dify
This commit is contained in:
0
dify/api/core/__init__.py
Normal file
0
dify/api/core/__init__.py
Normal file
0
dify/api/core/agent/__init__.py
Normal file
0
dify/api/core/agent/__init__.py
Normal file
528
dify/api/core/agent/base_agent_runner.py
Normal file
528
dify/api/core/agent/base_agent_runner.py
Normal file
@@ -0,0 +1,528 @@
|
||||
import json
|
||||
import logging
|
||||
import uuid
|
||||
from typing import Union, cast
|
||||
|
||||
from sqlalchemy import select
|
||||
|
||||
from core.agent.entities import AgentEntity, AgentToolEntity
|
||||
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
|
||||
from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfig
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager
|
||||
from core.app.apps.base_app_runner import AppRunner
|
||||
from core.app.entities.app_invoke_entities import (
|
||||
AgentChatAppGenerateEntity,
|
||||
ModelConfigWithCredentialsEntity,
|
||||
)
|
||||
from core.callback_handler.agent_tool_callback_handler import DifyAgentCallbackHandler
|
||||
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
|
||||
from core.file import file_manager
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities import (
|
||||
AssistantPromptMessage,
|
||||
LLMUsage,
|
||||
PromptMessage,
|
||||
PromptMessageTool,
|
||||
SystemPromptMessage,
|
||||
TextPromptMessageContent,
|
||||
ToolPromptMessage,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.model_runtime.entities.message_entities import ImagePromptMessageContent, PromptMessageContentUnionTypes
|
||||
from core.model_runtime.entities.model_entities import ModelFeature
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.prompt.utils.extract_thread_messages import extract_thread_messages
|
||||
from core.tools.__base.tool import Tool
|
||||
from core.tools.entities.tool_entities import (
|
||||
ToolParameter,
|
||||
)
|
||||
from core.tools.tool_manager import ToolManager
|
||||
from core.tools.utils.dataset_retriever_tool import DatasetRetrieverTool
|
||||
from extensions.ext_database import db
|
||||
from factories import file_factory
|
||||
from models.model import Conversation, Message, MessageAgentThought, MessageFile
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class BaseAgentRunner(AppRunner):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
tenant_id: str,
|
||||
application_generate_entity: AgentChatAppGenerateEntity,
|
||||
conversation: Conversation,
|
||||
app_config: AgentChatAppConfig,
|
||||
model_config: ModelConfigWithCredentialsEntity,
|
||||
config: AgentEntity,
|
||||
queue_manager: AppQueueManager,
|
||||
message: Message,
|
||||
user_id: str,
|
||||
model_instance: ModelInstance,
|
||||
memory: TokenBufferMemory | None = None,
|
||||
prompt_messages: list[PromptMessage] | None = None,
|
||||
):
|
||||
self.tenant_id = tenant_id
|
||||
self.application_generate_entity = application_generate_entity
|
||||
self.conversation = conversation
|
||||
self.app_config = app_config
|
||||
self.model_config = model_config
|
||||
self.config = config
|
||||
self.queue_manager = queue_manager
|
||||
self.message = message
|
||||
self.user_id = user_id
|
||||
self.memory = memory
|
||||
self.history_prompt_messages = self.organize_agent_history(prompt_messages=prompt_messages or [])
|
||||
self.model_instance = model_instance
|
||||
|
||||
# init callback
|
||||
self.agent_callback = DifyAgentCallbackHandler()
|
||||
# init dataset tools
|
||||
hit_callback = DatasetIndexToolCallbackHandler(
|
||||
queue_manager=queue_manager,
|
||||
app_id=self.app_config.app_id,
|
||||
message_id=message.id,
|
||||
user_id=user_id,
|
||||
invoke_from=self.application_generate_entity.invoke_from,
|
||||
)
|
||||
self.dataset_tools = DatasetRetrieverTool.get_dataset_tools(
|
||||
tenant_id=tenant_id,
|
||||
dataset_ids=app_config.dataset.dataset_ids if app_config.dataset else [],
|
||||
retrieve_config=app_config.dataset.retrieve_config if app_config.dataset else None,
|
||||
return_resource=(
|
||||
app_config.additional_features.show_retrieve_source if app_config.additional_features else False
|
||||
),
|
||||
invoke_from=application_generate_entity.invoke_from,
|
||||
hit_callback=hit_callback,
|
||||
user_id=user_id,
|
||||
inputs=cast(dict, application_generate_entity.inputs),
|
||||
)
|
||||
# get how many agent thoughts have been created
|
||||
self.agent_thought_count = (
|
||||
db.session.query(MessageAgentThought)
|
||||
.where(
|
||||
MessageAgentThought.message_id == self.message.id,
|
||||
)
|
||||
.count()
|
||||
)
|
||||
db.session.close()
|
||||
|
||||
# check if model supports stream tool call
|
||||
llm_model = cast(LargeLanguageModel, model_instance.model_type_instance)
|
||||
model_schema = llm_model.get_model_schema(model_instance.model, model_instance.credentials)
|
||||
features = model_schema.features if model_schema and model_schema.features else []
|
||||
self.stream_tool_call = ModelFeature.STREAM_TOOL_CALL in features
|
||||
self.files = application_generate_entity.files if ModelFeature.VISION in features else []
|
||||
self.query: str | None = ""
|
||||
self._current_thoughts: list[PromptMessage] = []
|
||||
|
||||
def _repack_app_generate_entity(
|
||||
self, app_generate_entity: AgentChatAppGenerateEntity
|
||||
) -> AgentChatAppGenerateEntity:
|
||||
"""
|
||||
Repack app generate entity
|
||||
"""
|
||||
if app_generate_entity.app_config.prompt_template.simple_prompt_template is None:
|
||||
app_generate_entity.app_config.prompt_template.simple_prompt_template = ""
|
||||
|
||||
return app_generate_entity
|
||||
|
||||
def _convert_tool_to_prompt_message_tool(self, tool: AgentToolEntity) -> tuple[PromptMessageTool, Tool]:
|
||||
"""
|
||||
convert tool to prompt message tool
|
||||
"""
|
||||
tool_entity = ToolManager.get_agent_tool_runtime(
|
||||
tenant_id=self.tenant_id,
|
||||
app_id=self.app_config.app_id,
|
||||
agent_tool=tool,
|
||||
invoke_from=self.application_generate_entity.invoke_from,
|
||||
)
|
||||
assert tool_entity.entity.description
|
||||
message_tool = PromptMessageTool(
|
||||
name=tool.tool_name,
|
||||
description=tool_entity.entity.description.llm,
|
||||
parameters={
|
||||
"type": "object",
|
||||
"properties": {},
|
||||
"required": [],
|
||||
},
|
||||
)
|
||||
|
||||
parameters = tool_entity.get_merged_runtime_parameters()
|
||||
for parameter in parameters:
|
||||
if parameter.form != ToolParameter.ToolParameterForm.LLM:
|
||||
continue
|
||||
|
||||
parameter_type = parameter.type.as_normal_type()
|
||||
if parameter.type in {
|
||||
ToolParameter.ToolParameterType.SYSTEM_FILES,
|
||||
ToolParameter.ToolParameterType.FILE,
|
||||
ToolParameter.ToolParameterType.FILES,
|
||||
}:
|
||||
continue
|
||||
enum = []
|
||||
if parameter.type == ToolParameter.ToolParameterType.SELECT:
|
||||
enum = [option.value for option in parameter.options] if parameter.options else []
|
||||
|
||||
message_tool.parameters["properties"][parameter.name] = (
|
||||
{
|
||||
"type": parameter_type,
|
||||
"description": parameter.llm_description or "",
|
||||
}
|
||||
if parameter.input_schema is None
|
||||
else parameter.input_schema
|
||||
)
|
||||
|
||||
if len(enum) > 0:
|
||||
message_tool.parameters["properties"][parameter.name]["enum"] = enum
|
||||
|
||||
if parameter.required:
|
||||
message_tool.parameters["required"].append(parameter.name)
|
||||
|
||||
return message_tool, tool_entity
|
||||
|
||||
def _convert_dataset_retriever_tool_to_prompt_message_tool(self, tool: DatasetRetrieverTool) -> PromptMessageTool:
|
||||
"""
|
||||
convert dataset retriever tool to prompt message tool
|
||||
"""
|
||||
assert tool.entity.description
|
||||
|
||||
prompt_tool = PromptMessageTool(
|
||||
name=tool.entity.identity.name,
|
||||
description=tool.entity.description.llm,
|
||||
parameters={
|
||||
"type": "object",
|
||||
"properties": {},
|
||||
"required": [],
|
||||
},
|
||||
)
|
||||
|
||||
for parameter in tool.get_runtime_parameters():
|
||||
parameter_type = "string"
|
||||
|
||||
prompt_tool.parameters["properties"][parameter.name] = {
|
||||
"type": parameter_type,
|
||||
"description": parameter.llm_description or "",
|
||||
}
|
||||
|
||||
if parameter.required:
|
||||
if parameter.name not in prompt_tool.parameters["required"]:
|
||||
prompt_tool.parameters["required"].append(parameter.name)
|
||||
|
||||
return prompt_tool
|
||||
|
||||
def _init_prompt_tools(self) -> tuple[dict[str, Tool], list[PromptMessageTool]]:
|
||||
"""
|
||||
Init tools
|
||||
"""
|
||||
tool_instances = {}
|
||||
prompt_messages_tools = []
|
||||
|
||||
for tool in self.app_config.agent.tools or [] if self.app_config.agent else []:
|
||||
try:
|
||||
prompt_tool, tool_entity = self._convert_tool_to_prompt_message_tool(tool)
|
||||
except Exception:
|
||||
# api tool may be deleted
|
||||
continue
|
||||
# save tool entity
|
||||
tool_instances[tool.tool_name] = tool_entity
|
||||
# save prompt tool
|
||||
prompt_messages_tools.append(prompt_tool)
|
||||
|
||||
# convert dataset tools into ModelRuntime Tool format
|
||||
for dataset_tool in self.dataset_tools:
|
||||
prompt_tool = self._convert_dataset_retriever_tool_to_prompt_message_tool(dataset_tool)
|
||||
# save prompt tool
|
||||
prompt_messages_tools.append(prompt_tool)
|
||||
# save tool entity
|
||||
tool_instances[dataset_tool.entity.identity.name] = dataset_tool
|
||||
|
||||
return tool_instances, prompt_messages_tools
|
||||
|
||||
def update_prompt_message_tool(self, tool: Tool, prompt_tool: PromptMessageTool) -> PromptMessageTool:
|
||||
"""
|
||||
update prompt message tool
|
||||
"""
|
||||
# try to get tool runtime parameters
|
||||
tool_runtime_parameters = tool.get_runtime_parameters()
|
||||
|
||||
for parameter in tool_runtime_parameters:
|
||||
if parameter.form != ToolParameter.ToolParameterForm.LLM:
|
||||
continue
|
||||
|
||||
parameter_type = parameter.type.as_normal_type()
|
||||
if parameter.type in {
|
||||
ToolParameter.ToolParameterType.SYSTEM_FILES,
|
||||
ToolParameter.ToolParameterType.FILE,
|
||||
ToolParameter.ToolParameterType.FILES,
|
||||
}:
|
||||
continue
|
||||
enum = []
|
||||
if parameter.type == ToolParameter.ToolParameterType.SELECT:
|
||||
enum = [option.value for option in parameter.options] if parameter.options else []
|
||||
|
||||
prompt_tool.parameters["properties"][parameter.name] = (
|
||||
{
|
||||
"type": parameter_type,
|
||||
"description": parameter.llm_description or "",
|
||||
}
|
||||
if parameter.input_schema is None
|
||||
else parameter.input_schema
|
||||
)
|
||||
|
||||
if len(enum) > 0:
|
||||
prompt_tool.parameters["properties"][parameter.name]["enum"] = enum
|
||||
|
||||
if parameter.required:
|
||||
if parameter.name not in prompt_tool.parameters["required"]:
|
||||
prompt_tool.parameters["required"].append(parameter.name)
|
||||
|
||||
return prompt_tool
|
||||
|
||||
def create_agent_thought(
|
||||
self, message_id: str, message: str, tool_name: str, tool_input: str, messages_ids: list[str]
|
||||
) -> str:
|
||||
"""
|
||||
Create agent thought
|
||||
"""
|
||||
thought = MessageAgentThought(
|
||||
message_id=message_id,
|
||||
message_chain_id=None,
|
||||
thought="",
|
||||
tool=tool_name,
|
||||
tool_labels_str="{}",
|
||||
tool_meta_str="{}",
|
||||
tool_input=tool_input,
|
||||
message=message,
|
||||
message_token=0,
|
||||
message_unit_price=0,
|
||||
message_price_unit=0,
|
||||
message_files=json.dumps(messages_ids) if messages_ids else "",
|
||||
answer="",
|
||||
observation="",
|
||||
answer_token=0,
|
||||
answer_unit_price=0,
|
||||
answer_price_unit=0,
|
||||
tokens=0,
|
||||
total_price=0,
|
||||
position=self.agent_thought_count + 1,
|
||||
currency="USD",
|
||||
latency=0,
|
||||
created_by_role="account",
|
||||
created_by=self.user_id,
|
||||
)
|
||||
|
||||
db.session.add(thought)
|
||||
db.session.commit()
|
||||
agent_thought_id = str(thought.id)
|
||||
self.agent_thought_count += 1
|
||||
db.session.close()
|
||||
|
||||
return agent_thought_id
|
||||
|
||||
def save_agent_thought(
|
||||
self,
|
||||
agent_thought_id: str,
|
||||
tool_name: str | None,
|
||||
tool_input: Union[str, dict, None],
|
||||
thought: str | None,
|
||||
observation: Union[str, dict, None],
|
||||
tool_invoke_meta: Union[str, dict, None],
|
||||
answer: str | None,
|
||||
messages_ids: list[str],
|
||||
llm_usage: LLMUsage | None = None,
|
||||
):
|
||||
"""
|
||||
Save agent thought
|
||||
"""
|
||||
stmt = select(MessageAgentThought).where(MessageAgentThought.id == agent_thought_id)
|
||||
agent_thought = db.session.scalar(stmt)
|
||||
if not agent_thought:
|
||||
raise ValueError("agent thought not found")
|
||||
|
||||
if thought:
|
||||
agent_thought.thought += thought
|
||||
|
||||
if tool_name:
|
||||
agent_thought.tool = tool_name
|
||||
|
||||
if tool_input:
|
||||
if isinstance(tool_input, dict):
|
||||
try:
|
||||
tool_input = json.dumps(tool_input, ensure_ascii=False)
|
||||
except Exception:
|
||||
tool_input = json.dumps(tool_input)
|
||||
|
||||
agent_thought.tool_input = tool_input
|
||||
|
||||
if observation:
|
||||
if isinstance(observation, dict):
|
||||
try:
|
||||
observation = json.dumps(observation, ensure_ascii=False)
|
||||
except Exception:
|
||||
observation = json.dumps(observation)
|
||||
|
||||
agent_thought.observation = observation
|
||||
|
||||
if answer:
|
||||
agent_thought.answer = answer
|
||||
|
||||
if messages_ids is not None and len(messages_ids) > 0:
|
||||
agent_thought.message_files = json.dumps(messages_ids)
|
||||
|
||||
if llm_usage:
|
||||
agent_thought.message_token = llm_usage.prompt_tokens
|
||||
agent_thought.message_price_unit = llm_usage.prompt_price_unit
|
||||
agent_thought.message_unit_price = llm_usage.prompt_unit_price
|
||||
agent_thought.answer_token = llm_usage.completion_tokens
|
||||
agent_thought.answer_price_unit = llm_usage.completion_price_unit
|
||||
agent_thought.answer_unit_price = llm_usage.completion_unit_price
|
||||
agent_thought.tokens = llm_usage.total_tokens
|
||||
agent_thought.total_price = llm_usage.total_price
|
||||
|
||||
# check if tool labels is not empty
|
||||
labels = agent_thought.tool_labels or {}
|
||||
tools = agent_thought.tool.split(";") if agent_thought.tool else []
|
||||
for tool in tools:
|
||||
if not tool:
|
||||
continue
|
||||
if tool not in labels:
|
||||
tool_label = ToolManager.get_tool_label(tool)
|
||||
if tool_label:
|
||||
labels[tool] = tool_label.to_dict()
|
||||
else:
|
||||
labels[tool] = {"en_US": tool, "zh_Hans": tool}
|
||||
|
||||
agent_thought.tool_labels_str = json.dumps(labels)
|
||||
|
||||
if tool_invoke_meta is not None:
|
||||
if isinstance(tool_invoke_meta, dict):
|
||||
try:
|
||||
tool_invoke_meta = json.dumps(tool_invoke_meta, ensure_ascii=False)
|
||||
except Exception:
|
||||
tool_invoke_meta = json.dumps(tool_invoke_meta)
|
||||
|
||||
agent_thought.tool_meta_str = tool_invoke_meta
|
||||
|
||||
db.session.commit()
|
||||
db.session.close()
|
||||
|
||||
def organize_agent_history(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
|
||||
"""
|
||||
Organize agent history
|
||||
"""
|
||||
result: list[PromptMessage] = []
|
||||
# check if there is a system message in the beginning of the conversation
|
||||
for prompt_message in prompt_messages:
|
||||
if isinstance(prompt_message, SystemPromptMessage):
|
||||
result.append(prompt_message)
|
||||
|
||||
messages = (
|
||||
(
|
||||
db.session.execute(
|
||||
select(Message)
|
||||
.where(Message.conversation_id == self.message.conversation_id)
|
||||
.order_by(Message.created_at.desc())
|
||||
)
|
||||
)
|
||||
.scalars()
|
||||
.all()
|
||||
)
|
||||
|
||||
messages = list(reversed(extract_thread_messages(messages)))
|
||||
|
||||
for message in messages:
|
||||
if message.id == self.message.id:
|
||||
continue
|
||||
|
||||
result.append(self.organize_agent_user_prompt(message))
|
||||
agent_thoughts: list[MessageAgentThought] = message.agent_thoughts
|
||||
if agent_thoughts:
|
||||
for agent_thought in agent_thoughts:
|
||||
tools = agent_thought.tool
|
||||
if tools:
|
||||
tools = tools.split(";")
|
||||
tool_calls: list[AssistantPromptMessage.ToolCall] = []
|
||||
tool_call_response: list[ToolPromptMessage] = []
|
||||
try:
|
||||
tool_inputs = json.loads(agent_thought.tool_input)
|
||||
except Exception:
|
||||
tool_inputs = {tool: {} for tool in tools}
|
||||
try:
|
||||
tool_responses = json.loads(agent_thought.observation)
|
||||
except Exception:
|
||||
tool_responses = dict.fromkeys(tools, agent_thought.observation)
|
||||
|
||||
for tool in tools:
|
||||
# generate a uuid for tool call
|
||||
tool_call_id = str(uuid.uuid4())
|
||||
tool_calls.append(
|
||||
AssistantPromptMessage.ToolCall(
|
||||
id=tool_call_id,
|
||||
type="function",
|
||||
function=AssistantPromptMessage.ToolCall.ToolCallFunction(
|
||||
name=tool,
|
||||
arguments=json.dumps(tool_inputs.get(tool, {})),
|
||||
),
|
||||
)
|
||||
)
|
||||
tool_call_response.append(
|
||||
ToolPromptMessage(
|
||||
content=tool_responses.get(tool, agent_thought.observation),
|
||||
name=tool,
|
||||
tool_call_id=tool_call_id,
|
||||
)
|
||||
)
|
||||
|
||||
result.extend(
|
||||
[
|
||||
AssistantPromptMessage(
|
||||
content=agent_thought.thought,
|
||||
tool_calls=tool_calls,
|
||||
),
|
||||
*tool_call_response,
|
||||
]
|
||||
)
|
||||
if not tools:
|
||||
result.append(AssistantPromptMessage(content=agent_thought.thought))
|
||||
else:
|
||||
if message.answer:
|
||||
result.append(AssistantPromptMessage(content=message.answer))
|
||||
|
||||
db.session.close()
|
||||
|
||||
return result
|
||||
|
||||
def organize_agent_user_prompt(self, message: Message) -> UserPromptMessage:
|
||||
stmt = select(MessageFile).where(MessageFile.message_id == message.id)
|
||||
files = db.session.scalars(stmt).all()
|
||||
if not files:
|
||||
return UserPromptMessage(content=message.query)
|
||||
if message.app_model_config:
|
||||
file_extra_config = FileUploadConfigManager.convert(message.app_model_config.to_dict())
|
||||
else:
|
||||
file_extra_config = None
|
||||
|
||||
if not file_extra_config:
|
||||
return UserPromptMessage(content=message.query)
|
||||
|
||||
image_detail_config = file_extra_config.image_config.detail if file_extra_config.image_config else None
|
||||
image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
|
||||
|
||||
file_objs = file_factory.build_from_message_files(
|
||||
message_files=files, tenant_id=self.tenant_id, config=file_extra_config
|
||||
)
|
||||
if not file_objs:
|
||||
return UserPromptMessage(content=message.query)
|
||||
prompt_message_contents: list[PromptMessageContentUnionTypes] = []
|
||||
for file in file_objs:
|
||||
prompt_message_contents.append(
|
||||
file_manager.to_prompt_message_content(
|
||||
file,
|
||||
image_detail_config=image_detail_config,
|
||||
)
|
||||
)
|
||||
prompt_message_contents.append(TextPromptMessageContent(data=message.query))
|
||||
|
||||
return UserPromptMessage(content=prompt_message_contents)
|
||||
428
dify/api/core/agent/cot_agent_runner.py
Normal file
428
dify/api/core/agent/cot_agent_runner.py
Normal file
@@ -0,0 +1,428 @@
|
||||
import json
|
||||
from abc import ABC, abstractmethod
|
||||
from collections.abc import Generator, Mapping, Sequence
|
||||
from typing import Any
|
||||
|
||||
from core.agent.base_agent_runner import BaseAgentRunner
|
||||
from core.agent.entities import AgentScratchpadUnit
|
||||
from core.agent.output_parser.cot_output_parser import CotAgentOutputParser
|
||||
from core.app.apps.base_app_queue_manager import PublishFrom
|
||||
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
|
||||
from core.model_runtime.entities.message_entities import (
|
||||
AssistantPromptMessage,
|
||||
PromptMessage,
|
||||
PromptMessageTool,
|
||||
ToolPromptMessage,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.ops.ops_trace_manager import TraceQueueManager
|
||||
from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
|
||||
from core.tools.__base.tool import Tool
|
||||
from core.tools.entities.tool_entities import ToolInvokeMeta
|
||||
from core.tools.tool_engine import ToolEngine
|
||||
from models.model import Message
|
||||
|
||||
|
||||
class CotAgentRunner(BaseAgentRunner, ABC):
|
||||
_is_first_iteration = True
|
||||
_ignore_observation_providers = ["wenxin"]
|
||||
_historic_prompt_messages: list[PromptMessage]
|
||||
_agent_scratchpad: list[AgentScratchpadUnit]
|
||||
_instruction: str
|
||||
_query: str
|
||||
_prompt_messages_tools: Sequence[PromptMessageTool]
|
||||
|
||||
def run(
|
||||
self,
|
||||
message: Message,
|
||||
query: str,
|
||||
inputs: Mapping[str, str],
|
||||
) -> Generator:
|
||||
"""
|
||||
Run Cot agent application
|
||||
"""
|
||||
|
||||
app_generate_entity = self.application_generate_entity
|
||||
self._repack_app_generate_entity(app_generate_entity)
|
||||
self._init_react_state(query)
|
||||
|
||||
trace_manager = app_generate_entity.trace_manager
|
||||
|
||||
# check model mode
|
||||
if "Observation" not in app_generate_entity.model_conf.stop:
|
||||
if app_generate_entity.model_conf.provider not in self._ignore_observation_providers:
|
||||
app_generate_entity.model_conf.stop.append("Observation")
|
||||
|
||||
app_config = self.app_config
|
||||
assert app_config.agent
|
||||
|
||||
# init instruction
|
||||
inputs = inputs or {}
