChunkEvent(AppQueueEvent):
"""
QueueLLMChunkEvent entity
Only for basic mode apps
"""
event: QueueEvent = QueueEvent.LLM_CHUNK
chunk: LLMResultChunk
class QueueIterationStartEvent(AppQueueEvent):
"""
QueueIterationStartEvent entity
"""
event: QueueEvent = QueueEvent.ITERATION_START
node_execution_id: str
node_id: str
node_type: NodeType
node_title: str
start_at: datetime
node_run_index: int
inputs: Mapping[str, object] = Field(default_factory=dict)
metadata: Mapping[str, object] = Field(default_factory=dict)
class QueueIterationNextEvent(AppQueueEvent):
"""
QueueIterationNextEvent entity
"""
event: QueueEvent = QueueEvent.ITERATION_NEXT
index: int
node_execution_id: str
node_id: str
node_type: NodeType
node_title: str
node_run_index: int
output: Any = None # output for the current iteration
class QueueIterationCompletedEvent(AppQueueEvent):
"""
QueueIterationCompletedEvent entity
"""
event: QueueEvent = QueueEvent.ITERATION_COMPLETED
node_execution_id: str
node_id: str
node_type: NodeType
node_title: str
start_at: datetime
node_run_index: int
inputs: Mapping[str, object] = Field(default_factory=dict)
outputs: Mapping[str, object] = Field(default_factory=dict)
metadata: Mapping[str, object] = Field(default_factory=dict)
steps: int = 0
error: str | None = None
class QueueLoopStartEvent(AppQueueEvent):
"""
QueueLoopStartEvent entity
"""
event: QueueEvent = QueueEvent.LOOP_START
node_execution_id: str
node_id: str
node_type: NodeType
node_title: str
start_at: datetime
node_run_index: int
inputs: Mapping[str, object] = Field(default_factory=dict)
metadata: Mapping[str, object] = Field(default_factory=dict)
class QueueLoopNextEvent(AppQueueEvent):
"""
QueueLoopNextEvent entity
"""
event: QueueEvent = QueueEvent.LOOP_NEXT
index: int
node_execution_id: str
node_id: str
node_type: NodeType
node_title: str
node_run_index: int
output: Any = None # output for the current loop
class QueueLoopCompletedEvent(AppQueueEvent):
"""
QueueLoopCompletedEvent entity
"""
event: QueueEvent = QueueEvent.LOOP_COMPLETED
node_execution_id: str
node_id: str
node_type: NodeType
node_title: str
start_at: datetime
node_run_index: int
inputs: Mapping[str, object] = Field(default_factory=dict)
outputs: Mapping[str, object] = Field(default_factory=dict)
metadata: Mapping[str, object] = Field(default_factory=dict)
steps: int = 0
error: str | None = None
class QueueTextChunkEvent(AppQueueEvent):
"""
QueueTextChunkEvent entity
"""
event: QueueEvent = QueueEvent.TEXT_CHUNK
text: str
from_variable_selector: list[str] | None = None
"""from variable selector"""
in_iteration_id: str | None = None
"""iteration id if node is in iteration"""
in_loop_id: str | None = None
"""loop id if node is in loop"""
class QueueAgentMessageEvent(AppQueueEvent):
"""
QueueMessageEvent entity
"""
event: QueueEvent = QueueEvent.AGENT_MESSAGE
chunk: LLMResultChunk
class QueueMessageReplaceEvent(AppQueueEvent):
"""
QueueMessageReplaceEvent entity
"""
class MessageReplaceReason(StrEnum):
"""
Reason for message replace event
"""
OUTPUT_MODERATION = "output_moderation"
event: QueueEvent = QueueEvent.MESSAGE_REPLACE
text: str
reason: str
class QueueRetrieverResourcesEvent(AppQueueEvent):
"""
QueueRetrieverResourcesEvent entity
"""
event: QueueEvent = QueueEvent.RETRIEVER_RESOURCES
retriever_resources: Sequence[RetrievalSourceMetadata]
in_iteration_id: str | None = None
"""iteration id if node is in iteration"""
in_loop_id: str | None = None
"""loop id if node is in loop"""
class QueueAnnotationReplyEvent(AppQueueEvent):
"""
QueueAnnotationReplyEvent entity
"""
event: QueueEvent = QueueEvent.ANNOTATION_REPLY
message_annotation_id: str
class QueueMessageEndEvent(AppQueueEvent):
"""
QueueMessageEndEvent entity
"""
event: QueueEvent = QueueEvent.MESSAGE_END
llm_result: LLMResult | None = None
class QueueAdvancedChatMessageEndEvent(AppQueueEvent):
"""
QueueAdvancedChatMessageEndEvent entity
"""
event: QueueEvent = QueueEvent.ADVANCED_CHAT_MESSAGE_END
class QueueWorkflowStartedEvent(AppQueueEvent):
"""QueueWorkflowStartedEvent entity."""