|
||||
instruction = app_config.prompt_template.simple_prompt_template or ""
|
||||
self._instruction = self._fill_in_inputs_from_external_data_tools(instruction, inputs)
|
||||
|
||||
iteration_step = 1
|
||||
max_iteration_steps = min(app_config.agent.max_iteration, 99) + 1
|
||||
|
||||
# convert tools into ModelRuntime Tool format
|
||||
tool_instances, prompt_messages_tools = self._init_prompt_tools()
|
||||
self._prompt_messages_tools = prompt_messages_tools
|
||||
|
||||
function_call_state = True
|
||||
llm_usage: dict[str, LLMUsage | None] = {"usage": None}
|
||||
final_answer = ""
|
||||
prompt_messages: list = [] # Initialize prompt_messages
|
||||
agent_thought_id = "" # Initialize agent_thought_id
|
||||
|
||||
def increase_usage(final_llm_usage_dict: dict[str, LLMUsage | None], usage: LLMUsage):
|
||||
if not final_llm_usage_dict["usage"]:
|
||||
final_llm_usage_dict["usage"] = usage
|
||||
else:
|
||||
llm_usage = final_llm_usage_dict["usage"]
|
||||
llm_usage.prompt_tokens += usage.prompt_tokens
|
||||
llm_usage.completion_tokens += usage.completion_tokens
|
||||
llm_usage.total_tokens += usage.total_tokens
|
||||
llm_usage.prompt_price += usage.prompt_price
|
||||
llm_usage.completion_price += usage.completion_price
|
||||
llm_usage.total_price += usage.total_price
|
||||
|
||||
model_instance = self.model_instance
|
||||
|
||||
while function_call_state and iteration_step <= max_iteration_steps:
|
||||
# continue to run until there is not any tool call
|
||||
function_call_state = False
|
||||
|
||||
if iteration_step == max_iteration_steps:
|
||||
# the last iteration, remove all tools
|
||||
self._prompt_messages_tools = []
|
||||
|
||||
message_file_ids: list[str] = []
|
||||
|
||||
agent_thought_id = self.create_agent_thought(
|
||||
message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids
|
||||
)
|
||||
|
||||
if iteration_step > 1:
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
||||
# recalc llm max tokens
|
||||
prompt_messages = self._organize_prompt_messages()
|
||||
self.recalc_llm_max_tokens(self.model_config, prompt_messages)
|
||||
# invoke model
|
||||
chunks = model_instance.invoke_llm(
|
||||
prompt_messages=prompt_messages,
|
||||
model_parameters=app_generate_entity.model_conf.parameters,
|
||||
tools=[],
|
||||
stop=app_generate_entity.model_conf.stop,
|
||||
stream=True,
|
||||
user=self.user_id,
|
||||
callbacks=[],
|
||||
)
|
||||
|
||||
usage_dict: dict[str, LLMUsage | None] = {}
|
||||
react_chunks = CotAgentOutputParser.handle_react_stream_output(chunks, usage_dict)
|
||||
scratchpad = AgentScratchpadUnit(
|
||||
agent_response="",
|
||||
thought="",
|
||||
action_str="",
|
||||
observation="",
|
||||
action=None,
|
||||
)
|
||||
|
||||
# publish agent thought if it's first iteration
|
||||
if iteration_step == 1:
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
||||
for chunk in react_chunks:
|
||||
if isinstance(chunk, AgentScratchpadUnit.Action):
|
||||
action = chunk
|
||||
# detect action
|
||||
assert scratchpad.agent_response is not None
|
||||
scratchpad.agent_response += json.dumps(chunk.model_dump())
|
||||
scratchpad.action_str = json.dumps(chunk.model_dump())
|
||||
scratchpad.action = action
|
||||
else:
|
||||
assert scratchpad.agent_response is not None
|
||||
scratchpad.agent_response += chunk
|
||||
assert scratchpad.thought is not None
|
||||
scratchpad.thought += chunk
|
||||
yield LLMResultChunk(
|
||||
model=self.model_config.model,
|
||||
prompt_messages=prompt_messages,
|
||||
system_fingerprint="",
|
||||
delta=LLMResultChunkDelta(index=0, message=AssistantPromptMessage(content=chunk), usage=None),
|
||||
)
|
||||
|
||||
assert scratchpad.thought is not None
|
||||
scratchpad.thought = scratchpad.thought.strip() or "I am thinking about how to help you"
|
||||
self._agent_scratchpad.append(scratchpad)
|
||||
|
||||
# get llm usage
|
||||
if "usage" in usage_dict:
|
||||
if usage_dict["usage"] is not None:
|
||||
increase_usage(llm_usage, usage_dict["usage"])
|
||||
else:
|
||||
usage_dict["usage"] = LLMUsage.empty_usage()
|
||||
|
||||
self.save_agent_thought(
|
||||
agent_thought_id=agent_thought_id,
|
||||
tool_name=(scratchpad.action.action_name if scratchpad.action and not scratchpad.is_final() else ""),
|
||||
tool_input={scratchpad.action.action_name: scratchpad.action.action_input} if scratchpad.action else {},
|
||||
tool_invoke_meta={},
|
||||
thought=scratchpad.thought or "",
|
||||
observation="",
|
||||
answer=scratchpad.agent_response or "",
|
||||
messages_ids=[],
|
||||
llm_usage=usage_dict["usage"],
|
||||
)
|
||||
|
||||
if not scratchpad.is_final():
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
||||
if not scratchpad.action:
|
||||
# failed to extract action, return final answer directly
|
||||
final_answer = ""
|
||||
else:
|
||||
if scratchpad.action.action_name.lower() == "final answer":
|
||||
# action is final answer, return final answer directly
|
||||
try:
|
||||
if isinstance(scratchpad.action.action_input, dict):
|
||||
final_answer = json.dumps(scratchpad.action.action_input, ensure_ascii=False)
|
||||
elif isinstance(scratchpad.action.action_input, str):
|
||||
final_answer = scratchpad.action.action_input
|
||||
else:
|
||||
final_answer = f"{scratchpad.action.action_input}"
|
||||
except TypeError:
|
||||
final_answer = f"{scratchpad.action.action_input}"
|
||||
else:
|
||||
function_call_state = True
|
||||
# action is tool call, invoke tool
|
||||
tool_invoke_response, tool_invoke_meta = self._handle_invoke_action(
|
||||
action=scratchpad.action,
|
||||
tool_instances=tool_instances,
|
||||
message_file_ids=message_file_ids,
|
||||
trace_manager=trace_manager,
|
||||
)
|
||||
scratchpad.observation = tool_invoke_response
|
||||
scratchpad.agent_response = tool_invoke_response
|
||||
|
||||
self.save_agent_thought(
|
||||
agent_thought_id=agent_thought_id,
|
||||
tool_name=scratchpad.action.action_name,
|
||||
tool_input={scratchpad.action.action_name: scratchpad.action.action_input},
|
||||
thought=scratchpad.thought or "",
|
||||
observation={scratchpad.action.action_name: tool_invoke_response},
|
||||
tool_invoke_meta={scratchpad.action.action_name: tool_invoke_meta.to_dict()},
|
||||
answer=scratchpad.agent_response,
|
||||
messages_ids=message_file_ids,
|
||||
llm_usage=usage_dict["usage"],
|
||||
)
|
||||
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
||||
# update prompt tool message
|
||||
for prompt_tool in self._prompt_messages_tools:
|
||||
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
|
||||
|
||||
iteration_step += 1
|
||||
|
||||
yield LLMResultChunk(
|
||||
model=model_instance.model,
|
||||
prompt_messages=prompt_messages,
|
||||
delta=LLMResultChunkDelta(
|
||||
index=0, message=AssistantPromptMessage(content=final_answer), usage=llm_usage["usage"]
|
||||
),
|
||||
system_fingerprint="",
|
||||
)
|
||||
|
||||
# save agent thought
|
||||
self.save_agent_thought(
|
||||
agent_thought_id=agent_thought_id,
|
||||
tool_name="",
|
||||
tool_input={},
|
||||
tool_invoke_meta={},
|
||||
thought=final_answer,
|
||||
observation={},
|
||||
answer=final_answer,
|
||||
messages_ids=[],
|
||||
)
|
||||
# publish end event
|
||||
self.queue_manager.publish(
|
||||
QueueMessageEndEvent(
|
||||
llm_result=LLMResult(
|
||||
model=model_instance.model,
|
||||
prompt_messages=prompt_messages,
|
||||
message=AssistantPromptMessage(content=final_answer),
|
||||
usage=llm_usage["usage"] or LLMUsage.empty_usage(),
|
||||
system_fingerprint="",
|
||||
)
|
||||
),
|
||||
PublishFrom.APPLICATION_MANAGER,
|
||||
)
|
||||
|
||||
def _handle_invoke_action(
|
||||
self,
|
||||
action: AgentScratchpadUnit.Action,
|
||||
tool_instances: Mapping[str, Tool],
|
||||
message_file_ids: list[str],
|
||||
trace_manager: TraceQueueManager | None = None,
|
||||
) -> tuple[str, ToolInvokeMeta]:
|
||||
"""
|
||||
handle invoke action
|
||||
:param action: action
|
||||
:param tool_instances: tool instances
|
||||
:param message_file_ids: message file ids
|
||||
:param trace_manager: trace manager
|
||||
:return: observation, meta
|
||||
"""
|
||||
# action is tool call, invoke tool
|
||||
tool_call_name = action.action_name
|
||||
tool_call_args = action.action_input
|
||||
tool_instance = tool_instances.get(tool_call_name)
|
||||
|
||||
if not tool_instance:
|
||||
answer = f"there is not a tool named {tool_call_name}"
|
||||
return answer, ToolInvokeMeta.error_instance(answer)
|
||||
|
||||
if isinstance(tool_call_args, str):
|
||||
try:
|
||||
tool_call_args = json.loads(tool_call_args)
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
|
||||
# invoke tool
|
||||
tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
|
||||
tool=tool_instance,
|
||||
tool_parameters=tool_call_args,
|
||||
user_id=self.user_id,
|
||||
tenant_id=self.tenant_id,
|
||||
message=self.message,
|
||||
invoke_from=self.application_generate_entity.invoke_from,
|
||||
agent_tool_callback=self.agent_callback,
|
||||
trace_manager=trace_manager,
|
||||
)
|
||||
|
||||
# publish files
|
||||
for message_file_id in message_files:
|
||||
# publish message file
|
||||
self.queue_manager.publish(
|
||||
QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
# add message file ids
|
||||
message_file_ids.append(message_file_id)
|
||||
|
||||
return tool_invoke_response, tool_invoke_meta
|
||||
|
||||
def _convert_dict_to_action(self, action: dict) -> AgentScratchpadUnit.Action:
|
||||
"""
|
||||
convert dict to action
|
||||
"""
|
||||
return AgentScratchpadUnit.Action(action_name=action["action"], action_input=action["action_input"])
|
||||
|
||||
def _fill_in_inputs_from_external_data_tools(self, instruction: str, inputs: Mapping[str, Any]) -> str:
|
||||
"""
|
||||
fill in inputs from external data tools
|
||||
"""
|
||||
for key, value in inputs.items():
|
||||
try:
|
||||
instruction = instruction.replace(f"{{{{{key}}}}}", str(value))
|
||||
except Exception:
|
||||
continue
|
||||
|
||||
return instruction
|
||||
|
||||
def _init_react_state(self, query):
|
||||
"""
|
||||
init agent scratchpad
|
||||
"""
|
||||
self._query = query
|
||||
self._agent_scratchpad = []
|
||||
self._historic_prompt_messages = self._organize_historic_prompt_messages()
|
||||
|
||||
@abstractmethod
|
||||
def _organize_prompt_messages(self) -> list[PromptMessage]:
|
||||
"""
|
||||
organize prompt messages
|
||||
"""
|
||||
|
||||
def _format_assistant_message(self, agent_scratchpad: list[AgentScratchpadUnit]) -> str:
|
||||
"""
|
||||
format assistant message
|
||||
"""
|
||||
message = ""
|
||||
for scratchpad in agent_scratchpad:
|
||||
if scratchpad.is_final():
|
||||
message += f"Final Answer: {scratchpad.agent_response}"
|
||||
else:
|
||||
message += f"Thought: {scratchpad.thought}\n\n"
|
||||
if scratchpad.action_str:
|
||||
message += f"Action: {scratchpad.action_str}\n\n"
|
||||
if scratchpad.observation:
|
||||
message += f"Observation: {scratchpad.observation}\n\n"
|
||||
|
||||
return message
|
||||
|
||||
def _organize_historic_prompt_messages(
|
||||
self, current_session_messages: list[PromptMessage] | None = None
|
||||
) -> list[PromptMessage]:
|
||||
"""
|
||||
organize historic prompt messages
|
||||
"""
|
||||
result: list[PromptMessage] = []
|
||||
scratchpads: list[AgentScratchpadUnit] = []
|
||||
current_scratchpad: AgentScratchpadUnit | None = None
|
||||
|
||||
for message in self.history_prompt_messages:
|
||||
if isinstance(message, AssistantPromptMessage):
|
||||
if not current_scratchpad:
|
||||
assert isinstance(message.content, str)
|
||||
current_scratchpad = AgentScratchpadUnit(
|
||||
agent_response=message.content,
|
||||
thought=message.content or "I am thinking about how to help you",
|
||||
action_str="",
|
||||
action=None,
|
||||
observation=None,
|
||||
)
|
||||
scratchpads.append(current_scratchpad)
|
||||
if message.tool_calls:
|
||||
try:
|
||||
current_scratchpad.action = AgentScratchpadUnit.Action(
|
||||
action_name=message.tool_calls[0].function.name,
|
||||
action_input=json.loads(message.tool_calls[0].function.arguments),
|
||||
)
|
||||
current_scratchpad.action_str = json.dumps(current_scratchpad.action.to_dict())
|
||||
except:
|
||||
pass
|
||||
elif isinstance(message, ToolPromptMessage):
|
||||
if current_scratchpad:
|
||||
assert isinstance(message.content, str)
|
||||
current_scratchpad.observation = message.content
|
||||
else:
|
||||
raise NotImplementedError("expected str type")
|
||||
elif isinstance(message, UserPromptMessage):
|
||||
if scratchpads:
|
||||
result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads)))
|
||||
scratchpads = []
|
||||
current_scratchpad = None
|
||||
|
||||
result.append(message)
|
||||
|
||||
if scratchpads:
|
||||
result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads)))
|
||||
|
||||
historic_prompts = AgentHistoryPromptTransform(
|
||||
model_config=self.model_config,
|
||||
prompt_messages=current_session_messages or [],
|
||||
history_messages=result,
|
||||
memory=self.memory,
|
||||
).get_prompt()
|
||||
return historic_prompts
|
||||
118
dify/api/core/agent/cot_chat_agent_runner.py
Normal file
118
dify/api/core/agent/cot_chat_agent_runner.py
Normal file
@@ -0,0 +1,118 @@
|
||||
import json
|
||||
|
||||
from core.agent.cot_agent_runner import CotAgentRunner
|
||||
from core.file import file_manager
|
||||
from core.model_runtime.entities import (
|
||||
AssistantPromptMessage,
|
||||
PromptMessage,
|
||||
SystemPromptMessage,
|
||||
TextPromptMessageContent,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.model_runtime.entities.message_entities import ImagePromptMessageContent, PromptMessageContentUnionTypes
|
||||
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||
|
||||
|
||||
class CotChatAgentRunner(CotAgentRunner):
|
||||
def _organize_system_prompt(self) -> SystemPromptMessage:
|
||||
"""
|
||||
Organize system prompt
|
||||
"""
|
||||
assert self.app_config.agent
|
||||
assert self.app_config.agent.prompt
|
||||
|
||||
prompt_entity = self.app_config.agent.prompt
|
||||
if not prompt_entity:
|
||||
raise ValueError("Agent prompt configuration is not set")
|
||||
first_prompt = prompt_entity.first_prompt
|
||||
|
||||
system_prompt = (
|
||||
first_prompt.replace("{{instruction}}", self._instruction)
|
||||
.replace("{{tools}}", json.dumps(jsonable_encoder(self._prompt_messages_tools)))
|
||||
.replace("{{tool_names}}", ", ".join([tool.name for tool in self._prompt_messages_tools]))
|
||||
)
|
||||
|
||||
return SystemPromptMessage(content=system_prompt)
|
||||
|
||||
def _organize_user_query(self, query, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
|
||||
"""
|
||||
Organize user query
|
||||
"""
|
||||
if self.files:
|
||||
# get image detail config
|
||||
image_detail_config = (
|
||||
self.application_generate_entity.file_upload_config.image_config.detail
|
||||
if (
|
||||
self.application_generate_entity.file_upload_config
|
||||
and self.application_generate_entity.file_upload_config.image_config
|
||||
)
|
||||
else None
|
||||
)
|
||||
image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
|
||||
|
||||
prompt_message_contents: list[PromptMessageContentUnionTypes] = []
|
||||
for file in self.files:
|
||||
prompt_message_contents.append(
|
||||
file_manager.to_prompt_message_content(
|
||||
file,
|
||||
image_detail_config=image_detail_config,
|
||||
)
|
||||
)
|
||||
prompt_message_contents.append(TextPromptMessageContent(data=query))
|
||||
|
||||
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
|
||||
else:
|
||||
prompt_messages.append(UserPromptMessage(content=query))
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _organize_prompt_messages(self) -> list[PromptMessage]:
|
||||
"""
|
||||
Organize
|
||||
"""
|
||||
# organize system prompt
|
||||
system_message = self._organize_system_prompt()
|
||||
|
||||
# organize current assistant messages
|
||||
agent_scratchpad = self._agent_scratchpad
|
||||
if not agent_scratchpad:
|
||||
assistant_messages = []
|
||||
else:
|
||||
assistant_message = AssistantPromptMessage(content="")
|
||||
assistant_message.content = "" # FIXME: type check tell mypy that assistant_message.content is str
|
||||
for unit in agent_scratchpad:
|
||||
if unit.is_final():
|
||||
assert isinstance(assistant_message.content, str)
|
||||
assistant_message.content += f"Final Answer: {unit.agent_response}"
|
||||
else:
|
||||
assert isinstance(assistant_message.content, str)
|
||||
assistant_message.content += f"Thought: {unit.thought}\n\n"
|
||||
if unit.action_str:
|
||||
assistant_message.content += f"Action: {unit.action_str}\n\n"
|
||||
if unit.observation:
|
||||
assistant_message.content += f"Observation: {unit.observation}\n\n"
|
||||
|
||||
assistant_messages = [assistant_message]
|
||||
|
||||
# query messages
|
||||
query_messages = self._organize_user_query(self._query, [])
|
||||
|
||||
if assistant_messages:
|
||||
# organize historic prompt messages
|
||||
historic_messages = self._organize_historic_prompt_messages(
|
||||
[system_message, *query_messages, *assistant_messages, UserPromptMessage(content="continue")]
|
||||
)
|
||||
messages = [
|
||||
system_message,
|
||||
*historic_messages,
|
||||
*query_messages,
|
||||
*assistant_messages,
|
||||
UserPromptMessage(content="continue"),
|
||||
]
|
||||
else:
|
||||
# organize historic prompt messages
|
||||
historic_messages = self._organize_historic_prompt_messages([system_message, *query_messages])
|
||||
messages = [system_message, *historic_messages, *query_messages]
|
||||
|
||||
# join all messages
|
||||
return messages
|
||||
87
dify/api/core/agent/cot_completion_agent_runner.py
Normal file
87
dify/api/core/agent/cot_completion_agent_runner.py
Normal file
@@ -0,0 +1,87 @@
|
||||
import json
|
||||
|
||||
from core.agent.cot_agent_runner import CotAgentRunner
|
||||
from core.model_runtime.entities.message_entities import (
|
||||
AssistantPromptMessage,
|
||||
PromptMessage,
|
||||
TextPromptMessageContent,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||
|
||||
|
||||
class CotCompletionAgentRunner(CotAgentRunner):
|
||||
def _organize_instruction_prompt(self) -> str:
|
||||
"""
|
||||
Organize instruction prompt
|
||||
"""
|
||||
if self.app_config.agent is None:
|
||||
raise ValueError("Agent configuration is not set")
|
||||
prompt_entity = self.app_config.agent.prompt
|
||||
if prompt_entity is None:
|
||||
raise ValueError("prompt entity is not set")
|
||||
first_prompt = prompt_entity.first_prompt
|
||||
|
||||
system_prompt = (
|
||||
first_prompt.replace("{{instruction}}", self._instruction)
|
||||
.replace("{{tools}}", json.dumps(jsonable_encoder(self._prompt_messages_tools)))
|
||||
.replace("{{tool_names}}", ", ".join([tool.name for tool in self._prompt_messages_tools]))
|
||||
)
|
||||
|
||||
return system_prompt
|
||||
|
||||
def _organize_historic_prompt(self, current_session_messages: list[PromptMessage] | None = None) -> str:
|
||||
"""
|
||||
Organize historic prompt
|
||||
"""
|
||||
historic_prompt_messages = self._organize_historic_prompt_messages(current_session_messages)
|
||||
historic_prompt = ""
|
||||
|
||||
for message in historic_prompt_messages:
|
||||
if isinstance(message, UserPromptMessage):
|
||||
historic_prompt += f"Question: {message.content}\n\n"
|
||||
elif isinstance(message, AssistantPromptMessage):
|
||||
if isinstance(message.content, str):
|
||||
historic_prompt += message.content + "\n\n"
|
||||
elif isinstance(message.content, list):
|
||||
for content in message.content:
|
||||
if not isinstance(content, TextPromptMessageContent):
|
||||
continue
|
||||
historic_prompt += content.data
|
||||
|
||||
return historic_prompt
|
||||
|
||||
def _organize_prompt_messages(self) -> list[PromptMessage]:
|
||||
"""
|
||||
Organize prompt messages
|
||||
"""
|
||||
# organize system prompt
|
||||
system_prompt = self._organize_instruction_prompt()
|
||||
|
||||
# organize historic prompt messages
|
||||
historic_prompt = self._organize_historic_prompt()
|
||||
|
||||
# organize current assistant messages
|
||||
agent_scratchpad = self._agent_scratchpad
|
||||
assistant_prompt = ""
|
||||
for unit in agent_scratchpad or []:
|
||||
if unit.is_final():
|
||||
assistant_prompt += f"Final Answer: {unit.agent_response}"
|
||||
else:
|
||||
assistant_prompt += f"Thought: {unit.thought}\n\n"
|
||||
if unit.action_str:
|
||||
assistant_prompt += f"Action: {unit.action_str}\n\n"
|
||||
if unit.observation:
|
||||
assistant_prompt += f"Observation: {unit.observation}\n\n"
|
||||
|
||||
# query messages
|
||||
query_prompt = f"Question: {self._query}"
|
||||
|
||||
# join all messages
|
||||
prompt = (
|
||||
system_prompt.replace("{{historic_messages}}", historic_prompt)
|
||||
.replace("{{agent_scratchpad}}", assistant_prompt)
|
||||
.replace("{{query}}", query_prompt)
|
||||
)
|
||||
|
||||
return [UserPromptMessage(content=prompt)]
|
||||
94
dify/api/core/agent/entities.py
Normal file
94
dify/api/core/agent/entities.py
Normal file
@@ -0,0 +1,94 @@
|
||||
from enum import StrEnum
|
||||
from typing import Any, Union
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from core.tools.entities.tool_entities import ToolInvokeMessage, ToolProviderType
|
||||
|
||||
|
||||
class AgentToolEntity(BaseModel):
|
||||
"""
|
||||
Agent Tool Entity.
|
||||
"""
|
||||
|
||||
provider_type: ToolProviderType
|
||||
provider_id: str
|
||||
tool_name: str
|
||||
tool_parameters: dict[str, Any] = Field(default_factory=dict)
|
||||
plugin_unique_identifier: str | None = None
|
||||
credential_id: str | None = None
|
||||
|
||||
|
||||
class AgentPromptEntity(BaseModel):
|
||||
"""
|
||||
Agent Prompt Entity.
|
||||
"""
|
||||
|
||||
first_prompt: str
|
||||
next_iteration: str
|
||||
|
||||
|
||||
class AgentScratchpadUnit(BaseModel):
|
||||
"""
|
||||
Agent First Prompt Entity.
|
||||
"""
|
||||
|
||||
class Action(BaseModel):
|
||||
"""
|
||||
Action Entity.
|
||||
"""
|
||||
|
||||
action_name: str
|
||||
action_input: Union[dict, str]
|
||||
|
||||
def to_dict(self):
|
||||
"""
|
||||
Convert to dictionary.
|
||||
"""
|
||||
return {
|
||||
"action": self.action_name,
|
||||
"action_input": self.action_input,
|
||||
}
|
||||
|
||||
agent_response: str | None = None
|
||||
thought: str | None = None
|
||||
action_str: str | None = None
|
||||
observation: str | None = None
|
||||
action: Action | None = None
|
||||
|
||||
def is_final(self) -> bool:
|
||||
"""
|
||||
Check if the scratchpad unit is final.
|
||||
"""
|
||||
return self.action is None or (
|
||||
"final" in self.action.action_name.lower() and "answer" in self.action.action_name.lower()
|
||||
)
|
||||
|
||||
|
||||
class AgentEntity(BaseModel):
|
||||
"""
|
||||
Agent Entity.
|
||||
"""
|
||||
|
||||
class Strategy(StrEnum):
|
||||
"""
|
||||
Agent Strategy.
|
||||
"""
|
||||
|
||||
CHAIN_OF_THOUGHT = "chain-of-thought"
|
||||
FUNCTION_CALLING = "function-calling"
|
||||
|
||||
provider: str
|
||||
model: str
|
||||
strategy: Strategy
|
||||
prompt: AgentPromptEntity | None = None
|
||||
tools: list[AgentToolEntity] | None = None
|
||||
max_iteration: int = 10
|
||||
|
||||
|
||||
class AgentInvokeMessage(ToolInvokeMessage):
|
||||
"""
|
||||
Agent Invoke Message.
|
||||
"""
|
||||
|
||||
pass
|
||||
465
dify/api/core/agent/fc_agent_runner.py
Normal file
465
dify/api/core/agent/fc_agent_runner.py
Normal file
@@ -0,0 +1,465 @@
|
||||
import json
|
||||
import logging
|
||||
from collections.abc import Generator
|
||||
from copy import deepcopy
|
||||
from typing import Any, Union
|
||||
|
||||
from core.agent.base_agent_runner import BaseAgentRunner
|
||||
from core.app.apps.base_app_queue_manager import PublishFrom
|
||||
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
|
||||
from core.file import file_manager
|
||||
from core.model_runtime.entities import (
|
||||
AssistantPromptMessage,
|
||||
LLMResult,
|
||||
LLMResultChunk,
|
||||
LLMResultChunkDelta,
|
||||
LLMUsage,
|
||||
PromptMessage,
|
||||
PromptMessageContentType,
|
||||
SystemPromptMessage,
|
||||
TextPromptMessageContent,
|
||||
ToolPromptMessage,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.model_runtime.entities.message_entities import ImagePromptMessageContent, PromptMessageContentUnionTypes
|
||||
from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
|
||||
from core.tools.entities.tool_entities import ToolInvokeMeta
|
||||
from core.tools.tool_engine import ToolEngine
|
||||
from models.model import Message
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class FunctionCallAgentRunner(BaseAgentRunner):
|
||||
def run(self, message: Message, query: str, **kwargs: Any) -> Generator[LLMResultChunk, None, None]:
|
||||
"""
|
||||
Run FunctionCall agent application
|
||||
"""
|
||||
self.query = query
|
||||
app_generate_entity = self.application_generate_entity
|
||||
|
||||
app_config = self.app_config
|
||||
assert app_config is not None, "app_config is required"
|
||||
assert app_config.agent is not None, "app_config.agent is required"
|
||||
|
||||
# convert tools into ModelRuntime Tool format
|
||||
tool_instances, prompt_messages_tools = self._init_prompt_tools()
|
||||
|
||||
assert app_config.agent
|
||||
|
||||
iteration_step = 1
|
||||
max_iteration_steps = min(app_config.agent.max_iteration, 99) + 1
|
||||
|
||||
# continue to run until there is not any tool call
|
||||
function_call_state = True
|
||||
llm_usage: dict[str, LLMUsage | None] = {"usage": None}
|
||||
final_answer = ""
|
||||
prompt_messages: list = [] # Initialize prompt_messages
|
||||
|
||||
# get tracing instance
|
||||
trace_manager = app_generate_entity.trace_manager
|
||||
|
||||
def increase_usage(final_llm_usage_dict: dict[str, LLMUsage | None], usage: LLMUsage):
|
||||
if not final_llm_usage_dict["usage"]:
|
||||
final_llm_usage_dict["usage"] = usage
|
||||
else:
|
||||
llm_usage = final_llm_usage_dict["usage"]
|
||||
llm_usage.prompt_tokens += usage.prompt_tokens
|
||||
llm_usage.completion_tokens += usage.completion_tokens
|
||||
llm_usage.total_tokens += usage.total_tokens
|
||||
llm_usage.prompt_price += usage.prompt_price
|
||||
llm_usage.completion_price += usage.completion_price
|
||||
llm_usage.total_price += usage.total_price
|
||||
|
||||
model_instance = self.model_instance
|
||||
|
||||
while function_call_state and iteration_step <= max_iteration_steps:
|
||||
function_call_state = False
|
||||
|
||||
if iteration_step == max_iteration_steps:
|
||||
# the last iteration, remove all tools
|
||||
prompt_messages_tools = []
|
||||
|
||||
message_file_ids: list[str] = []
|
||||
agent_thought_id = self.create_agent_thought(
|
||||
message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids
|
||||
)
|
||||
|
||||
# recalc llm max tokens
|
||||
prompt_messages = self._organize_prompt_messages()
|
||||
self.recalc_llm_max_tokens(self.model_config, prompt_messages)
|
||||
# invoke model
|
||||
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm(
|
||||
prompt_messages=prompt_messages,
|
||||
model_parameters=app_generate_entity.model_conf.parameters,
|
||||
tools=prompt_messages_tools,
|
||||
stop=app_generate_entity.model_conf.stop,
|
||||
stream=self.stream_tool_call,
|
||||
user=self.user_id,
|
||||
callbacks=[],
|
||||
)
|
||||
|
||||
tool_calls: list[tuple[str, str, dict[str, Any]]] = []
|
||||
|
||||
# save full response
|
||||
response = ""
|
||||
|
||||
# save tool call names and inputs
|
||||
tool_call_names = ""
|
||||
tool_call_inputs = ""
|
||||
|
||||
current_llm_usage = None
|
||||
|
||||
if isinstance(chunks, Generator):
|
||||
is_first_chunk = True
|
||||
for chunk in chunks:
|
||||
if is_first_chunk:
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
is_first_chunk = False
|
||||
# check if there is any tool call
|
||||
if self.check_tool_calls(chunk):
|
||||
function_call_state = True
|
||||
tool_calls.extend(self.extract_tool_calls(chunk) or [])
|
||||
tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])
|
||||
try:
|
||||
tool_call_inputs = json.dumps(
|
||||
{tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False
|
||||
)
|
||||
except TypeError:
|
||||
# fallback: force ASCII to handle non-serializable objects
|
||||
tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})
|
||||
|
||||
if chunk.delta.message and chunk.delta.message.content:
|
||||
if isinstance(chunk.delta.message.content, list):
|
||||
for content in chunk.delta.message.content:
|
||||
response += content.data
|
||||
else:
|
||||
response += str(chunk.delta.message.content)
|
||||
|
||||
if chunk.delta.usage:
|
||||
increase_usage(llm_usage, chunk.delta.usage)
|
||||
current_llm_usage = chunk.delta.usage
|
||||
|
||||
yield chunk
|
||||
else:
|
||||
result = chunks
|
||||
# check if there is any tool call
|
||||
if self.check_blocking_tool_calls(result):
|
||||
function_call_state = True
|
||||
tool_calls.extend(self.extract_blocking_tool_calls(result) or [])
|
||||
tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])
|
||||
try:
|
||||
tool_call_inputs = json.dumps(
|
||||
{tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False
|
||||
)
|
||||
except TypeError:
|
||||
# fallback: force ASCII to handle non-serializable objects
|
||||
tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})
|
||||
|
||||
if result.usage:
|
||||
increase_usage(llm_usage, result.usage)
|
||||
current_llm_usage = result.usage
|
||||
|
||||
if result.message and result.message.content:
|
||||
if isinstance(result.message.content, list):
|
||||
for content in result.message.content:
|
||||
response += content.data
|
||||
else:
|
||||
response += str(result.message.content)
|
||||
|
||||
if not result.message.content:
|
||||
result.message.content = ""
|
||||
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
||||
yield LLMResultChunk(
|
||||
model=model_instance.model,
|
||||
prompt_messages=result.prompt_messages,
|
||||
system_fingerprint=result.system_fingerprint,
|
||||
delta=LLMResultChunkDelta(
|
||||
index=0,
|
||||
message=result.message,
|
||||
usage=result.usage,
|
||||
),
|
||||
)
|
||||
|
||||
assistant_message = AssistantPromptMessage(content="", tool_calls=[])
|
||||
if tool_calls:
|
||||
assistant_message.tool_calls = [
|
||||
AssistantPromptMessage.ToolCall(
|
||||
id=tool_call[0],
|
||||
type="function",
|
||||
function=AssistantPromptMessage.ToolCall.ToolCallFunction(
|
||||
name=tool_call[1], arguments=json.dumps(tool_call[2], ensure_ascii=False)
|
||||
),
|
||||
)
|
||||
for tool_call in tool_calls
|
||||
]
|
||||
else:
|
||||
assistant_message.content = response
|
||||
|
||||
self._current_thoughts.append(assistant_message)
|
||||
|
||||
# save thought
|
||||
self.save_agent_thought(
|
||||
agent_thought_id=agent_thought_id,
|
||||
tool_name=tool_call_names,
|
||||
tool_input=tool_call_inputs,
|
||||
thought=response,
|
||||
tool_invoke_meta=None,
|
||||
observation=None,
|
||||
answer=response,
|
||||
messages_ids=[],
|
||||
llm_usage=current_llm_usage,
|
||||
)
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
||||
final_answer += response + "\n"
|
||||
|
||||
# call tools
|
||||
tool_responses = []
|
||||
for tool_call_id, tool_call_name, tool_call_args in tool_calls:
|
||||
tool_instance = tool_instances.get(tool_call_name)
|
||||
if not tool_instance:
|
||||
tool_response = {
|
||||
"tool_call_id": tool_call_id,
|
||||
"tool_call_name": tool_call_name,
|
||||
"tool_response": f"there is not a tool named {tool_call_name}",
|
||||
"meta": ToolInvokeMeta.error_instance(f"there is not a tool named {tool_call_name}").to_dict(),
|
||||
}
|
||||
else:
|
||||
# invoke tool
|
||||
tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
|
||||
tool=tool_instance,
|
||||
tool_parameters=tool_call_args,
|
||||
user_id=self.user_id,
|
||||
tenant_id=self.tenant_id,
|
||||
message=self.message,
|
||||
invoke_from=self.application_generate_entity.invoke_from,
|
||||
agent_tool_callback=self.agent_callback,
|
||||
trace_manager=trace_manager,
|
||||
app_id=self.application_generate_entity.app_config.app_id,
|
||||
message_id=self.message.id,
|
||||
conversation_id=self.conversation.id,
|
||||
)
|
||||
# publish files
|
||||
for message_file_id in message_files:
|
||||
# publish message file
|
||||
self.queue_manager.publish(
|
||||
QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
# add message file ids
|
||||
message_file_ids.append(message_file_id)
|
||||
|
||||
tool_response = {
|
||||
"tool_call_id": tool_call_id,
|
||||
"tool_call_name": tool_call_name,
|
||||
"tool_response": tool_invoke_response,
|
||||
"meta": tool_invoke_meta.to_dict(),
|
||||
}
|
||||
|
||||
tool_responses.append(tool_response)
|
||||
if tool_response["tool_response"] is not None:
|
||||
self._current_thoughts.append(
|
||||
ToolPromptMessage(
|
||||
content=str(tool_response["tool_response"]),
|
||||
tool_call_id=tool_call_id,
|
||||
name=tool_call_name,
|
||||
)
|
||||
)
|
||||
|
||||
if len(tool_responses) > 0:
|
||||
# save agent thought
|
||||
self.save_agent_thought(
|
||||
agent_thought_id=agent_thought_id,
|
||||
tool_name="",
|
||||
tool_input="",
|
||||
thought="",
|
||||
tool_invoke_meta={
|
||||
tool_response["tool_call_name"]: tool_response["meta"] for tool_response in tool_responses
|
||||
},
|
||||
observation={
|
||||
tool_response["tool_call_name"]: tool_response["tool_response"]
|
||||
for tool_response in tool_responses
|
||||
},
|
||||
answer="",
|
||||
messages_ids=message_file_ids,
|
||||
)
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
||||
# update prompt tool
|
||||
for prompt_tool in prompt_messages_tools:
|
||||
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
|
||||
|
||||
iteration_step += 1
|
||||
|
||||
# publish end event
|
||||
self.queue_manager.publish(
|
||||
QueueMessageEndEvent(
|
||||
llm_result=LLMResult(
|
||||
model=model_instance.model,
|
||||
prompt_messages=prompt_messages,
|
||||
message=AssistantPromptMessage(content=final_answer),
|
||||
usage=llm_usage["usage"] or LLMUsage.empty_usage(),
|
||||
system_fingerprint="",
|
||||
)
|
||||
),
|
||||
PublishFrom.APPLICATION_MANAGER,
|
||||
)
|
||||
|
||||
def check_tool_calls(self, llm_result_chunk: LLMResultChunk) -> bool:
|
||||
"""
|
||||
Check if there is any tool call in llm result chunk
|
||||
"""
|
||||
if llm_result_chunk.delta.message.tool_calls:
|
||||
return True
|
||||
return False
|
||||
|
||||
def check_blocking_tool_calls(self, llm_result: LLMResult) -> bool:
|
||||
"""
|
||||
Check if there is any blocking tool call in llm result
|
||||
"""
|
||||
if llm_result.message.tool_calls:
|
||||
return True
|
||||
return False
|
||||
|
||||
def extract_tool_calls(self, llm_result_chunk: LLMResultChunk) -> list[tuple[str, str, dict[str, Any]]]:
|
||||
"""
|
||||
Extract tool calls from llm result chunk
|
||||
|
||||
Returns:
|
||||
List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
|
||||
"""
|
||||
tool_calls = []
|
||||
for prompt_message in llm_result_chunk.delta.message.tool_calls:
|
||||
args = {}
|
||||
if prompt_message.function.arguments != "":
|
||||
args = json.loads(prompt_message.function.arguments)
|
||||
|
||||
tool_calls.append(
|
||||
(
|
||||
prompt_message.id,
|
||||
prompt_message.function.name,
|
||||
args,
|
||||
)
|
||||
)
|
||||
|
||||
return tool_calls
|
||||
|
||||
def extract_blocking_tool_calls(self, llm_result: LLMResult) -> list[tuple[str, str, dict[str, Any]]]:
|
||||
"""
|
||||
Extract blocking tool calls from llm result
|
||||
|
||||
Returns:
|
||||
List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
|
||||
"""
|
||||
tool_calls = []
|
||||
for prompt_message in llm_result.message.tool_calls:
|
||||
args = {}
|
||||
if prompt_message.function.arguments != "":
|
||||
args = json.loads(prompt_message.function.arguments)
|
||||
|
||||
tool_calls.append(
|
||||
(
|
||||
prompt_message.id,
|
||||
prompt_message.function.name,
|
||||
args,
|
||||
)
|
||||
)
|
||||
|
||||
return tool_calls
|
||||
|
||||
def _init_system_message(self, prompt_template: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
|
||||
"""
|
||||
Initialize system message
|
||||
"""
|
||||
if not prompt_messages and prompt_template:
|
||||
return [
|
||||
SystemPromptMessage(content=prompt_template),
|
||||
]
|
||||
|
||||
if prompt_messages and not isinstance(prompt_messages[0], SystemPromptMessage) and prompt_template:
|
||||
prompt_messages.insert(0, SystemPromptMessage(content=prompt_template))
|
||||
|
||||
return prompt_messages or []
|
||||
|
||||
def _organize_user_query(self, query: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
|
||||
"""
|
||||
Organize user query
|
||||
"""
|
||||
if self.files:
|
||||
# get image detail config
|
||||
image_detail_config = (
|
||||
self.application_generate_entity.file_upload_config.image_config.detail
|
||||
if (
|
||||
self.application_generate_entity.file_upload_config
|
||||
and self.application_generate_entity.file_upload_config.image_config
|
||||
)
|
||||
else None
|
||||
)
|
||||
image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
|
||||
|
||||
prompt_message_contents: list[PromptMessageContentUnionTypes] = []
|
||||
for file in self.files:
|
||||
prompt_message_contents.append(
|
||||
file_manager.to_prompt_message_content(
|
||||
file,
|
||||
image_detail_config=image_detail_config,
|
||||
)
|
||||
)
|
||||
prompt_message_contents.append(TextPromptMessageContent(data=query))
|
||||
|
||||
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
|
||||
else:
|
||||
prompt_messages.append(UserPromptMessage(content=query))
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _clear_user_prompt_image_messages(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
|
||||
"""
|
||||
As for now, gpt supports both fc and vision at the first iteration.