event: QueueEvent = QueueEvent.WORKFLOW_STARTED
class QueueWorkflowSucceededEvent(AppQueueEvent):
"""
QueueWorkflowSucceededEvent entity
"""
event: QueueEvent = QueueEvent.WORKFLOW_SUCCEEDED
outputs: Mapping[str, object] = Field(default_factory=dict)
class QueueWorkflowFailedEvent(AppQueueEvent):
"""
QueueWorkflowFailedEvent entity
"""
event: QueueEvent = QueueEvent.WORKFLOW_FAILED
error: str
exceptions_count: int
class QueueWorkflowPartialSuccessEvent(AppQueueEvent):
"""
QueueWorkflowFailedEvent entity
"""
event: QueueEvent = QueueEvent.WORKFLOW_PARTIAL_SUCCEEDED
exceptions_count: int
outputs: Mapping[str, object] = Field(default_factory=dict)
class QueueNodeStartedEvent(AppQueueEvent):
"""
QueueNodeStartedEvent entity
"""
event: QueueEvent = QueueEvent.NODE_STARTED
node_execution_id: str
node_id: str
node_title: str
node_type: NodeType
node_run_index: int = 1 # FIXME(-LAN-): may not used
in_iteration_id: str | None = None
in_loop_id: str | None = None
start_at: datetime
agent_strategy: AgentNodeStrategyInit | None = None
# FIXME(-LAN-): only for ToolNode, need to refactor
provider_type: str # should be a core.tools.entities.tool_entities.ToolProviderType
provider_id: str
class QueueNodeSucceededEvent(AppQueueEvent):
"""
QueueNodeSucceededEvent entity
"""
event: QueueEvent = QueueEvent.NODE_SUCCEEDED
node_execution_id: str
node_id: str
node_type: NodeType
in_iteration_id: str | None = None
"""iteration id if node is in iteration"""
in_loop_id: str | None = None
"""loop id if node is in loop"""
start_at: datetime
inputs: Mapping[str, object] = Field(default_factory=dict)
process_data: Mapping[str, object] = Field(default_factory=dict)
outputs: Mapping[str, object] = Field(default_factory=dict)
execution_metadata: Mapping[WorkflowNodeExecutionMetadataKey, Any] | None = None
error: str | None = None
class QueueAgentLogEvent(AppQueueEvent):
"""
QueueAgentLogEvent entity
"""
event: QueueEvent = QueueEvent.AGENT_LOG
id: str
label: str
node_execution_id: str
parent_id: str | None = None
error: str | None = None
status: str
data: Mapping[str, Any]
metadata: Mapping[str, object] = Field(default_factory=dict)
node_id: str
class QueueNodeRetryEvent(QueueNodeStartedEvent):
"""QueueNodeRetryEvent entity"""
event: QueueEvent = QueueEvent.RETRY
inputs: Mapping[str, object] = Field(default_factory=dict)
process_data: Mapping[str, object] = Field(default_factory=dict)
outputs: Mapping[str, object] = Field(default_factory=dict)
execution_metadata: Mapping[WorkflowNodeExecutionMetadataKey, Any] | None = None
error: str
retry_index: int # retry index
class QueueNodeExceptionEvent(AppQueueEvent):
"""
QueueNodeExceptionEvent entity
"""
event: QueueEvent = QueueEvent.NODE_EXCEPTION