|
||||
We need to remove the image messages from the prompt messages at the first iteration.
|
||||
"""
|
||||
prompt_messages = deepcopy(prompt_messages)
|
||||
|
||||
for prompt_message in prompt_messages:
|
||||
if isinstance(prompt_message, UserPromptMessage):
|
||||
if isinstance(prompt_message.content, list):
|
||||
prompt_message.content = "\n".join(
|
||||
[
|
||||
content.data
|
||||
if content.type == PromptMessageContentType.TEXT
|
||||
else "[image]"
|
||||
if content.type == PromptMessageContentType.IMAGE
|
||||
else "[file]"
|
||||
for content in prompt_message.content
|
||||
]
|
||||
)
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _organize_prompt_messages(self):
|
||||
prompt_template = self.app_config.prompt_template.simple_prompt_template or ""
|
||||
self.history_prompt_messages = self._init_system_message(prompt_template, self.history_prompt_messages)
|
||||
query_prompt_messages = self._organize_user_query(self.query or "", [])
|
||||
|
||||
self.history_prompt_messages = AgentHistoryPromptTransform(
|
||||
model_config=self.model_config,
|
||||
prompt_messages=[*query_prompt_messages, *self._current_thoughts],
|
||||
history_messages=self.history_prompt_messages,
|
||||
memory=self.memory,
|
||||
).get_prompt()
|
||||
|
||||
prompt_messages = [*self.history_prompt_messages, *query_prompt_messages, *self._current_thoughts]
|
||||
if len(self._current_thoughts) != 0:
|
||||
# clear messages after the first iteration
|
||||
prompt_messages = self._clear_user_prompt_image_messages(prompt_messages)
|
||||
return prompt_messages
|
||||
220
dify/api/core/agent/output_parser/cot_output_parser.py
Normal file
220
dify/api/core/agent/output_parser/cot_output_parser.py
Normal file
@@ -0,0 +1,220 @@
|
||||
import json
|
||||
import re
|
||||
from collections.abc import Generator
|
||||
from typing import Union
|
||||
|
||||
from core.agent.entities import AgentScratchpadUnit
|
||||
from core.model_runtime.entities.llm_entities import LLMResultChunk
|
||||
|
||||
|
||||
class CotAgentOutputParser:
|
||||
@classmethod
|
||||
def handle_react_stream_output(
|
||||
cls, llm_response: Generator[LLMResultChunk, None, None], usage_dict: dict
|
||||
) -> Generator[Union[str, AgentScratchpadUnit.Action], None, None]:
|
||||
def parse_action(action) -> Union[str, AgentScratchpadUnit.Action]:
|
||||
action_name = None
|
||||
action_input = None
|
||||
if isinstance(action, str):
|
||||
try:
|
||||
action = json.loads(action, strict=False)
|
||||
except json.JSONDecodeError:
|
||||
return action or ""
|
||||
|
||||
# cohere always returns a list
|
||||
if isinstance(action, list) and len(action) == 1:
|
||||
action = action[0]
|
||||
|
||||
for key, value in action.items():
|
||||
if "input" in key.lower():
|
||||
action_input = value
|
||||
else:
|
||||
action_name = value
|
||||
|
||||
if action_name is not None and action_input is not None:
|
||||
return AgentScratchpadUnit.Action(
|
||||
action_name=action_name,
|
||||
action_input=action_input,
|
||||
)
|
||||
else:
|
||||
return json.dumps(action)
|
||||
|
||||
def extra_json_from_code_block(code_block) -> list[Union[list, dict]]:
|
||||
blocks = re.findall(r"```[json]*\s*([\[{].*[]}])\s*```", code_block, re.DOTALL | re.IGNORECASE)
|
||||
if not blocks:
|
||||
return []
|
||||
try:
|
||||
json_blocks = []
|
||||
for block in blocks:
|
||||
json_text = re.sub(r"^[a-zA-Z]+\n", "", block.strip(), flags=re.MULTILINE)
|
||||
json_blocks.append(json.loads(json_text, strict=False))
|
||||
return json_blocks
|
||||
except:
|
||||
return []
|
||||
|
||||
code_block_cache = ""
|
||||
code_block_delimiter_count = 0
|
||||
in_code_block = False
|
||||
json_cache = ""
|
||||
json_quote_count = 0
|
||||
in_json = False
|
||||
got_json = False
|
||||
|
||||
action_cache = ""
|
||||
action_str = "action:"
|
||||
action_idx = 0
|
||||
|
||||
thought_cache = ""
|
||||
thought_str = "thought:"
|
||||
thought_idx = 0
|
||||
|
||||
last_character = ""
|
||||
|
||||
for response in llm_response:
|
||||
if response.delta.usage:
|
||||
usage_dict["usage"] = response.delta.usage
|
||||
response_content = response.delta.message.content
|
||||
if not isinstance(response_content, str):
|
||||
continue
|
||||
|
||||
# stream
|
||||
index = 0
|
||||
while index < len(response_content):
|
||||
steps = 1
|
||||
delta = response_content[index : index + steps]
|
||||
yield_delta = False
|
||||
|
||||
if not in_json and delta == "`":
|
||||
last_character = delta
|
||||
code_block_cache += delta
|
||||
code_block_delimiter_count += 1
|
||||
else:
|
||||
if not in_code_block:
|
||||
if code_block_delimiter_count > 0:
|
||||
last_character = delta
|
||||
yield code_block_cache
|
||||
code_block_cache = ""
|
||||
else:
|
||||
last_character = delta
|
||||
code_block_cache += delta
|
||||
code_block_delimiter_count = 0
|
||||
|
||||
if not in_code_block and not in_json:
|
||||
if delta.lower() == action_str[action_idx] and action_idx == 0:
|
||||
if last_character not in {"\n", " ", ""}:
|
||||
yield_delta = True
|
||||
else:
|
||||
last_character = delta
|
||||
action_cache += delta
|
||||
action_idx += 1
|
||||
if action_idx == len(action_str):
|
||||
action_cache = ""
|
||||
action_idx = 0
|
||||
index += steps
|
||||
continue
|
||||
elif delta.lower() == action_str[action_idx] and action_idx > 0:
|
||||
last_character = delta
|
||||
action_cache += delta
|
||||
action_idx += 1
|
||||
if action_idx == len(action_str):
|
||||
action_cache = ""
|
||||
action_idx = 0
|
||||
index += steps
|
||||
continue
|
||||
else:
|
||||
if action_cache:
|
||||
last_character = delta
|
||||
yield action_cache
|
||||
action_cache = ""
|
||||
action_idx = 0
|
||||
|
||||
if delta.lower() == thought_str[thought_idx] and thought_idx == 0:
|
||||
if last_character not in {"\n", " ", ""}:
|
||||
yield_delta = True
|
||||
else:
|
||||
last_character = delta
|
||||
thought_cache += delta
|
||||
thought_idx += 1
|
||||
if thought_idx == len(thought_str):
|
||||
thought_cache = ""
|
||||
thought_idx = 0
|
||||
index += steps
|
||||
continue
|
||||
elif delta.lower() == thought_str[thought_idx] and thought_idx > 0:
|
||||
last_character = delta
|
||||
thought_cache += delta
|
||||
thought_idx += 1
|
||||
if thought_idx == len(thought_str):
|
||||
thought_cache = ""
|
||||
thought_idx = 0
|
||||
index += steps
|
||||
continue
|
||||
else:
|
||||
if thought_cache:
|
||||
last_character = delta
|
||||
yield thought_cache
|
||||
thought_cache = ""
|
||||
thought_idx = 0
|
||||
|
||||
if yield_delta:
|
||||
index += steps
|
||||
last_character = delta
|
||||
yield delta
|
||||
continue
|
||||
|
||||
if code_block_delimiter_count == 3:
|
||||
if in_code_block:
|
||||
last_character = delta
|
||||
action_json_list = extra_json_from_code_block(code_block_cache)
|
||||
if action_json_list:
|
||||
for action_json in action_json_list:
|
||||
yield parse_action(action_json)
|
||||
code_block_cache = ""
|
||||
else:
|
||||
index += steps
|
||||
continue
|
||||
|
||||
in_code_block = not in_code_block
|
||||
code_block_delimiter_count = 0
|
||||
|
||||
if not in_code_block:
|
||||
# handle single json
|
||||
if delta == "{":
|
||||
json_quote_count += 1
|
||||
in_json = True
|
||||
last_character = delta
|
||||
json_cache += delta
|
||||
elif delta == "}":
|
||||
last_character = delta
|
||||
json_cache += delta
|
||||
if json_quote_count > 0:
|
||||
json_quote_count -= 1
|
||||
if json_quote_count == 0:
|
||||
in_json = False
|
||||
got_json = True
|
||||
index += steps
|
||||
continue
|
||||
else:
|
||||
if in_json:
|
||||
last_character = delta
|
||||
json_cache += delta
|
||||
|
||||
if got_json:
|
||||
got_json = False
|
||||
last_character = delta
|
||||
yield parse_action(json_cache)
|
||||
json_cache = ""
|
||||
json_quote_count = 0
|
||||
in_json = False
|
||||
|
||||
if not in_code_block and not in_json:
|
||||
last_character = delta
|
||||
yield delta.replace("`", "")
|
||||
|
||||
index += steps
|
||||
|
||||
if code_block_cache:
|
||||
yield code_block_cache
|
||||
|
||||
if json_cache:
|
||||
yield parse_action(json_cache)
|
||||
100
dify/api/core/agent/plugin_entities.py
Normal file
100
dify/api/core/agent/plugin_entities.py
Normal file
@@ -0,0 +1,100 @@
|
||||
from enum import StrEnum
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field, ValidationInfo, field_validator
|
||||
|
||||
from core.entities.parameter_entities import CommonParameterType
|
||||
from core.plugin.entities.parameters import (
|
||||
PluginParameter,
|
||||
as_normal_type,
|
||||
cast_parameter_value,
|
||||
init_frontend_parameter,
|
||||
)
|
||||
from core.tools.entities.common_entities import I18nObject
|
||||
from core.tools.entities.tool_entities import (
|
||||
ToolIdentity,
|
||||
ToolProviderIdentity,
|
||||
)
|
||||
|
||||
|
||||
class AgentStrategyProviderIdentity(ToolProviderIdentity):
|
||||
"""
|
||||
Inherits from ToolProviderIdentity, without any additional fields.
|
||||
"""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class AgentStrategyParameter(PluginParameter):
|
||||
class AgentStrategyParameterType(StrEnum):
|
||||
"""
|
||||
Keep all the types from PluginParameterType
|
||||
"""
|
||||
|
||||
STRING = CommonParameterType.STRING
|
||||
NUMBER = CommonParameterType.NUMBER
|
||||
BOOLEAN = CommonParameterType.BOOLEAN
|
||||
SELECT = CommonParameterType.SELECT
|
||||
SECRET_INPUT = CommonParameterType.SECRET_INPUT
|
||||
FILE = CommonParameterType.FILE
|
||||
FILES = CommonParameterType.FILES
|
||||
APP_SELECTOR = CommonParameterType.APP_SELECTOR
|
||||
MODEL_SELECTOR = CommonParameterType.MODEL_SELECTOR
|
||||
TOOLS_SELECTOR = CommonParameterType.TOOLS_SELECTOR
|
||||
ANY = CommonParameterType.ANY
|
||||
|
||||
# deprecated, should not use.
|
||||
SYSTEM_FILES = CommonParameterType.SYSTEM_FILES
|
||||
|
||||
def as_normal_type(self):
|
||||
return as_normal_type(self)
|
||||
|
||||
def cast_value(self, value: Any):
|
||||
return cast_parameter_value(self, value)
|
||||
|
||||
type: AgentStrategyParameterType = Field(..., description="The type of the parameter")
|
||||
help: I18nObject | None = None
|
||||
|
||||
def init_frontend_parameter(self, value: Any):
|
||||
return init_frontend_parameter(self, self.type, value)
|
||||
|
||||
|
||||
class AgentStrategyProviderEntity(BaseModel):
|
||||
identity: AgentStrategyProviderIdentity
|
||||
plugin_id: str | None = Field(None, description="The id of the plugin")
|
||||
|
||||
|
||||
class AgentStrategyIdentity(ToolIdentity):
|
||||
"""
|
||||
Inherits from ToolIdentity, without any additional fields.
|
||||
"""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class AgentFeature(StrEnum):
|
||||
"""
|
||||
Agent Feature, used to describe the features of the agent strategy.
|
||||
"""
|
||||
|
||||
HISTORY_MESSAGES = "history-messages"
|
||||
|
||||
|
||||
class AgentStrategyEntity(BaseModel):
|
||||
identity: AgentStrategyIdentity
|
||||
parameters: list[AgentStrategyParameter] = Field(default_factory=list)
|
||||
description: I18nObject = Field(..., description="The description of the agent strategy")
|
||||
output_schema: dict | None = None
|
||||
features: list[AgentFeature] | None = None
|
||||
meta_version: str | None = None
|
||||
# pydantic configs
|
||||
model_config = ConfigDict(protected_namespaces=())
|
||||
|
||||
@field_validator("parameters", mode="before")
|
||||
@classmethod
|
||||
def set_parameters(cls, v, validation_info: ValidationInfo) -> list[AgentStrategyParameter]:
|
||||
return v or []
|
||||
|
||||
|
||||
class AgentProviderEntityWithPlugin(AgentStrategyProviderEntity):
|
||||
strategies: list[AgentStrategyEntity] = Field(default_factory=list)
|
||||
106
dify/api/core/agent/prompt/template.py
Normal file
106
dify/api/core/agent/prompt/template.py
Normal file
@@ -0,0 +1,106 @@
|
||||
ENGLISH_REACT_COMPLETION_PROMPT_TEMPLATES = """Respond to the human as helpfully and accurately as possible.
|
||||
|
||||
{{instruction}}
|
||||
|
||||
You have access to the following tools:
|
||||
|
||||
{{tools}}
|
||||
|
||||
Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
|
||||
Valid "action" values: "Final Answer" or {{tool_names}}
|
||||
|
||||
Provide only ONE action per $JSON_BLOB, as shown:
|
||||
|
||||
```
|
||||
{
|
||||
"action": $TOOL_NAME,
|
||||
"action_input": $ACTION_INPUT
|
||||
}
|
||||
```
|
||||
|
||||
Follow this format:
|
||||
|
||||
Question: input question to answer
|
||||
Thought: consider previous and subsequent steps
|
||||
Action:
|
||||
```
|
||||
$JSON_BLOB
|
||||
```
|
||||
Observation: action result
|
||||
... (repeat Thought/Action/Observation N times)
|
||||
Thought: I know what to respond
|
||||
Action:
|
||||
```
|
||||
{
|
||||
"action": "Final Answer",
|
||||
"action_input": "Final response to human"
|
||||
}
|
||||
```
|
||||
|
||||
Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.
|
||||
{{historic_messages}}
|
||||
Question: {{query}}
|
||||
{{agent_scratchpad}}
|
||||
Thought:""" # noqa: E501
|
||||
|
||||
|
||||
ENGLISH_REACT_COMPLETION_AGENT_SCRATCHPAD_TEMPLATES = """Observation: {{observation}}
|
||||
Thought:"""
|
||||
|
||||
ENGLISH_REACT_CHAT_PROMPT_TEMPLATES = """Respond to the human as helpfully and accurately as possible.
|
||||
|
||||
{{instruction}}
|
||||
|
||||
You have access to the following tools:
|
||||
|
||||
{{tools}}
|
||||
|
||||
Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
|
||||
Valid "action" values: "Final Answer" or {{tool_names}}
|
||||
|
||||
Provide only ONE action per $JSON_BLOB, as shown:
|
||||
|
||||
```
|
||||
{
|
||||
"action": $TOOL_NAME,
|
||||
"action_input": $ACTION_INPUT
|
||||
}
|
||||
```
|
||||
|
||||
Follow this format:
|
||||
|
||||
Question: input question to answer
|
||||
Thought: consider previous and subsequent steps
|
||||
Action:
|
||||
```
|
||||
$JSON_BLOB
|
||||
```
|
||||
Observation: action result
|
||||
... (repeat Thought/Action/Observation N times)
|
||||
Thought: I know what to respond
|
||||
Action:
|
||||
```
|
||||
{
|
||||
"action": "Final Answer",
|
||||
"action_input": "Final response to human"
|
||||
}
|
||||
```
|
||||
|
||||
Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
ENGLISH_REACT_CHAT_AGENT_SCRATCHPAD_TEMPLATES = ""
|
||||
|
||||
REACT_PROMPT_TEMPLATES = {
|
||||
"english": {
|
||||
"chat": {
|
||||
"prompt": ENGLISH_REACT_CHAT_PROMPT_TEMPLATES,
|
||||
"agent_scratchpad": ENGLISH_REACT_CHAT_AGENT_SCRATCHPAD_TEMPLATES,
|
||||
},
|
||||
"completion": {
|
||||
"prompt": ENGLISH_REACT_COMPLETION_PROMPT_TEMPLATES,
|
||||
"agent_scratchpad": ENGLISH_REACT_COMPLETION_AGENT_SCRATCHPAD_TEMPLATES,
|
||||
},
|
||||
}
|
||||
}
|
||||
45
dify/api/core/agent/strategy/base.py
Normal file
45
dify/api/core/agent/strategy/base.py
Normal file
@@ -0,0 +1,45 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from collections.abc import Generator, Sequence
|
||||
from typing import Any
|
||||
|
||||
from core.agent.entities import AgentInvokeMessage
|
||||
from core.agent.plugin_entities import AgentStrategyParameter
|
||||
from core.plugin.entities.request import InvokeCredentials
|
||||
|
||||
|
||||
class BaseAgentStrategy(ABC):
|
||||
"""
|
||||
Agent Strategy
|
||||
"""
|
||||
|
||||
def invoke(
|
||||
self,
|
||||
params: dict[str, Any],
|
||||
user_id: str,
|
||||
conversation_id: str | None = None,
|
||||
app_id: str | None = None,
|
||||
message_id: str | None = None,
|
||||
credentials: InvokeCredentials | None = None,
|
||||
) -> Generator[AgentInvokeMessage, None, None]:
|
||||
"""
|
||||
Invoke the agent strategy.
|
||||
"""
|
||||
yield from self._invoke(params, user_id, conversation_id, app_id, message_id, credentials)
|
||||
|
||||
def get_parameters(self) -> Sequence[AgentStrategyParameter]:
|
||||
"""
|
||||
Get the parameters for the agent strategy.
|
||||
"""
|
||||
return []
|
||||
|
||||
@abstractmethod
|
||||
def _invoke(
|
||||
self,
|
||||
params: dict[str, Any],
|
||||
user_id: str,
|
||||
conversation_id: str | None = None,
|
||||
app_id: str | None = None,
|
||||
message_id: str | None = None,
|
||||
credentials: InvokeCredentials | None = None,
|
||||
) -> Generator[AgentInvokeMessage, None, None]:
|
||||
pass
|
||||
64
dify/api/core/agent/strategy/plugin.py
Normal file
64
dify/api/core/agent/strategy/plugin.py
Normal file
@@ -0,0 +1,64 @@
|
||||
from collections.abc import Generator, Sequence
|
||||
from typing import Any
|
||||
|
||||
from core.agent.entities import AgentInvokeMessage
|
||||
from core.agent.plugin_entities import AgentStrategyEntity, AgentStrategyParameter
|
||||
from core.agent.strategy.base import BaseAgentStrategy
|
||||
from core.plugin.entities.request import InvokeCredentials, PluginInvokeContext
|
||||
from core.plugin.impl.agent import PluginAgentClient
|
||||
from core.plugin.utils.converter import convert_parameters_to_plugin_format
|
||||
|
||||
|
||||
class PluginAgentStrategy(BaseAgentStrategy):
|
||||
"""
|
||||
Agent Strategy
|
||||
"""
|
||||
|
||||
tenant_id: str
|
||||
declaration: AgentStrategyEntity
|
||||
meta_version: str | None = None
|
||||
|
||||
def __init__(self, tenant_id: str, declaration: AgentStrategyEntity, meta_version: str | None):
|
||||
self.tenant_id = tenant_id
|
||||
self.declaration = declaration
|
||||
self.meta_version = meta_version
|
||||
|
||||
def get_parameters(self) -> Sequence[AgentStrategyParameter]:
|
||||
return self.declaration.parameters
|
||||
|
||||
def initialize_parameters(self, params: dict[str, Any]) -> dict[str, Any]:
|
||||
"""
|
||||
Initialize the parameters for the agent strategy.
|
||||
"""
|
||||
for parameter in self.declaration.parameters:
|
||||
params[parameter.name] = parameter.init_frontend_parameter(params.get(parameter.name))
|
||||
return params
|
||||
|
||||
def _invoke(
|
||||
self,
|
||||
params: dict[str, Any],
|
||||
user_id: str,
|
||||
conversation_id: str | None = None,
|
||||
app_id: str | None = None,
|
||||
message_id: str | None = None,
|
||||
credentials: InvokeCredentials | None = None,
|
||||
) -> Generator[AgentInvokeMessage, None, None]:
|
||||
"""
|
||||
Invoke the agent strategy.
|
||||
"""
|
||||
manager = PluginAgentClient()
|
||||
|
||||
initialized_params = self.initialize_parameters(params)
|
||||
params = convert_parameters_to_plugin_format(initialized_params)
|
||||
|
||||
yield from manager.invoke(
|
||||
tenant_id=self.tenant_id,
|
||||
user_id=user_id,
|
||||
agent_provider=self.declaration.identity.provider,
|
||||
agent_strategy=self.declaration.identity.name,
|
||||
agent_params=params,
|
||||
conversation_id=conversation_id,
|
||||
app_id=app_id,
|
||||
message_id=message_id,
|
||||
context=PluginInvokeContext(credentials=credentials or InvokeCredentials()),
|
||||
)
|
||||
0
dify/api/core/app/__init__.py
Normal file
0
dify/api/core/app/__init__.py
Normal file
0
dify/api/core/app/app_config/__init__.py
Normal file
0
dify/api/core/app/app_config/__init__.py
Normal file
49
dify/api/core/app/app_config/base_app_config_manager.py
Normal file
49
dify/api/core/app/app_config/base_app_config_manager.py
Normal file
@@ -0,0 +1,49 @@
|
||||
from collections.abc import Mapping
|
||||
from typing import Any
|
||||
|
||||
from core.app.app_config.entities import AppAdditionalFeatures
|
||||
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
|
||||
from core.app.app_config.features.more_like_this.manager import MoreLikeThisConfigManager
|
||||
from core.app.app_config.features.opening_statement.manager import OpeningStatementConfigManager
|
||||
from core.app.app_config.features.retrieval_resource.manager import RetrievalResourceConfigManager
|
||||
from core.app.app_config.features.speech_to_text.manager import SpeechToTextConfigManager
|
||||
from core.app.app_config.features.suggested_questions_after_answer.manager import (
|
||||
SuggestedQuestionsAfterAnswerConfigManager,
|
||||
)
|
||||
from core.app.app_config.features.text_to_speech.manager import TextToSpeechConfigManager
|
||||
from models.model import AppMode
|
||||
|
||||
|
||||
class BaseAppConfigManager:
|
||||
@classmethod
|
||||
def convert_features(cls, config_dict: Mapping[str, Any], app_mode: AppMode) -> AppAdditionalFeatures:
|
||||
"""
|
||||
Convert app config to app model config
|
||||
|
||||
:param config_dict: app config
|
||||
:param app_mode: app mode
|
||||
"""
|
||||
config_dict = dict(config_dict.items())
|
||||
|
||||
additional_features = AppAdditionalFeatures()
|
||||
additional_features.show_retrieve_source = RetrievalResourceConfigManager.convert(config=config_dict)
|
||||
|
||||
additional_features.file_upload = FileUploadConfigManager.convert(
|
||||
config=config_dict, is_vision=app_mode in {AppMode.CHAT, AppMode.COMPLETION, AppMode.AGENT_CHAT}
|
||||
)
|
||||
|
||||
additional_features.opening_statement, additional_features.suggested_questions = (
|
||||
OpeningStatementConfigManager.convert(config=config_dict)
|
||||
)
|
||||
|
||||
additional_features.suggested_questions_after_answer = SuggestedQuestionsAfterAnswerConfigManager.convert(
|
||||
config=config_dict
|
||||
)
|
||||
|
||||
additional_features.more_like_this = MoreLikeThisConfigManager.convert(config=config_dict)
|
||||
|
||||
additional_features.speech_to_text = SpeechToTextConfigManager.convert(config=config_dict)
|
||||
|
||||
additional_features.text_to_speech = TextToSpeechConfigManager.convert(config=config_dict)
|
||||
|
||||
return additional_features
|
||||
0
dify/api/core/app/app_config/common/__init__.py
Normal file
0
dify/api/core/app/app_config/common/__init__.py
Normal file
@@ -0,0 +1,45 @@
|
||||
from collections.abc import Mapping
|
||||
from typing import Any
|
||||
|
||||
from configs import dify_config
|
||||
from constants import DEFAULT_FILE_NUMBER_LIMITS
|
||||
|
||||
|
||||
def get_parameters_from_feature_dict(
|
||||
*, features_dict: Mapping[str, Any], user_input_form: list[dict[str, Any]]
|
||||
) -> Mapping[str, Any]:
|
||||
"""
|
||||
Mapping from feature dict to webapp parameters
|
||||
"""
|
||||
return {
|
||||
"opening_statement": features_dict.get("opening_statement"),
|
||||
"suggested_questions": features_dict.get("suggested_questions", []),
|
||||
"suggested_questions_after_answer": features_dict.get("suggested_questions_after_answer", {"enabled": False}),
|
||||
"speech_to_text": features_dict.get("speech_to_text", {"enabled": False}),
|
||||
"text_to_speech": features_dict.get("text_to_speech", {"enabled": False}),
|
||||
"retriever_resource": features_dict.get("retriever_resource", {"enabled": False}),
|
||||
"annotation_reply": features_dict.get("annotation_reply", {"enabled": False}),
|
||||
"more_like_this": features_dict.get("more_like_this", {"enabled": False}),
|
||||
"user_input_form": user_input_form,
|
||||
"sensitive_word_avoidance": features_dict.get(
|
||||
"sensitive_word_avoidance", {"enabled": False, "type": "", "configs": []}
|
||||
),
|
||||
"file_upload": features_dict.get(
|
||||
"file_upload",
|
||||
{
|
||||
"image": {
|
||||
"enabled": False,
|
||||
"number_limits": DEFAULT_FILE_NUMBER_LIMITS,
|
||||
"detail": "high",
|
||||
"transfer_methods": ["remote_url", "local_file"],
|
||||
}
|
||||
},
|
||||
),
|
||||
"system_parameters": {
|
||||
"image_file_size_limit": dify_config.UPLOAD_IMAGE_FILE_SIZE_LIMIT,
|
||||
"video_file_size_limit": dify_config.UPLOAD_VIDEO_FILE_SIZE_LIMIT,
|
||||
"audio_file_size_limit": dify_config.UPLOAD_AUDIO_FILE_SIZE_LIMIT,
|
||||
"file_size_limit": dify_config.UPLOAD_FILE_SIZE_LIMIT,
|
||||
"workflow_file_upload_limit": dify_config.WORKFLOW_FILE_UPLOAD_LIMIT,
|
||||
},
|
||||
}
|
||||
@@ -0,0 +1,50 @@
|
||||
from core.app.app_config.entities import SensitiveWordAvoidanceEntity
|
||||
from core.moderation.factory import ModerationFactory
|
||||
|
||||
|
||||
class SensitiveWordAvoidanceConfigManager:
|
||||
@classmethod
|
||||
def convert(cls, config: dict) -> SensitiveWordAvoidanceEntity | None:
|
||||
sensitive_word_avoidance_dict = config.get("sensitive_word_avoidance")
|
||||
if not sensitive_word_avoidance_dict:
|
||||
return None
|
||||
|
||||
if sensitive_word_avoidance_dict.get("enabled"):
|
||||
return SensitiveWordAvoidanceEntity(
|
||||
type=sensitive_word_avoidance_dict.get("type"),
|
||||
config=sensitive_word_avoidance_dict.get("config"),
|
||||
)
|
||||
else:
|
||||
return None
|
||||
|
||||
@classmethod
|
||||
def validate_and_set_defaults(
|
||||
cls, tenant_id: str, config: dict, only_structure_validate: bool = False
|
||||
) -> tuple[dict, list[str]]:
|
||||
if not config.get("sensitive_word_avoidance"):
|
||||
config["sensitive_word_avoidance"] = {"enabled": False}
|
||||
|
||||
if not isinstance(config["sensitive_word_avoidance"], dict):
|
||||
raise ValueError("sensitive_word_avoidance must be of dict type")
|
||||
|
||||
if "enabled" not in config["sensitive_word_avoidance"] or not config["sensitive_word_avoidance"]["enabled"]:
|
||||
config["sensitive_word_avoidance"]["enabled"] = False
|
||||
|
||||
if config["sensitive_word_avoidance"]["enabled"]:
|
||||
if not config["sensitive_word_avoidance"].get("type"):
|
||||
raise ValueError("sensitive_word_avoidance.type is required")
|
||||
|
||||
if not only_structure_validate:
|
||||
typ = config["sensitive_word_avoidance"]["type"]
|
||||
if not isinstance(typ, str):
|
||||
raise ValueError("sensitive_word_avoidance.type must be a string")
|
||||
|
||||
sensitive_word_avoidance_config = config["sensitive_word_avoidance"].get("config")
|
||||
if sensitive_word_avoidance_config is None:
|
||||
sensitive_word_avoidance_config = {}
|
||||
if not isinstance(sensitive_word_avoidance_config, dict):
|
||||
raise ValueError("sensitive_word_avoidance.config must be a dict")
|
||||
|
||||
ModerationFactory.validate_config(name=typ, tenant_id=tenant_id, config=sensitive_word_avoidance_config)
|
||||
|
||||
return config, ["sensitive_word_avoidance"]
|
||||
@@ -0,0 +1,80 @@
|
||||
from core.agent.entities import AgentEntity, AgentPromptEntity, AgentToolEntity
|
||||
from core.agent.prompt.template import REACT_PROMPT_TEMPLATES
|
||||
|
||||
|
||||
class AgentConfigManager:
|
||||
@classmethod
|
||||
def convert(cls, config: dict) -> AgentEntity | None:
|
||||
"""
|
||||
Convert model config to model config
|
||||
|
||||
:param config: model config args
|
||||
"""
|
||||
if "agent_mode" in config and config["agent_mode"] and "enabled" in config["agent_mode"]:
|
||||
agent_dict = config.get("agent_mode", {})
|
||||
agent_strategy = agent_dict.get("strategy", "cot")
|
||||
|
||||
if agent_strategy == "function_call":
|
||||
strategy = AgentEntity.Strategy.FUNCTION_CALLING
|
||||
elif agent_strategy in {"cot", "react"}:
|
||||
strategy = AgentEntity.Strategy.CHAIN_OF_THOUGHT
|
||||
else:
|
||||
# old configs, try to detect default strategy
|
||||
if config["model"]["provider"] == "openai":
|
||||
strategy = AgentEntity.Strategy.FUNCTION_CALLING
|
||||
else:
|
||||
strategy = AgentEntity.Strategy.CHAIN_OF_THOUGHT
|
||||
|
||||
agent_tools = []
|
||||
for tool in agent_dict.get("tools", []):
|
||||
keys = tool.keys()
|
||||
if len(keys) >= 4:
|
||||
if "enabled" not in tool or not tool["enabled"]:
|
||||
continue
|
||||
|
||||
agent_tool_properties = {
|
||||
"provider_type": tool["provider_type"],
|
||||
"provider_id": tool["provider_id"],
|
||||
"tool_name": tool["tool_name"],
|
||||
"tool_parameters": tool.get("tool_parameters", {}),
|
||||
"credential_id": tool.get("credential_id", None),
|
||||
}
|
||||
|
||||
agent_tools.append(AgentToolEntity.model_validate(agent_tool_properties))
|
||||
|
||||
if "strategy" in config["agent_mode"] and config["agent_mode"]["strategy"] not in {
|
||||
"react_router",
|
||||
"router",
|
||||
}:
|
||||
agent_prompt = agent_dict.get("prompt", None) or {}
|
||||
# check model mode
|
||||
model_mode = config.get("model", {}).get("mode", "completion")
|
||||
if model_mode == "completion":
|
||||
agent_prompt_entity = AgentPromptEntity(
|
||||
first_prompt=agent_prompt.get(
|
||||
"first_prompt", REACT_PROMPT_TEMPLATES["english"]["completion"]["prompt"]
|
||||
),
|
||||
next_iteration=agent_prompt.get(
|
||||
"next_iteration", REACT_PROMPT_TEMPLATES["english"]["completion"]["agent_scratchpad"]
|
||||
),
|
||||
)
|
||||
else:
|
||||
agent_prompt_entity = AgentPromptEntity(
|
||||
first_prompt=agent_prompt.get(
|
||||
"first_prompt", REACT_PROMPT_TEMPLATES["english"]["chat"]["prompt"]
|
||||
),
|
||||
next_iteration=agent_prompt.get(
|
||||
"next_iteration", REACT_PROMPT_TEMPLATES["english"]["chat"]["agent_scratchpad"]
|
||||
),
|
||||
)
|
||||
|
||||
return AgentEntity(
|
||||
provider=config["model"]["provider"],
|
||||
model=config["model"]["name"],
|
||||
strategy=strategy,
|
||||
prompt=agent_prompt_entity,
|
||||
tools=agent_tools,
|
||||
max_iteration=agent_dict.get("max_iteration", 10),
|
||||
)
|
||||
|
||||
return None
|
||||
@@ -0,0 +1,254 @@
|
||||
import uuid
|
||||
from typing import Literal, cast
|
||||
|
||||
from core.app.app_config.entities import (
|
||||
DatasetEntity,
|
||||
DatasetRetrieveConfigEntity,
|
||||
MetadataFilteringCondition,
|
||||
ModelConfig,
|
||||
)
|
||||
from core.entities.agent_entities import PlanningStrategy
|
||||
from models.model import AppMode
|
||||
from services.dataset_service import DatasetService
|
||||
|
||||
|
||||
class DatasetConfigManager:
|
||||
@classmethod
|
||||
def convert(cls, config: dict) -> DatasetEntity | None:
|
||||
"""
|
||||
Convert model config to model config
|
||||
|
||||
:param config: model config args
|
||||
"""
|
||||
dataset_ids = []
|
||||
if "datasets" in config.get("dataset_configs", {}):
|
||||
datasets = config.get("dataset_configs", {}).get("datasets", {"strategy": "router", "datasets": []})
|
||||
|
||||
for dataset in datasets.get("datasets", []):
|
||||
keys = list(dataset.keys())
|
||||
if len(keys) == 0 or keys[0] != "dataset":
|
||||
continue
|
||||
|
||||
dataset = dataset["dataset"]
|
||||
|
||||
if "enabled" not in dataset or not dataset["enabled"]:
|
||||
continue
|
||||
|
||||
dataset_id = dataset.get("id", None)
|
||||
if dataset_id:
|
||||
dataset_ids.append(dataset_id)
|
||||
|
||||
if (
|
||||
"agent_mode" in config
|
||||
and config["agent_mode"]
|
||||
and "enabled" in config["agent_mode"]
|
||||
and config["agent_mode"]["enabled"]
|
||||
):
|
||||
agent_dict = config.get("agent_mode", {})
|
||||
|
||||
for tool in agent_dict.get("tools", []):
|
||||
keys = tool.keys()
|
||||
if len(keys) == 1:
|
||||
# old standard
|
||||
key = list(tool.keys())[0]
|
||||
|
||||
if key != "dataset":
|
||||
continue
|
||||
|
||||
tool_item = tool[key]
|
||||
|
||||
if "enabled" not in tool_item or not tool_item["enabled"]:
|
||||
continue
|
||||
|
||||
dataset_id = tool_item["id"]
|
||||
dataset_ids.append(dataset_id)
|
||||
|
||||
if len(dataset_ids) == 0:
|
||||
return None
|
||||
|
||||
# dataset configs
|
||||
if "dataset_configs" in config and config.get("dataset_configs"):
|
||||
dataset_configs = config.get("dataset_configs")
|
||||
else:
|
||||
dataset_configs = {"retrieval_model": "multiple"}
|
||||
if dataset_configs is None:
|
||||
return None
|
||||
query_variable = config.get("dataset_query_variable")
|
||||
|
||||
metadata_model_config_dict = dataset_configs.get("metadata_model_config")
|
||||
metadata_filtering_conditions_dict = dataset_configs.get("metadata_filtering_conditions")
|
||||
|
||||
if dataset_configs["retrieval_model"] == "single":
|
||||
return DatasetEntity(
|
||||
dataset_ids=dataset_ids,
|
||||
retrieve_config=DatasetRetrieveConfigEntity(
|
||||
query_variable=query_variable,
|
||||
retrieve_strategy=DatasetRetrieveConfigEntity.RetrieveStrategy.value_of(
|
||||
dataset_configs["retrieval_model"]
|
||||
),
|
||||
metadata_filtering_mode=cast(
|
||||
Literal["disabled", "automatic", "manual"],
|
||||
dataset_configs.get("metadata_filtering_mode", "disabled"),
|
||||
),
|
||||
metadata_model_config=ModelConfig(**metadata_model_config_dict)
|
||||
if isinstance(metadata_model_config_dict, dict)
|
||||
else None,
|
||||
metadata_filtering_conditions=MetadataFilteringCondition(**metadata_filtering_conditions_dict)
|
||||
if isinstance(metadata_filtering_conditions_dict, dict)
|
||||
else None,
|
||||
),
|
||||
)
|
||||
else:
|
||||
score_threshold_val = dataset_configs.get("score_threshold")
|
||||
reranking_model_val = dataset_configs.get("reranking_model")
|
||||
weights_val = dataset_configs.get("weights")
|
||||
|
||||
return DatasetEntity(
|
||||
dataset_ids=dataset_ids,
|
||||
retrieve_config=DatasetRetrieveConfigEntity(
|
||||
query_variable=query_variable,
|
||||
retrieve_strategy=DatasetRetrieveConfigEntity.RetrieveStrategy.value_of(
|
||||
dataset_configs["retrieval_model"]
|
||||
),
|
||||
top_k=int(dataset_configs.get("top_k", 4)),
|
||||
score_threshold=float(score_threshold_val)
|
||||
if dataset_configs.get("score_threshold_enabled", False) and score_threshold_val is not None
|
||||
else None,
|
||||
reranking_model=reranking_model_val if isinstance(reranking_model_val, dict) else None,
|
||||
weights=weights_val if isinstance(weights_val, dict) else None,
|
||||
reranking_enabled=bool(dataset_configs.get("reranking_enabled", True)),
|
||||
rerank_mode=dataset_configs.get("reranking_mode", "reranking_model"),
|
||||
metadata_filtering_mode=cast(
|
||||
Literal["disabled", "automatic", "manual"],
|
||||
dataset_configs.get("metadata_filtering_mode", "disabled"),
|
||||
),
|
||||
metadata_model_config=ModelConfig(**metadata_model_config_dict)
|
||||
if isinstance(metadata_model_config_dict, dict)
|
||||
else None,
|
||||
metadata_filtering_conditions=MetadataFilteringCondition(**metadata_filtering_conditions_dict)
|
||||
if isinstance(metadata_filtering_conditions_dict, dict)
|
||||
else None,
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def validate_and_set_defaults(cls, tenant_id: str, app_mode: AppMode, config: dict) -> tuple[dict, list[str]]:
|
||||
"""
|
||||
Validate and set defaults for dataset feature
|
||||
|
||||
:param tenant_id: tenant ID
|
||||
:param app_mode: app mode
|
||||
:param config: app model config args
|
||||
"""
|
||||
# Extract dataset config for legacy compatibility
|
||||
config = cls.extract_dataset_config_for_legacy_compatibility(tenant_id, app_mode, config)
|
||||
|
||||
# dataset_configs
|
||||
if "dataset_configs" not in config or not config.get("dataset_configs"):
|
||||
config["dataset_configs"] = {}
|
||||
config["dataset_configs"]["retrieval_model"] = config["dataset_configs"].get("retrieval_model", "single")
|
||||
|
||||
if not isinstance(config["dataset_configs"], dict):
|
||||
raise ValueError("dataset_configs must be of object type")
|
||||
|
||||
if "datasets" not in config["dataset_configs"] or not config["dataset_configs"].get("datasets"):
|
||||
config["dataset_configs"]["datasets"] = {"strategy": "router", "datasets": []}
|
||||
|
||||
need_manual_query_datasets = config.get("dataset_configs", {}).get("datasets", {}).get("datasets")
|
||||
|
||||
if need_manual_query_datasets and app_mode == AppMode.COMPLETION:
|
||||
# Only check when mode is completion
|
||||
dataset_query_variable = config.get("dataset_query_variable")
|
||||
|
||||
if not dataset_query_variable:
|
||||
raise ValueError("Dataset query variable is required when dataset is exist")
|
||||
|
||||
return config, ["agent_mode", "dataset_configs", "dataset_query_variable"]
|
||||
|
||||
@classmethod
|
||||
def extract_dataset_config_for_legacy_compatibility(cls, tenant_id: str, app_mode: AppMode, config: dict):
|
||||
"""
|
||||
Extract dataset config for legacy compatibility
|
||||
|
||||
:param tenant_id: tenant ID
|
||||
:param app_mode: app mode
|
||||
:param config: app model config args
|
||||
"""
|
||||
# Extract dataset config for legacy compatibility
|
||||
if "agent_mode" not in config or not config.get("agent_mode"):
|
||||
config["agent_mode"] = {}
|
||||
|
||||
if not isinstance(config["agent_mode"], dict):
|
||||
raise ValueError("agent_mode must be of object type")
|
||||
|
||||
# enabled
|
||||
if "enabled" not in config["agent_mode"] or not config["agent_mode"]["enabled"]:
|
||||
config["agent_mode"]["enabled"] = False
|
||||
|
||||
if not isinstance(config["agent_mode"]["enabled"], bool):
|
||||
raise ValueError("enabled in agent_mode must be of boolean type")
|
||||
|
||||
# tools
|
||||
if "tools" not in config["agent_mode"] or not config["agent_mode"].get("tools"):
|
||||
config["agent_mode"]["tools"] = []
|
||||
|
||||
if not isinstance(config["agent_mode"]["tools"], list):
|
||||
raise ValueError("tools in agent_mode must be a list of objects")
|
||||
|
||||
# strategy
|
||||
if "strategy" not in config["agent_mode"] or not config["agent_mode"].get("strategy"):
|
||||
config["agent_mode"]["strategy"] = PlanningStrategy.ROUTER
|
||||
|
||||
has_datasets = False
|
||||
if config.get("agent_mode", {}).get("strategy") in {
|
||||
PlanningStrategy.ROUTER,
|
||||
PlanningStrategy.REACT_ROUTER,
|
||||
}:
|
||||
for tool in config.get("agent_mode", {}).get("tools", []):
|
||||
key = list(tool.keys())[0]
|
||||
if key == "dataset":
|
||||
# old style, use tool name as key
|
||||
tool_item = tool[key]
|
||||
|
||||
if "enabled" not in tool_item or not tool_item["enabled"]:
|
||||
tool_item["enabled"] = False
|
||||
|
||||
if not isinstance(tool_item["enabled"], bool):
|
||||
raise ValueError("enabled in agent_mode.tools must be of boolean type")
|
||||
|
||||
if "id" not in tool_item:
|
||||
raise ValueError("id is required in dataset")
|
||||
|
||||
try:
|
||||
uuid.UUID(tool_item["id"])
|
||||
except ValueError:
|
||||
raise ValueError("id in dataset must be of UUID type")
|
||||
|
||||
if not cls.is_dataset_exists(tenant_id, tool_item["id"]):
|
||||
raise ValueError("Dataset ID does not exist, please check your permission.")