node_execution_id: str
node_id: str
node_type: NodeType
in_iteration_id: str | None = None
"""iteration id if node is in iteration"""
in_loop_id: str | None = None
"""loop id if node is in loop"""
start_at: datetime
inputs: Mapping[str, object] = Field(default_factory=dict)
process_data: Mapping[str, object] = Field(default_factory=dict)
outputs: Mapping[str, object] = Field(default_factory=dict)
execution_metadata: Mapping[WorkflowNodeExecutionMetadataKey, Any] | None = None
error: str
class QueueNodeFailedEvent(AppQueueEvent):
"""
QueueNodeFailedEvent entity
"""
event: QueueEvent = QueueEvent.NODE_FAILED
node_execution_id: str
node_id: str
node_type: NodeType
in_iteration_id: str | None = None
"""iteration id if node is in iteration"""
in_loop_id: str | None = None
"""loop id if node is in loop"""
start_at: datetime
inputs: Mapping[str, object] = Field(default_factory=dict)
process_data: Mapping[str, object] = Field(default_factory=dict)
outputs: Mapping[str, object] = Field(default_factory=dict)
execution_metadata: Mapping[WorkflowNodeExecutionMetadataKey, Any] | None = None
error: str
class QueueAgentThoughtEvent(AppQueueEvent):
"""
QueueAgentThoughtEvent entity
"""
event: QueueEvent = QueueEvent.AGENT_THOUGHT
agent_thought_id: str
class QueueMessageFileEvent(AppQueueEvent):
"""
QueueAgentThoughtEvent entity
"""
event: QueueEvent = QueueEvent.MESSAGE_FILE
message_file_id: str
class QueueErrorEvent(AppQueueEvent):
"""
QueueErrorEvent entity
"""
event: QueueEvent = QueueEvent.ERROR
error: Any = None
class QueuePingEvent(AppQueueEvent):
"""
QueuePingEvent entity
"""
event: QueueEvent = QueueEvent.PING
class QueueStopEvent(AppQueueEvent):
"""
QueueStopEvent entity
"""
class StopBy(StrEnum):
"""
Stop by enum
"""
USER_MANUAL = auto()
ANNOTATION_REPLY = auto()
OUTPUT_MODERATION = auto()
INPUT_MODERATION = auto()
event: QueueEvent = QueueEvent.STOP
stopped_by: StopBy
def get_stop_reason(self) -> str:
"""
To stop reason
"""
reason_mapping = {
QueueStopEvent.StopBy.USER_MANUAL: "Stopped by user.",
QueueStopEvent.StopBy.ANNOTATION_REPLY: "Stopped by annotation reply.",
QueueStopEvent.StopBy.OUTPUT_MODERATION: "Stopped by output moderation.",
QueueStopEvent.StopBy.INPUT_MODERATION: "Stopped by input moderation.",
}
return reason_mapping.get(self.stopped_by, "Stopped by unknown reason.")
class QueueMessage(BaseModel):
"""
QueueMessage abstract entity
"""
task_id: str
app_mode: str
event: AppQueueEvent
class MessageQueueMessage(QueueMessage):
"""
MessageQueueMessage entity
"""
message_id: str
conversation_id: str
class WorkflowQueueMessage(QueueMessage):
"""
WorkflowQueueMessage entity
"""
pass

Some files were not shown because too many files have changed in this diff Show More