|
||||
|
||||
has_datasets = True
|
||||
|
||||
need_manual_query_datasets = has_datasets and config.get("agent_mode", {}).get("enabled")
|
||||
|
||||
if need_manual_query_datasets and app_mode == AppMode.COMPLETION:
|
||||
# Only check when mode is completion
|
||||
dataset_query_variable = config.get("dataset_query_variable")
|
||||
|
||||
if not dataset_query_variable:
|
||||
raise ValueError("Dataset query variable is required when dataset is exist")
|
||||
|
||||
return config
|
||||
|
||||
@classmethod
|
||||
def is_dataset_exists(cls, tenant_id: str, dataset_id: str) -> bool:
|
||||
# verify if the dataset ID exists
|
||||
dataset = DatasetService.get_dataset(dataset_id)
|
||||
|
||||
if not dataset:
|
||||
return False
|
||||
|
||||
if dataset.tenant_id != tenant_id:
|
||||
return False
|
||||
|
||||
return True
|
||||
@@ -0,0 +1,91 @@
|
||||
from typing import cast
|
||||
|
||||
from core.app.app_config.entities import EasyUIBasedAppConfig
|
||||
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
|
||||
from core.entities.model_entities import ModelStatus
|
||||
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
|
||||
from core.model_runtime.entities.llm_entities import LLMMode
|
||||
from core.model_runtime.entities.model_entities import ModelPropertyKey, ModelType
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.provider_manager import ProviderManager
|
||||
|
||||
|
||||
class ModelConfigConverter:
|
||||
@classmethod
|
||||
def convert(cls, app_config: EasyUIBasedAppConfig) -> ModelConfigWithCredentialsEntity:
|
||||
"""
|
||||
Convert app model config dict to entity.
|
||||
:param app_config: app config
|
||||
:raises ProviderTokenNotInitError: provider token not init error
|
||||
:return: app orchestration config entity
|
||||
"""
|
||||
model_config = app_config.model
|
||||
|
||||
provider_manager = ProviderManager()
|
||||
provider_model_bundle = provider_manager.get_provider_model_bundle(
|
||||
tenant_id=app_config.tenant_id, provider=model_config.provider, model_type=ModelType.LLM
|
||||
)
|
||||
|
||||
provider_name = provider_model_bundle.configuration.provider.provider
|
||||
model_name = model_config.model
|
||||
|
||||
model_type_instance = provider_model_bundle.model_type_instance
|
||||
model_type_instance = cast(LargeLanguageModel, model_type_instance)
|
||||
|
||||
# check model credentials
|
||||
model_credentials = provider_model_bundle.configuration.get_current_credentials(
|
||||
model_type=ModelType.LLM, model=model_config.model
|
||||
)
|
||||
|
||||
if model_credentials is None:
|
||||
raise ProviderTokenNotInitError(f"Model {model_name} credentials is not initialized.")
|
||||
|
||||
# check model
|
||||
provider_model = provider_model_bundle.configuration.get_provider_model(
|
||||
model=model_config.model, model_type=ModelType.LLM
|
||||
)
|
||||
|
||||
if provider_model is None:
|
||||
model_name = model_config.model
|
||||
raise ValueError(f"Model {model_name} not exist.")
|
||||
|
||||
if provider_model.status == ModelStatus.NO_CONFIGURE:
|
||||
raise ProviderTokenNotInitError(f"Model {model_name} credentials is not initialized.")
|
||||
elif provider_model.status == ModelStatus.NO_PERMISSION:
|
||||
raise ModelCurrentlyNotSupportError(f"Dify Hosted OpenAI {model_name} currently not support.")
|
||||
elif provider_model.status == ModelStatus.QUOTA_EXCEEDED:
|
||||
raise QuotaExceededError(f"Model provider {provider_name} quota exceeded.")
|
||||
|
||||
# model config
|
||||
completion_params = model_config.parameters
|
||||
stop = []
|
||||
if "stop" in completion_params:
|
||||
stop = completion_params["stop"]
|
||||
del completion_params["stop"]
|
||||
|
||||
model_schema = model_type_instance.get_model_schema(model_config.model, model_credentials)
|
||||
|
||||
# get model mode
|
||||
model_mode = model_config.mode
|
||||
if not model_mode:
|
||||
model_mode = LLMMode.CHAT
|
||||
if model_schema and model_schema.model_properties.get(ModelPropertyKey.MODE):
|
||||
try:
|
||||
model_mode = LLMMode(model_schema.model_properties[ModelPropertyKey.MODE])
|
||||
except ValueError:
|
||||
# Fall back to CHAT mode if the stored value is invalid
|
||||
model_mode = LLMMode.CHAT
|
||||
|
||||
if not model_schema:
|
||||
raise ValueError(f"Model {model_name} not exist.")
|
||||
|
||||
return ModelConfigWithCredentialsEntity(
|
||||
provider=model_config.provider,
|
||||
model=model_config.model,
|
||||
model_schema=model_schema,
|
||||
mode=model_mode,
|
||||
provider_model_bundle=provider_model_bundle,
|
||||
credentials=model_credentials,
|
||||
parameters=completion_params,
|
||||
stop=stop,
|
||||
)
|
||||
@@ -0,0 +1,122 @@
|
||||
from collections.abc import Mapping
|
||||
from typing import Any
|
||||
|
||||
from core.app.app_config.entities import ModelConfigEntity
|
||||
from core.model_runtime.entities.model_entities import ModelPropertyKey, ModelType
|
||||
from core.model_runtime.model_providers.model_provider_factory import ModelProviderFactory
|
||||
from core.provider_manager import ProviderManager
|
||||
from models.provider_ids import ModelProviderID
|
||||
|
||||
|
||||
class ModelConfigManager:
|
||||
@classmethod
|
||||
def convert(cls, config: dict) -> ModelConfigEntity:
|
||||
"""
|
||||
Convert model config to model config
|
||||
|
||||
:param config: model config args
|
||||
"""
|
||||
# model config
|
||||
model_config = config.get("model")
|
||||
|
||||
if not model_config:
|
||||
raise ValueError("model is required")
|
||||
|
||||
completion_params = model_config.get("completion_params")
|
||||
stop = []
|
||||
if "stop" in completion_params:
|
||||
stop = completion_params["stop"]
|
||||
del completion_params["stop"]
|
||||
|
||||
# get model mode
|
||||
model_mode = model_config.get("mode")
|
||||
|
||||
return ModelConfigEntity(
|
||||
provider=config["model"]["provider"],
|
||||
model=config["model"]["name"],
|
||||
mode=model_mode,
|
||||
parameters=completion_params,
|
||||
stop=stop,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def validate_and_set_defaults(cls, tenant_id: str, config: Mapping[str, Any]) -> tuple[dict, list[str]]:
|
||||
"""
|
||||
Validate and set defaults for model config
|
||||
|
||||
:param tenant_id: tenant id
|
||||
:param config: app model config args
|
||||
"""
|
||||
if "model" not in config:
|
||||
raise ValueError("model is required")
|
||||
|
||||
if not isinstance(config["model"], dict):
|
||||
raise ValueError("model must be of object type")
|
||||
|
||||
# model.provider
|
||||
model_provider_factory = ModelProviderFactory(tenant_id)
|
||||
provider_entities = model_provider_factory.get_providers()
|
||||
model_provider_names = [provider.provider for provider in provider_entities]
|
||||
if "provider" not in config["model"]:
|
||||
raise ValueError(f"model.provider is required and must be in {str(model_provider_names)}")
|
||||
|
||||
if "/" not in config["model"]["provider"]:
|
||||
config["model"]["provider"] = str(ModelProviderID(config["model"]["provider"]))
|
||||
|
||||
if config["model"]["provider"] not in model_provider_names:
|
||||
raise ValueError(f"model.provider is required and must be in {str(model_provider_names)}")
|
||||
|
||||
# model.name
|
||||
if "name" not in config["model"]:
|
||||
raise ValueError("model.name is required")
|
||||
|
||||
provider_manager = ProviderManager()
|
||||
models = provider_manager.get_configurations(tenant_id).get_models(
|
||||
provider=config["model"]["provider"], model_type=ModelType.LLM
|
||||
)
|
||||
|
||||
if not models:
|
||||
raise ValueError("model.name must be in the specified model list")
|
||||
|
||||
model_ids = [m.model for m in models]
|
||||
if config["model"]["name"] not in model_ids:
|
||||
raise ValueError("model.name must be in the specified model list")
|
||||
|
||||
model_mode = None
|
||||
for model in models:
|
||||
if model.model == config["model"]["name"]:
|
||||
model_mode = model.model_properties.get(ModelPropertyKey.MODE)
|
||||
break
|
||||
|
||||
# model.mode
|
||||
if model_mode:
|
||||
config["model"]["mode"] = model_mode
|
||||
else:
|
||||
config["model"]["mode"] = "completion"
|
||||
|
||||
# model.completion_params
|
||||
if "completion_params" not in config["model"]:
|
||||
raise ValueError("model.completion_params is required")
|
||||
|
||||
config["model"]["completion_params"] = cls.validate_model_completion_params(
|
||||
config["model"]["completion_params"]
|
||||
)
|
||||
|
||||
return dict(config), ["model"]
|
||||
|
||||
@classmethod
|
||||
def validate_model_completion_params(cls, cp: dict):
|
||||
# model.completion_params
|
||||
if not isinstance(cp, dict):
|
||||
raise ValueError("model.completion_params must be of object type")
|
||||
|
||||
# stop
|
||||
if "stop" not in cp:
|
||||
cp["stop"] = []
|
||||
elif not isinstance(cp["stop"], list):
|
||||
raise ValueError("stop in model.completion_params must be of list type")
|
||||
|
||||
if len(cp["stop"]) > 4:
|
||||
raise ValueError("stop sequences must be less than 4")
|
||||
|
||||
return cp
|
||||
@@ -0,0 +1,142 @@
|
||||
from core.app.app_config.entities import (
|
||||
AdvancedChatMessageEntity,
|
||||
AdvancedChatPromptTemplateEntity,
|
||||
AdvancedCompletionPromptTemplateEntity,
|
||||
PromptTemplateEntity,
|
||||
)
|
||||
from core.model_runtime.entities.message_entities import PromptMessageRole
|
||||
from core.prompt.simple_prompt_transform import ModelMode
|
||||
from models.model import AppMode
|
||||
|
||||
|
||||
class PromptTemplateConfigManager:
|
||||
@classmethod
|
||||
def convert(cls, config: dict) -> PromptTemplateEntity:
|
||||
if not config.get("prompt_type"):
|
||||
raise ValueError("prompt_type is required")
|
||||
|
||||
prompt_type = PromptTemplateEntity.PromptType.value_of(config["prompt_type"])
|
||||
if prompt_type == PromptTemplateEntity.PromptType.SIMPLE:
|
||||
simple_prompt_template = config.get("pre_prompt", "")
|
||||
return PromptTemplateEntity(prompt_type=prompt_type, simple_prompt_template=simple_prompt_template)
|
||||
else:
|
||||
advanced_chat_prompt_template = None
|
||||
chat_prompt_config = config.get("chat_prompt_config", {})
|
||||
if chat_prompt_config:
|
||||
chat_prompt_messages = []
|
||||
for message in chat_prompt_config.get("prompt", []):
|
||||
text = message.get("text")
|
||||
if not isinstance(text, str):
|
||||
raise ValueError("message text must be a string")
|
||||
role = message.get("role")
|
||||
if not isinstance(role, str):
|
||||
raise ValueError("message role must be a string")
|
||||
chat_prompt_messages.append(
|
||||
AdvancedChatMessageEntity(text=text, role=PromptMessageRole.value_of(role))
|
||||
)
|
||||
|
||||
advanced_chat_prompt_template = AdvancedChatPromptTemplateEntity(messages=chat_prompt_messages)
|
||||
|
||||
advanced_completion_prompt_template = None
|
||||
completion_prompt_config = config.get("completion_prompt_config", {})
|
||||
if completion_prompt_config:
|
||||
completion_prompt_template_params = {
|
||||
"prompt": completion_prompt_config["prompt"]["text"],
|
||||
}
|
||||
|
||||
if "conversation_histories_role" in completion_prompt_config:
|
||||
completion_prompt_template_params["role_prefix"] = {
|
||||
"user": completion_prompt_config["conversation_histories_role"]["user_prefix"],
|
||||
"assistant": completion_prompt_config["conversation_histories_role"]["assistant_prefix"],
|
||||
}
|
||||
|
||||
advanced_completion_prompt_template = AdvancedCompletionPromptTemplateEntity(
|
||||
**completion_prompt_template_params
|
||||
)
|
||||
|
||||
return PromptTemplateEntity(
|
||||
prompt_type=prompt_type,
|
||||
advanced_chat_prompt_template=advanced_chat_prompt_template,
|
||||
advanced_completion_prompt_template=advanced_completion_prompt_template,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def validate_and_set_defaults(cls, app_mode: AppMode, config: dict) -> tuple[dict, list[str]]:
|
||||
"""
|
||||
Validate pre_prompt and set defaults for prompt feature
|
||||
depending on the config['model']
|
||||
|
||||
:param app_mode: app mode
|
||||
:param config: app model config args
|
||||
"""
|
||||
if not config.get("prompt_type"):
|
||||
config["prompt_type"] = PromptTemplateEntity.PromptType.SIMPLE
|
||||
|
||||
prompt_type_vals = [typ.value for typ in PromptTemplateEntity.PromptType]
|
||||
if config["prompt_type"] not in prompt_type_vals:
|
||||
raise ValueError(f"prompt_type must be in {prompt_type_vals}")
|
||||
|
||||
# chat_prompt_config
|
||||
if not config.get("chat_prompt_config"):
|
||||
config["chat_prompt_config"] = {}
|
||||
|
||||
if not isinstance(config["chat_prompt_config"], dict):
|
||||
raise ValueError("chat_prompt_config must be of object type")
|
||||
|
||||
# completion_prompt_config
|
||||
if not config.get("completion_prompt_config"):
|
||||
config["completion_prompt_config"] = {}
|
||||
|
||||
if not isinstance(config["completion_prompt_config"], dict):
|
||||
raise ValueError("completion_prompt_config must be of object type")
|
||||
|
||||
if config["prompt_type"] == PromptTemplateEntity.PromptType.ADVANCED:
|
||||
if not config["chat_prompt_config"] and not config["completion_prompt_config"]:
|
||||
raise ValueError(
|
||||
"chat_prompt_config or completion_prompt_config is required when prompt_type is advanced"
|
||||
)
|
||||
|
||||
model_mode_vals = [mode.value for mode in ModelMode]
|
||||
if config["model"]["mode"] not in model_mode_vals:
|
||||
raise ValueError(f"model.mode must be in {model_mode_vals} when prompt_type is advanced")
|
||||
|
||||
if app_mode == AppMode.CHAT and config["model"]["mode"] == ModelMode.COMPLETION:
|
||||
user_prefix = config["completion_prompt_config"]["conversation_histories_role"]["user_prefix"]
|
||||
assistant_prefix = config["completion_prompt_config"]["conversation_histories_role"]["assistant_prefix"]
|
||||
|
||||
if not user_prefix:
|
||||
config["completion_prompt_config"]["conversation_histories_role"]["user_prefix"] = "Human"
|
||||
|
||||
if not assistant_prefix:
|
||||
config["completion_prompt_config"]["conversation_histories_role"]["assistant_prefix"] = "Assistant"
|
||||
|
||||
if config["model"]["mode"] == ModelMode.CHAT:
|
||||
prompt_list = config["chat_prompt_config"]["prompt"]
|
||||
|
||||
if len(prompt_list) > 10:
|
||||
raise ValueError("prompt messages must be less than 10")
|
||||
else:
|
||||
# pre_prompt, for simple mode
|
||||
if not config.get("pre_prompt"):
|
||||
config["pre_prompt"] = ""
|
||||
|
||||
if not isinstance(config["pre_prompt"], str):
|
||||
raise ValueError("pre_prompt must be of string type")
|
||||
|
||||
return config, ["prompt_type", "pre_prompt", "chat_prompt_config", "completion_prompt_config"]
|
||||
|
||||
@classmethod
|
||||
def validate_post_prompt_and_set_defaults(cls, config: dict):
|
||||
"""
|
||||
Validate post_prompt and set defaults for prompt feature
|
||||
|
||||
:param config: app model config args
|
||||
"""
|
||||
# post_prompt
|
||||
if not config.get("post_prompt"):
|
||||
config["post_prompt"] = ""
|
||||
|
||||
if not isinstance(config["post_prompt"], str):
|
||||
raise ValueError("post_prompt must be of string type")
|
||||
|
||||
return config
|
||||
@@ -0,0 +1,189 @@
|
||||
import re
|
||||
|
||||
from core.app.app_config.entities import ExternalDataVariableEntity, VariableEntity, VariableEntityType
|
||||
from core.external_data_tool.factory import ExternalDataToolFactory
|
||||
|
||||
_ALLOWED_VARIABLE_ENTITY_TYPE = frozenset(
|
||||
[
|
||||
VariableEntityType.TEXT_INPUT,
|
||||
VariableEntityType.SELECT,
|
||||
VariableEntityType.PARAGRAPH,
|
||||
VariableEntityType.NUMBER,
|
||||
VariableEntityType.EXTERNAL_DATA_TOOL,
|
||||
VariableEntityType.CHECKBOX,
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
class BasicVariablesConfigManager:
|
||||
@classmethod
|
||||
def convert(cls, config: dict) -> tuple[list[VariableEntity], list[ExternalDataVariableEntity]]:
|
||||
"""
|
||||
Convert model config to model config
|
||||
|
||||
:param config: model config args
|
||||
"""
|
||||
external_data_variables = []
|
||||
variable_entities = []
|
||||
|
||||
# old external_data_tools
|
||||
external_data_tools = config.get("external_data_tools", [])
|
||||
for external_data_tool in external_data_tools:
|
||||
if "enabled" not in external_data_tool or not external_data_tool["enabled"]:
|
||||
continue
|
||||
|
||||
external_data_variables.append(
|
||||
ExternalDataVariableEntity(
|
||||
variable=external_data_tool["variable"],
|
||||
type=external_data_tool["type"],
|
||||
config=external_data_tool["config"],
|
||||
)
|
||||
)
|
||||
|
||||
# variables and external_data_tools
|
||||
for variables in config.get("user_input_form", []):
|
||||
variable_type = list(variables.keys())[0]
|
||||
if variable_type == VariableEntityType.EXTERNAL_DATA_TOOL:
|
||||
variable = variables[variable_type]
|
||||
if "config" not in variable:
|
||||
continue
|
||||
|
||||
external_data_variables.append(
|
||||
ExternalDataVariableEntity(
|
||||
variable=variable["variable"], type=variable["type"], config=variable["config"]
|
||||
)
|
||||
)
|
||||
elif variable_type in {
|
||||
VariableEntityType.TEXT_INPUT,
|
||||
VariableEntityType.PARAGRAPH,
|
||||
VariableEntityType.NUMBER,
|
||||
VariableEntityType.SELECT,
|
||||
VariableEntityType.CHECKBOX,
|
||||
}:
|
||||
variable = variables[variable_type]
|
||||
variable_entities.append(
|
||||
VariableEntity(
|
||||
type=variable_type,
|
||||
variable=variable.get("variable"),
|
||||
description=variable.get("description") or "",
|
||||
label=variable.get("label"),
|
||||
required=variable.get("required", False),
|
||||
max_length=variable.get("max_length"),
|
||||
options=variable.get("options") or [],
|
||||
)
|
||||
)
|
||||
|
||||
return variable_entities, external_data_variables
|
||||
|
||||
@classmethod
|
||||
def validate_and_set_defaults(cls, tenant_id: str, config: dict) -> tuple[dict, list[str]]:
|
||||
"""
|
||||
Validate and set defaults for user input form
|
||||
|
||||
:param tenant_id: workspace id
|
||||
:param config: app model config args
|
||||
"""
|
||||
related_config_keys = []
|
||||
config, current_related_config_keys = cls.validate_variables_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
config, current_related_config_keys = cls.validate_external_data_tools_and_set_defaults(tenant_id, config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
return config, related_config_keys
|
||||
|
||||
@classmethod
|
||||
def validate_variables_and_set_defaults(cls, config: dict) -> tuple[dict, list[str]]:
|
||||
"""
|
||||
Validate and set defaults for user input form
|
||||
|
||||
:param config: app model config args
|
||||
"""
|
||||
if not config.get("user_input_form"):
|
||||
config["user_input_form"] = []
|
||||
|
||||
if not isinstance(config["user_input_form"], list):
|
||||
raise ValueError("user_input_form must be a list of objects")
|
||||
|
||||
variables = []
|
||||
for item in config["user_input_form"]:
|
||||
key = list(item.keys())[0]
|
||||
# if key not in {"text-input", "select", "paragraph", "number", "external_data_tool"}:
|
||||
if key not in {
|
||||
VariableEntityType.TEXT_INPUT,
|
||||
VariableEntityType.SELECT,
|
||||
VariableEntityType.PARAGRAPH,
|
||||
VariableEntityType.NUMBER,
|
||||
VariableEntityType.EXTERNAL_DATA_TOOL,
|
||||
VariableEntityType.CHECKBOX,
|
||||
}:
|
||||
allowed_keys = ", ".join(i.value for i in _ALLOWED_VARIABLE_ENTITY_TYPE)
|
||||
raise ValueError(f"Keys in user_input_form list can only be {allowed_keys}")
|
||||
|
||||
form_item = item[key]
|
||||
if "label" not in form_item:
|
||||
raise ValueError("label is required in user_input_form")
|
||||
|
||||
if not isinstance(form_item["label"], str):
|
||||
raise ValueError("label in user_input_form must be of string type")
|
||||
|
||||
if "variable" not in form_item:
|
||||
raise ValueError("variable is required in user_input_form")
|
||||
|
||||
if not isinstance(form_item["variable"], str):
|
||||
raise ValueError("variable in user_input_form must be of string type")
|
||||
|
||||
pattern = re.compile(r"^(?!\d)[\u4e00-\u9fa5A-Za-z0-9_\U0001F300-\U0001F64F\U0001F680-\U0001F6FF]{1,100}$")
|
||||
if pattern.match(form_item["variable"]) is None:
|
||||
raise ValueError("variable in user_input_form must be a string, and cannot start with a number")
|
||||
|
||||
variables.append(form_item["variable"])
|
||||
|
||||
if "required" not in form_item or not form_item["required"]:
|
||||
form_item["required"] = False
|
||||
|
||||
if not isinstance(form_item["required"], bool):
|
||||
raise ValueError("required in user_input_form must be of boolean type")
|
||||
|
||||
if key == "select":
|
||||
if "options" not in form_item or not form_item["options"]:
|
||||
form_item["options"] = []
|
||||
|
||||
if not isinstance(form_item["options"], list):
|
||||
raise ValueError("options in user_input_form must be a list of strings")
|
||||
|
||||
if "default" in form_item and form_item["default"] and form_item["default"] not in form_item["options"]:
|
||||
raise ValueError("default value in user_input_form must be in the options list")
|
||||
|
||||
return config, ["user_input_form"]
|
||||
|
||||
@classmethod
|
||||
def validate_external_data_tools_and_set_defaults(cls, tenant_id: str, config: dict) -> tuple[dict, list[str]]:
|
||||
"""
|
||||
Validate and set defaults for external data fetch feature
|
||||
|
||||
:param tenant_id: workspace id
|
||||
:param config: app model config args
|
||||
"""
|
||||
if not config.get("external_data_tools"):
|
||||
config["external_data_tools"] = []
|
||||
|
||||
if not isinstance(config["external_data_tools"], list):
|
||||
raise ValueError("external_data_tools must be of list type")
|
||||
|
||||
for tool in config["external_data_tools"]:
|
||||
if "enabled" not in tool or not tool["enabled"]:
|
||||
tool["enabled"] = False
|
||||
|
||||
if not tool["enabled"]:
|
||||
continue
|
||||
|
||||
if "type" not in tool or not tool["type"]:
|
||||
raise ValueError("external_data_tools[].type is required")
|
||||
|
||||
typ = tool["type"]
|
||||
config = tool["config"]
|
||||
|
||||
ExternalDataToolFactory.validate_config(name=typ, tenant_id=tenant_id, config=config)
|
||||
|
||||
return config, ["external_data_tools"]
|
||||
336
dify/api/core/app/app_config/entities.py
Normal file
336
dify/api/core/app/app_config/entities.py
Normal file
@@ -0,0 +1,336 @@
|
||||
from collections.abc import Sequence
|
||||
from enum import StrEnum, auto
|
||||
from typing import Any, Literal
|
||||
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
|
||||
from core.file import FileTransferMethod, FileType, FileUploadConfig
|
||||
from core.model_runtime.entities.llm_entities import LLMMode
|
||||
from core.model_runtime.entities.message_entities import PromptMessageRole
|
||||
from models.model import AppMode
|
||||
|
||||
|
||||
class ModelConfigEntity(BaseModel):
|
||||
"""
|
||||
Model Config Entity.
|
||||
"""
|
||||
|
||||
provider: str
|
||||
model: str
|
||||
mode: str | None = None
|
||||
parameters: dict[str, Any] = Field(default_factory=dict)
|
||||
stop: list[str] = Field(default_factory=list)
|
||||
|
||||
|
||||
class AdvancedChatMessageEntity(BaseModel):
|
||||
"""
|
||||
Advanced Chat Message Entity.
|
||||
"""
|
||||
|
||||
text: str
|
||||
role: PromptMessageRole
|
||||
|
||||
|
||||
class AdvancedChatPromptTemplateEntity(BaseModel):
|
||||
"""
|
||||
Advanced Chat Prompt Template Entity.
|
||||
"""
|
||||
|
||||
messages: list[AdvancedChatMessageEntity]
|
||||
|
||||
|
||||
class AdvancedCompletionPromptTemplateEntity(BaseModel):
|
||||
"""
|
||||
Advanced Completion Prompt Template Entity.
|
||||
"""
|
||||
|
||||
class RolePrefixEntity(BaseModel):
|
||||
"""
|
||||
Role Prefix Entity.
|
||||
"""
|
||||
|
||||
user: str
|
||||
assistant: str
|
||||
|
||||
prompt: str
|
||||
role_prefix: RolePrefixEntity | None = None
|
||||
|
||||
|
||||
class PromptTemplateEntity(BaseModel):
|
||||
"""
|
||||
Prompt Template Entity.
|
||||
"""
|
||||
|
||||
class PromptType(StrEnum):
|
||||
"""
|
||||
Prompt Type.
|
||||
'simple', 'advanced'
|
||||
"""
|
||||
|
||||
SIMPLE = auto()
|
||||
ADVANCED = auto()
|
||||
|
||||
@classmethod
|
||||
def value_of(cls, value: str):
|
||||
"""
|
||||
Get value of given mode.
|
||||
|
||||
:param value: mode value
|
||||
:return: mode
|
||||
"""
|
||||
for mode in cls:
|
||||
if mode.value == value:
|
||||
return mode
|
||||
raise ValueError(f"invalid prompt type value {value}")
|
||||
|
||||
prompt_type: PromptType
|
||||
simple_prompt_template: str | None = None
|
||||
advanced_chat_prompt_template: AdvancedChatPromptTemplateEntity | None = None
|
||||
advanced_completion_prompt_template: AdvancedCompletionPromptTemplateEntity | None = None
|
||||
|
||||
|
||||
class VariableEntityType(StrEnum):
|
||||
TEXT_INPUT = "text-input"
|
||||
SELECT = "select"
|
||||
PARAGRAPH = "paragraph"
|
||||
NUMBER = "number"
|
||||
EXTERNAL_DATA_TOOL = "external_data_tool"
|
||||
FILE = "file"
|
||||
FILE_LIST = "file-list"
|
||||
CHECKBOX = "checkbox"
|
||||
|
||||
|
||||
class VariableEntity(BaseModel):
|
||||
"""
|
||||
Variable Entity.
|
||||
"""
|
||||
|
||||
# `variable` records the name of the variable in user inputs.
|
||||
variable: str
|
||||
label: str
|
||||
description: str = ""
|
||||
type: VariableEntityType
|
||||
required: bool = False
|
||||
hide: bool = False
|
||||
default: Any = None
|
||||
max_length: int | None = None
|
||||
options: Sequence[str] = Field(default_factory=list)
|
||||
allowed_file_types: Sequence[FileType] | None = Field(default_factory=list)
|
||||
allowed_file_extensions: Sequence[str] | None = Field(default_factory=list)
|
||||
allowed_file_upload_methods: Sequence[FileTransferMethod] | None = Field(default_factory=list)
|
||||
|
||||
@field_validator("description", mode="before")
|
||||
@classmethod
|
||||
def convert_none_description(cls, v: Any) -> str:
|
||||
return v or ""
|
||||
|
||||
@field_validator("options", mode="before")
|
||||
@classmethod
|
||||
def convert_none_options(cls, v: Any) -> Sequence[str]:
|
||||
return v or []
|
||||
|
||||
|
||||
class RagPipelineVariableEntity(VariableEntity):
|
||||
"""
|
||||
Rag Pipeline Variable Entity.
|
||||
"""
|
||||
|
||||
tooltips: str | None = None
|
||||
placeholder: str | None = None
|
||||
belong_to_node_id: str
|
||||
|
||||
|
||||
class ExternalDataVariableEntity(BaseModel):
|
||||
"""
|
||||
External Data Variable Entity.
|
||||
"""
|
||||
|
||||
variable: str
|
||||
type: str
|
||||
config: dict[str, Any] = Field(default_factory=dict)
|
||||
|
||||
|
||||
SupportedComparisonOperator = Literal[
|
||||
# for string or array
|
||||
"contains",
|
||||
"not contains",
|
||||
"start with",
|
||||
"end with",
|
||||
"is",
|
||||
"is not",
|
||||
"empty",
|
||||
"not empty",
|
||||
"in",
|
||||
"not in",
|
||||
# for number
|
||||
"=",
|
||||
"≠",
|
||||
">",
|
||||
"<",
|
||||
"≥",
|
||||
"≤",
|
||||
# for time
|
||||
"before",
|
||||
"after",
|
||||
]
|
||||
|
||||
|
||||
class ModelConfig(BaseModel):
|
||||
provider: str
|
||||
name: str
|
||||
mode: LLMMode
|
||||
completion_params: dict[str, Any] = Field(default_factory=dict)
|
||||
|
||||
|
||||
class Condition(BaseModel):
|
||||
"""
|
||||
Condition detail
|
||||
"""
|
||||
|
||||
name: str
|
||||
comparison_operator: SupportedComparisonOperator
|
||||
value: str | Sequence[str] | None | int | float = None
|
||||
|
||||
|
||||
class MetadataFilteringCondition(BaseModel):
|
||||
"""
|
||||
Metadata Filtering Condition.
|
||||
"""
|
||||
|
||||
logical_operator: Literal["and", "or"] | None = "and"
|
||||
conditions: list[Condition] | None = Field(default=None, deprecated=True)
|
||||
|
||||
|
||||
class DatasetRetrieveConfigEntity(BaseModel):
|
||||
"""
|
||||
Dataset Retrieve Config Entity.
|
||||
"""
|
||||
|
||||
class RetrieveStrategy(StrEnum):
|
||||
"""
|
||||
Dataset Retrieve Strategy.
|
||||
'single' or 'multiple'
|
||||
"""
|
||||
|
||||
SINGLE = auto()
|
||||
MULTIPLE = auto()
|
||||
|
||||
@classmethod
|
||||
def value_of(cls, value: str):
|
||||
"""
|
||||
Get value of given mode.
|
||||
|
||||
:param value: mode value
|
||||
:return: mode
|
||||
"""
|
||||
for mode in cls:
|
||||
if mode.value == value:
|
||||
return mode
|
||||
raise ValueError(f"invalid retrieve strategy value {value}")
|
||||
|
||||
query_variable: str | None = None # Only when app mode is completion
|
||||
|
||||
retrieve_strategy: RetrieveStrategy
|
||||
top_k: int | None = None
|
||||
score_threshold: float | None = 0.0
|
||||
rerank_mode: str | None = "reranking_model"
|
||||
reranking_model: dict | None = None
|
||||
weights: dict | None = None
|
||||
reranking_enabled: bool | None = True
|
||||
metadata_filtering_mode: Literal["disabled", "automatic", "manual"] | None = "disabled"
|
||||
metadata_model_config: ModelConfig | None = None
|
||||
metadata_filtering_conditions: MetadataFilteringCondition | None = None
|
||||
|
||||
|
||||
class DatasetEntity(BaseModel):
|
||||
"""
|
||||
Dataset Config Entity.
|
||||
"""
|
||||
|
||||
dataset_ids: list[str]
|
||||
retrieve_config: DatasetRetrieveConfigEntity
|
||||
|
||||
|
||||
class SensitiveWordAvoidanceEntity(BaseModel):
|
||||
"""
|
||||
Sensitive Word Avoidance Entity.
|
||||
"""
|
||||
|
||||
type: str
|
||||
config: dict[str, Any] = Field(default_factory=dict)
|
||||
|
||||
|
||||
class TextToSpeechEntity(BaseModel):
|
||||
"""
|
||||
Sensitive Word Avoidance Entity.
|
||||
"""
|
||||
|
||||
enabled: bool
|
||||
voice: str | None = None
|
||||
language: str | None = None
|
||||
|
||||
|
||||
class TracingConfigEntity(BaseModel):
|
||||
"""
|
||||
Tracing Config Entity.
|
||||
"""
|
||||
|
||||
enabled: bool
|
||||
tracing_provider: str
|
||||
|
||||
|
||||
class AppAdditionalFeatures(BaseModel):
|
||||
file_upload: FileUploadConfig | None = None
|
||||
opening_statement: str | None = None
|
||||
suggested_questions: list[str] = []
|
||||
suggested_questions_after_answer: bool = False
|
||||
show_retrieve_source: bool = False
|
||||
more_like_this: bool = False
|
||||
speech_to_text: bool = False
|
||||
text_to_speech: TextToSpeechEntity | None = None
|
||||
trace_config: TracingConfigEntity | None = None
|
||||
|
||||
|
||||
class AppConfig(BaseModel):
|
||||
"""
|
||||
Application Config Entity.
|
||||
"""
|
||||
|
||||
tenant_id: str
|
||||
app_id: str
|
||||
app_mode: AppMode
|
||||
additional_features: AppAdditionalFeatures | None = None
|
||||
variables: list[VariableEntity] = []
|
||||
sensitive_word_avoidance: SensitiveWordAvoidanceEntity | None = None
|
||||
|
||||
|
||||
class EasyUIBasedAppModelConfigFrom(StrEnum):
|
||||
"""
|
||||
App Model Config From.
|
||||
"""
|
||||
|
||||
ARGS = auto()
|
||||
APP_LATEST_CONFIG = "app-latest-config"
|
||||
CONVERSATION_SPECIFIC_CONFIG = "conversation-specific-config"
|
||||
|
||||
|
||||
class EasyUIBasedAppConfig(AppConfig):
|
||||
"""
|
||||
Easy UI Based App Config Entity.
|
||||
"""
|
||||
|
||||
app_model_config_from: EasyUIBasedAppModelConfigFrom
|
||||
app_model_config_id: str
|
||||
app_model_config_dict: dict
|
||||
model: ModelConfigEntity
|
||||
prompt_template: PromptTemplateEntity
|
||||
dataset: DatasetEntity | None = None
|
||||
external_data_variables: list[ExternalDataVariableEntity] = []
|
||||
|
||||
|
||||
class WorkflowUIBasedAppConfig(AppConfig):
|
||||
"""
|
||||
Workflow UI Based App Config Entity.
|
||||
"""
|
||||
|
||||
workflow_id: str
|
||||
0
dify/api/core/app/app_config/features/__init__.py
Normal file
0
dify/api/core/app/app_config/features/__init__.py
Normal file
43
dify/api/core/app/app_config/features/file_upload/manager.py
Normal file
43
dify/api/core/app/app_config/features/file_upload/manager.py
Normal file
@@ -0,0 +1,43 @@
|
||||
from collections.abc import Mapping
|
||||
from typing import Any
|
||||
|
||||
from constants import DEFAULT_FILE_NUMBER_LIMITS
|
||||
from core.file import FileUploadConfig
|
||||
|
||||
|
||||
class FileUploadConfigManager:
|
||||
@classmethod
|
||||
def convert(cls, config: Mapping[str, Any], is_vision: bool = True):
|
||||
"""
|
||||
Convert model config to model config
|
||||
|
||||
:param config: model config args
|
||||
:param is_vision: if True, the feature is vision feature
|
||||
"""
|
||||
file_upload_dict = config.get("file_upload")
|
||||
if file_upload_dict:
|
||||
if file_upload_dict.get("enabled"):
|
||||
transform_methods = file_upload_dict.get("allowed_file_upload_methods", [])
|
||||
file_upload_dict["image_config"] = {
|
||||
"number_limits": file_upload_dict.get("number_limits", DEFAULT_FILE_NUMBER_LIMITS),
|
||||
"transfer_methods": transform_methods,
|
||||
}
|
||||
|
||||
if is_vision:
|
||||
file_upload_dict["image_config"]["detail"] = file_upload_dict.get("image", {}).get("detail", "high")
|
||||
|
||||
return FileUploadConfig.model_validate(file_upload_dict)
|
||||
|
||||
@classmethod
|
||||
def validate_and_set_defaults(cls, config: dict) -> tuple[dict, list[str]]:
|
||||
"""
|
||||
Validate and set defaults for file upload feature
|
||||
|
||||
:param config: app model config args
|
||||
"""
|
||||
if not config.get("file_upload"):
|
||||
config["file_upload"] = {}
|
||||
else:
|
||||
FileUploadConfig.model_validate(config["file_upload"])
|
||||
|
||||
return config, ["file_upload"]
|
||||
@@ -0,0 +1,32 @@
|
||||
from pydantic import BaseModel, ConfigDict, Field, ValidationError
|
||||
|
||||
|
||||
class MoreLikeThisConfig(BaseModel):
|
||||
enabled: bool = False
|
||||
model_config = ConfigDict(extra="allow")
|
||||
|
||||
|
||||
class AppConfigModel(BaseModel):
|
||||
more_like_this: MoreLikeThisConfig = Field(default_factory=MoreLikeThisConfig)
|
||||
model_config = ConfigDict(extra="allow")
|
||||
|
||||
|
||||
class MoreLikeThisConfigManager:
|
||||
@classmethod
|
||||
def convert(cls, config: dict) -> bool:
|
||||
"""
|
||||
Convert model config to model config
|
||||
|
||||
:param config: model config args
|
||||
"""
|
||||
validated_config, _ = cls.validate_and_set_defaults(config)
|
||||
return AppConfigModel.model_validate(validated_config).more_like_this.enabled
|
||||
|
||||
@classmethod
|
||||
def validate_and_set_defaults(cls, config: dict) -> tuple[dict, list[str]]:
|
||||
try:
|
||||
return AppConfigModel.model_validate(config).model_dump(), ["more_like_this"]
|
||||
except ValidationError:
|
||||
raise ValueError(
|
||||
"more_like_this must be of dict type and enabled in more_like_this must be of boolean type"
|
||||
)
|
||||
@@ -0,0 +1,41 @@
|
||||
class OpeningStatementConfigManager:
|
||||
@classmethod
|
||||
def convert(cls, config: dict) -> tuple[str, list]:
|
||||
"""
|
||||
Convert model config to model config
|
||||
|
||||
:param config: model config args
|
||||
"""
|
||||
# opening statement
|
||||
opening_statement = config.get("opening_statement", "")
|
||||
|
||||
# suggested questions
|
||||
suggested_questions_list = config.get("suggested_questions", [])
|
||||
|
||||
return opening_statement, suggested_questions_list
|
||||
|
||||
@classmethod
|
||||
def validate_and_set_defaults(cls, config: dict) -> tuple[dict, list[str]]:
|
||||
"""
|
||||
Validate and set defaults for opening statement feature
|
||||
|
||||
:param config: app model config args
|
||||
"""
|
||||
if not config.get("opening_statement"):
|
||||
config["opening_statement"] = ""
|
||||
|
||||
if not isinstance(config["opening_statement"], str):
|
||||
raise ValueError("opening_statement must be of string type")
|
||||
|
||||
# suggested_questions
|
||||
if not config.get("suggested_questions"):
|
||||
config["suggested_questions"] = []
|
||||
|
||||
if not isinstance(config["suggested_questions"], list):
|
||||
raise ValueError("suggested_questions must be of list type")
|
||||
|
||||
for question in config["suggested_questions"]:
|
||||
if not isinstance(question, str):
|
||||
raise ValueError("Elements in suggested_questions list must be of string type")
|
||||
|
||||
return config, ["opening_statement", "suggested_questions"]
|
||||
@@ -0,0 +1,31 @@
|
||||
class RetrievalResourceConfigManager:
|
||||
@classmethod
|
||||
def convert(cls, config: dict) -> bool:
|
||||
show_retrieve_source = False
|
||||
retriever_resource_dict = config.get("retriever_resource")
|
||||
if retriever_resource_dict:
|
||||
if retriever_resource_dict.get("enabled"):
|
||||
show_retrieve_source = True
|
||||
|
||||
return show_retrieve_source
|
||||
|
||||
@classmethod
|
||||
def validate_and_set_defaults(cls, config: dict) -> tuple[dict, list[str]]:
|
||||
"""
|
||||
Validate and set defaults for retriever resource feature
|
||||
|
||||
:param config: app model config args
|
||||
"""
|
||||
if not config.get("retriever_resource"):
|
||||
config["retriever_resource"] = {"enabled": False}
|
||||
|
||||
if not isinstance(config["retriever_resource"], dict):
|
||||
raise ValueError("retriever_resource must be of dict type")
|
||||
|
||||
if "enabled" not in config["retriever_resource"] or not config["retriever_resource"]["enabled"]:
|
||||
config["retriever_resource"]["enabled"] = False
|
||||
|
||||
if not isinstance(config["retriever_resource"]["enabled"], bool):
|
||||
raise ValueError("enabled in retriever_resource must be of boolean type")
|
||||
|
||||
return config, ["retriever_resource"]
|
||||
@@ -0,0 +1,36 @@
|
||||
class SpeechToTextConfigManager:
|
||||
@classmethod
|
||||
def convert(cls, config: dict) -> bool:
|
||||
"""
|
||||
Convert model config to model config
|
||||
|
||||
:param config: model config args
|
||||
"""
|
||||
speech_to_text = False
|
||||
speech_to_text_dict = config.get("speech_to_text")
|
||||
if speech_to_text_dict:
|
||||
if speech_to_text_dict.get("enabled"):
|
||||
speech_to_text = True
|
||||
|
||||
return speech_to_text
|
||||
|
||||
@classmethod
|
||||
def validate_and_set_defaults(cls, config: dict) -> tuple[dict, list[str]]:
|
||||
"""
|
||||
Validate and set defaults for speech to text feature
|
||||
|
||||
:param config: app model config args
|
||||
"""
|
||||
if not config.get("speech_to_text"):
|
||||
config["speech_to_text"] = {"enabled": False}
|
||||
|
||||
if not isinstance(config["speech_to_text"], dict):
|
||||
raise ValueError("speech_to_text must be of dict type")
|
||||
|
||||
if "enabled" not in config["speech_to_text"] or not config["speech_to_text"]["enabled"]:
|
||||
config["speech_to_text"]["enabled"] = False
|
||||
|
||||
if not isinstance(config["speech_to_text"]["enabled"], bool):
|
||||
raise ValueError("enabled in speech_to_text must be of boolean type")
|
||||
|
||||
return config, ["speech_to_text"]
|
||||
@@ -0,0 +1,39 @@
|
||||
class SuggestedQuestionsAfterAnswerConfigManager:
|
||||
@classmethod
|
||||
def convert(cls, config: dict) -> bool:
|
||||
"""
|
||||
Convert model config to model config
|
||||
|
||||
:param config: model config args
|
||||
"""
|
||||
suggested_questions_after_answer = False
|
||||
suggested_questions_after_answer_dict = config.get("suggested_questions_after_answer")
|
||||
if suggested_questions_after_answer_dict:
|
||||
if suggested_questions_after_answer_dict.get("enabled"):
|
||||
suggested_questions_after_answer = True
|
||||
|
||||
return suggested_questions_after_answer
|
||||
|
||||
@classmethod
|
||||
def validate_and_set_defaults(cls, config: dict) -> tuple[dict, list[str]]:
|
||||
"""
|
||||
Validate and set defaults for suggested questions feature
|
||||
|
||||
:param config: app model config args
|
||||
"""
|
||||
if not config.get("suggested_questions_after_answer"):
|
||||
config["suggested_questions_after_answer"] = {"enabled": False}
|
||||
|
||||
if not isinstance(config["suggested_questions_after_answer"], dict):
|
||||
raise ValueError("suggested_questions_after_answer must be of dict type")
|
||||
|
||||
if (
|
||||
"enabled" not in config["suggested_questions_after_answer"]
|
||||
or not config["suggested_questions_after_answer"]["enabled"]
|
||||
):
|
||||
config["suggested_questions_after_answer"]["enabled"] = False
|
||||
|
||||
if not isinstance(config["suggested_questions_after_answer"]["enabled"], bool):
|
||||
raise ValueError("enabled in suggested_questions_after_answer must be of boolean type")
|
||||
|
||||
return config, ["suggested_questions_after_answer"]
|
||||
@@ -0,0 +1,45 @@
|
||||
from core.app.app_config.entities import TextToSpeechEntity
|
||||
|
||||
|
||||
class TextToSpeechConfigManager:
|
||||
@classmethod
|
||||
def convert(cls, config: dict):
|
||||
"""
|
||||
Convert model config to model config
|
||||
|
||||
:param config: model config args
|
||||
"""
|
||||
text_to_speech = None
|
||||
text_to_speech_dict = config.get("text_to_speech")
|
||||
if text_to_speech_dict:
|
||||
if text_to_speech_dict.get("enabled"):
|
||||
text_to_speech = TextToSpeechEntity(
|
||||
enabled=text_to_speech_dict.get("enabled"),
|
||||
voice=text_to_speech_dict.get("voice"),
|
||||
language=text_to_speech_dict.get("language"),
|
||||
)
|
||||
|
||||
return text_to_speech
|
||||
|
||||
@classmethod
|
||||
def validate_and_set_defaults(cls, config: dict) -> tuple[dict, list[str]]:
|
||||
"""
|
||||
Validate and set defaults for text to speech feature
|
||||
|
||||
:param config: app model config args
|
||||
"""
|
||||
if not config.get("text_to_speech"):
|
||||
config["text_to_speech"] = {"enabled": False, "voice": "", "language": ""}
|
||||
|
||||
if not isinstance(config["text_to_speech"], dict):
|
||||
raise ValueError("text_to_speech must be of dict type")
|
||||
|
||||
if "enabled" not in config["text_to_speech"] or not config["text_to_speech"]["enabled"]:
|
||||
config["text_to_speech"]["enabled"] = False
|
||||
config["text_to_speech"]["voice"] = ""
|
||||
config["text_to_speech"]["language"] = ""
|
||||
|
||||
if not isinstance(config["text_to_speech"]["enabled"], bool):
|
||||
raise ValueError("enabled in text_to_speech must be of boolean type")
|
||||
|
||||
return config, ["text_to_speech"]
|
||||
@@ -0,0 +1,69 @@
|
||||
import re
|
||||
|
||||
from core.app.app_config.entities import RagPipelineVariableEntity, VariableEntity
|
||||
from models.workflow import Workflow
|
||||
|
||||
|
||||
class WorkflowVariablesConfigManager:
|
||||
@classmethod
|
||||
def convert(cls, workflow: Workflow) -> list[VariableEntity]:
|
||||
"""
|
||||
Convert workflow start variables to variables
|
||||
|
||||
:param workflow: workflow instance
|
||||
"""
|
||||
variables = []
|
||||
|
||||
# find start node
|
||||
user_input_form = workflow.user_input_form()
|
||||
|
||||
# variables
|
||||
for variable in user_input_form:
|
||||
variables.append(VariableEntity.model_validate(variable))
|
||||
|
||||
return variables
|
||||
|
||||
@classmethod
|
||||
def convert_rag_pipeline_variable(cls, workflow: Workflow, start_node_id: str) -> list[RagPipelineVariableEntity]:
|
||||
"""
|
||||
Convert workflow start variables to variables
|
||||
|
||||
:param workflow: workflow instance
|
||||
"""
|
||||
variables = []
|
||||
|
||||
# get second step node
|
||||
rag_pipeline_variables = workflow.rag_pipeline_variables
|
||||
if not rag_pipeline_variables:
|
||||
return []
|
||||
variables_map = {item["variable"]: item for item in rag_pipeline_variables}
|
||||
|
||||
# get datasource node data
|
||||
datasource_node_data = None
|
||||
datasource_nodes = workflow.graph_dict.get("nodes", [])
|
||||
for datasource_node in datasource_nodes:
|
||||
if datasource_node.get("id") == start_node_id:
|
||||
datasource_node_data = datasource_node.get("data", {})
|
||||
break
|
||||
if datasource_node_data:
|
||||
datasource_parameters = datasource_node_data.get("datasource_parameters", {})
|
||||
|
||||
for _, value in datasource_parameters.items():
|
||||
if value.get("value") and isinstance(value.get("value"), str):
|
||||
pattern = r"\{\{#([a-zA-Z0-9_]{1,50}(?:\.[a-zA-Z0-9_][a-zA-Z0-9_]{0,29}){1,10})#\}\}"
|
||||
match = re.match(pattern, value["value"])
|
||||
if match:
|
||||
full_path = match.group(1)
|
||||
last_part = full_path.split(".")[-1]
|
||||
variables_map.pop(last_part, None)
|
||||
if value.get("value") and isinstance(value.get("value"), list):
|
||||
last_part = value.get("value")[-1]
|
||||
variables_map.pop(last_part, None)
|
||||
|
||||
all_second_step_variables = list(variables_map.values())
|
||||
|
||||
for item in all_second_step_variables:
|
||||
if item.get("belong_to_node_id") == start_node_id or item.get("belong_to_node_id") == "shared":
|
||||
variables.append(RagPipelineVariableEntity.model_validate(item))
|
||||
|
||||
return variables
|
||||
0
dify/api/core/app/apps/__init__.py
Normal file
0
dify/api/core/app/apps/__init__.py
Normal file
0
dify/api/core/app/apps/advanced_chat/__init__.py
Normal file
0
dify/api/core/app/apps/advanced_chat/__init__.py
Normal file
91
dify/api/core/app/apps/advanced_chat/app_config_manager.py
Normal file
91
dify/api/core/app/apps/advanced_chat/app_config_manager.py
Normal file
@@ -0,0 +1,91 @@
|
||||
from core.app.app_config.base_app_config_manager import BaseAppConfigManager
|
||||
from core.app.app_config.common.sensitive_word_avoidance.manager import SensitiveWordAvoidanceConfigManager
|
||||
from core.app.app_config.entities import WorkflowUIBasedAppConfig
|
||||
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
|
||||
from core.app.app_config.features.opening_statement.manager import OpeningStatementConfigManager
|
||||
from core.app.app_config.features.retrieval_resource.manager import RetrievalResourceConfigManager
|
||||
from core.app.app_config.features.speech_to_text.manager import SpeechToTextConfigManager
|
||||
from core.app.app_config.features.suggested_questions_after_answer.manager import (
|
||||
SuggestedQuestionsAfterAnswerConfigManager,
|
||||
)
|
||||
from core.app.app_config.features.text_to_speech.manager import TextToSpeechConfigManager
|
||||
from core.app.app_config.workflow_ui_based_app.variables.manager import WorkflowVariablesConfigManager
|
||||
from models.model import App, AppMode
|
||||
from models.workflow import Workflow
|
||||
|
||||
|
||||
class AdvancedChatAppConfig(WorkflowUIBasedAppConfig):
|
||||
"""
|
||||
Advanced Chatbot App Config Entity.
|
||||
"""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class AdvancedChatAppConfigManager(BaseAppConfigManager):
|
||||
@classmethod
|
||||
def get_app_config(cls, app_model: App, workflow: Workflow) -> AdvancedChatAppConfig:
|
||||
features_dict = workflow.features_dict
|
||||
|
||||
app_mode = AppMode.value_of(app_model.mode)
|
||||
app_config = AdvancedChatAppConfig(
|
||||
tenant_id=app_model.tenant_id,
|
||||
app_id=app_model.id,
|
||||
app_mode=app_mode,
|
||||
workflow_id=workflow.id,
|
||||
sensitive_word_avoidance=SensitiveWordAvoidanceConfigManager.convert(config=features_dict),
|
||||
variables=WorkflowVariablesConfigManager.convert(workflow=workflow),
|
||||
additional_features=cls.convert_features(features_dict, app_mode),
|
||||
)
|
||||
|
||||
return app_config
|
||||
|
||||
@classmethod
|
||||
def config_validate(cls, tenant_id: str, config: dict, only_structure_validate: bool = False):
|
||||
"""
|
||||
Validate for advanced chat app model config
|
||||
|
||||
:param tenant_id: tenant id
|
||||
:param config: app model config args
|
||||
:param only_structure_validate: if True, only structure validation will be performed
|
||||
"""
|
||||
related_config_keys = []
|
||||
|
||||
# file upload validation
|
||||
config, current_related_config_keys = FileUploadConfigManager.validate_and_set_defaults(config=config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# opening_statement
|
||||
config, current_related_config_keys = OpeningStatementConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# suggested_questions_after_answer
|
||||
config, current_related_config_keys = SuggestedQuestionsAfterAnswerConfigManager.validate_and_set_defaults(
|
||||
config
|
||||
)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# speech_to_text
|
||||
config, current_related_config_keys = SpeechToTextConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# text_to_speech
|
||||
config, current_related_config_keys = TextToSpeechConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# return retriever resource
|
||||
config, current_related_config_keys = RetrievalResourceConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# moderation validation
|
||||
config, current_related_config_keys = SensitiveWordAvoidanceConfigManager.validate_and_set_defaults(
|
||||
tenant_id=tenant_id, config=config, only_structure_validate=only_structure_validate
|
||||
)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
related_config_keys = list(set(related_config_keys))
|
||||
|
||||
# Filter out extra parameters
|
||||
filtered_config = {key: config.get(key) for key in related_config_keys}
|
||||
|
||||
return filtered_config
|
||||
611
dify/api/core/app/apps/advanced_chat/app_generator.py
Normal file
611
dify/api/core/app/apps/advanced_chat/app_generator.py
Normal file
@@ -0,0 +1,611 @@
|
||||
import contextvars
|
||||
import logging
|
||||
import threading
|
||||
import uuid
|
||||
from collections.abc import Generator, Mapping
|
||||
from typing import Any, Literal, Union, overload
|
||||
|
||||
from flask import Flask, current_app
|
||||
from pydantic import ValidationError
|
||||
from sqlalchemy import select
|
||||
from sqlalchemy.orm import Session, sessionmaker
|
||||
|
||||
import contexts
|
||||
from configs import dify_config
|
||||
from constants import UUID_NIL
|
||||
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
|
||||
from core.app.apps.advanced_chat.app_config_manager import AdvancedChatAppConfigManager
|
||||
from core.app.apps.advanced_chat.app_runner import AdvancedChatAppRunner
|
||||
from core.app.apps.advanced_chat.generate_response_converter import AdvancedChatAppGenerateResponseConverter
|
||||
from core.app.apps.advanced_chat.generate_task_pipeline import AdvancedChatAppGenerateTaskPipeline
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
from core.app.apps.exc import GenerateTaskStoppedError
|
||||
from core.app.apps.message_based_app_generator import MessageBasedAppGenerator
|
||||
from core.app.apps.message_based_app_queue_manager import MessageBasedAppQueueManager
|
||||
from core.app.entities.app_invoke_entities import AdvancedChatAppGenerateEntity, InvokeFrom
|
||||
from core.app.entities.task_entities import ChatbotAppBlockingResponse, ChatbotAppStreamResponse
|
||||
from core.helper.trace_id_helper import extract_external_trace_id_from_args
|
||||
from core.model_runtime.errors.invoke import InvokeAuthorizationError
|
||||
from core.ops.ops_trace_manager import TraceQueueManager
|
||||
from core.prompt.utils.get_thread_messages_length import get_thread_messages_length
|
||||
from core.repositories import DifyCoreRepositoryFactory
|
||||
from core.workflow.repositories.draft_variable_repository import (
|
||||
DraftVariableSaverFactory,
|
||||
)
|
||||
from core.workflow.repositories.workflow_execution_repository import WorkflowExecutionRepository
|
||||
from core.workflow.repositories.workflow_node_execution_repository import WorkflowNodeExecutionRepository
|
||||
from core.workflow.variable_loader import DUMMY_VARIABLE_LOADER, VariableLoader
|
||||
from extensions.ext_database import db
|
||||
from factories import file_factory
|
||||
from libs.flask_utils import preserve_flask_contexts
|
||||
from models import Account, App, Conversation, EndUser, Message, Workflow, WorkflowNodeExecutionTriggeredFrom
|
||||
from models.enums import WorkflowRunTriggeredFrom
|
||||
from services.conversation_service import ConversationService
|
||||
from services.workflow_draft_variable_service import (
|
||||
DraftVarLoader,
|
||||
WorkflowDraftVariableService,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AdvancedChatAppGenerator(MessageBasedAppGenerator):
|
||||
_dialogue_count: int
|
||||
|
||||
@overload
|
||||
def generate(
|
||||
self,
|
||||
app_model: App,
|
||||
workflow: Workflow,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: Literal[False],
|
||||
) -> Mapping[str, Any]: ...
|
||||
|
||||
@overload
|
||||
def generate(
|
||||
self,
|
||||
app_model: App,
|
||||
workflow: Workflow,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping,
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: Literal[True],
|
||||
) -> Generator[Mapping | str, None, None]: ...
|
||||
|
||||
@overload
|
||||
def generate(
|
||||
self,
|
||||
app_model: App,
|
||||
workflow: Workflow,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping,
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: bool,
|
||||
) -> Mapping[str, Any] | Generator[str | Mapping, None, None]: ...
|
||||
|
||||
def generate(
|
||||
self,
|
||||
app_model: App,
|
||||
workflow: Workflow,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping,
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: bool = True,
|
||||
) -> Mapping[str, Any] | Generator[str | Mapping, None, None]:
|
||||
"""
|
||||
Generate App response.
|
||||
|
||||
:param app_model: App
|
||||
:param workflow: Workflow
|
||||
:param user: account or end user
|
||||
:param args: request args
|
||||
:param invoke_from: invoke from source
|
||||
:param streaming: is stream
|
||||
"""
|
||||
if not args.get("query"):
|
||||
raise ValueError("query is required")
|
||||
|
||||
query = args["query"]
|
||||
if not isinstance(query, str):
|
||||
raise ValueError("query must be a string")
|
||||
|
||||
query = query.replace("\x00", "")
|
||||
inputs = args["inputs"]
|
||||
|
||||
extras = {
|
||||
"auto_generate_conversation_name": args.get("auto_generate_name", False),
|
||||
**extract_external_trace_id_from_args(args),
|
||||
}
|
||||
|
||||
# get conversation
|
||||
conversation = None
|
||||
conversation_id = args.get("conversation_id")
|
||||
if conversation_id:
|
||||
conversation = ConversationService.get_conversation(
|
||||
app_model=app_model, conversation_id=conversation_id, user=user
|
||||
)
|
||||
|
||||
# parse files
|
||||
# TODO(QuantumGhost): Move file parsing logic to the API controller layer
|
||||
# for better separation of concerns.
|
||||
#
|
||||
# For implementation reference, see the `_parse_file` function and
|
||||
# `DraftWorkflowNodeRunApi` class which handle this properly.
|
||||
files = args["files"] if args.get("files") else []
|
||||
file_extra_config = FileUploadConfigManager.convert(workflow.features_dict, is_vision=False)
|
||||
if file_extra_config:
|
||||
file_objs = file_factory.build_from_mappings(
|
||||
mappings=files,
|
||||
tenant_id=app_model.tenant_id,
|
||||
config=file_extra_config,
|
||||
)
|
||||
else:
|
||||
file_objs = []
|
||||
|
||||
# convert to app config
|
||||
app_config = AdvancedChatAppConfigManager.get_app_config(app_model=app_model, workflow=workflow)
|
||||
|
||||
# get tracing instance
|
||||
trace_manager = TraceQueueManager(
|
||||
app_id=app_model.id, user_id=user.id if isinstance(user, Account) else user.session_id
|
||||
)
|
||||
|
||||
if invoke_from == InvokeFrom.DEBUGGER:
|
||||
# always enable retriever resource in debugger mode
|
||||
app_config.additional_features.show_retrieve_source = True # type: ignore
|
||||
|
||||
workflow_run_id = str(uuid.uuid4())
|
||||
# init application generate entity
|
||||
application_generate_entity = AdvancedChatAppGenerateEntity(
|
||||
task_id=str(uuid.uuid4()),
|
||||
app_config=app_config,
|
||||
file_upload_config=file_extra_config,
|
||||
conversation_id=conversation.id if conversation else None,
|
||||
inputs=self._prepare_user_inputs(
|
||||
user_inputs=inputs, variables=app_config.variables, tenant_id=app_model.tenant_id
|
||||
),
|
||||
query=query,
|
||||
files=list(file_objs),
|
||||
parent_message_id=args.get("parent_message_id") if invoke_from != InvokeFrom.SERVICE_API else UUID_NIL,
|
||||
user_id=user.id,
|
||||
stream=streaming,
|
||||
invoke_from=invoke_from,
|
||||
extras=extras,
|
||||
trace_manager=trace_manager,
|
||||
workflow_run_id=workflow_run_id,
|
||||
)
|
||||
contexts.plugin_tool_providers.set({})
|
||||
contexts.plugin_tool_providers_lock.set(threading.Lock())
|
||||
|
||||
# Create repositories
|
||||
#
|
||||
# Create session factory
|
||||
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
|
||||
# Create workflow execution(aka workflow run) repository
|
||||
if invoke_from == InvokeFrom.DEBUGGER:
|
||||
workflow_triggered_from = WorkflowRunTriggeredFrom.DEBUGGING
|
||||
else:
|
||||
workflow_triggered_from = WorkflowRunTriggeredFrom.APP_RUN
|
||||
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
|
||||
session_factory=session_factory,
|
||||
user=user,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
triggered_from=workflow_triggered_from,
|
||||
)
|
||||
# Create workflow node execution repository
|
||||
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
|
||||
session_factory=session_factory,
|
||||
user=user,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
triggered_from=WorkflowNodeExecutionTriggeredFrom.WORKFLOW_RUN,
|
||||
)
|
||||
|
||||
return self._generate(
|
||||
workflow=workflow,
|
||||
user=user,
|
||||
invoke_from=invoke_from,
|
||||
application_generate_entity=application_generate_entity,
|
||||
workflow_execution_repository=workflow_execution_repository,
|
||||
workflow_node_execution_repository=workflow_node_execution_repository,
|
||||
conversation=conversation,
|
||||
stream=streaming,
|
||||
)
|
||||
|
||||
def single_iteration_generate(
|
||||
self,
|
||||
app_model: App,
|
||||
workflow: Workflow,
|
||||
node_id: str,
|
||||
user: Account | EndUser,
|
||||
args: Mapping,
|
||||
streaming: bool = True,
|
||||
) -> Mapping[str, Any] | Generator[str | Mapping[str, Any], Any, None]:
|
||||
"""
|
||||
Generate App response.
|
||||
|
||||
:param app_model: App
|
||||
:param workflow: Workflow
|
||||
:param node_id: the node id
|
||||
:param user: account or end user
|
||||
:param args: request args
|
||||
:param streaming: is streamed
|
||||
"""
|
||||
if not node_id:
|
||||
raise ValueError("node_id is required")
|
||||
|
||||
if args.get("inputs") is None:
|
||||
raise ValueError("inputs is required")
|
||||
|
||||
# convert to app config
|
||||
app_config = AdvancedChatAppConfigManager.get_app_config(app_model=app_model, workflow=workflow)
|
||||
|
||||
# init application generate entity
|
||||
application_generate_entity = AdvancedChatAppGenerateEntity(
|
||||
task_id=str(uuid.uuid4()),
|
||||
app_config=app_config,
|
||||
conversation_id=None,
|
||||
inputs={},
|
||||
query="",
|
||||
files=[],
|
||||
user_id=user.id,
|
||||
stream=streaming,
|
||||
invoke_from=InvokeFrom.DEBUGGER,
|
||||
extras={"auto_generate_conversation_name": False},
|
||||
single_iteration_run=AdvancedChatAppGenerateEntity.SingleIterationRunEntity(
|
||||
node_id=node_id, inputs=args["inputs"]
|
||||
),
|
||||
)
|
||||
contexts.plugin_tool_providers.set({})
|
||||
contexts.plugin_tool_providers_lock.set(threading.Lock())
|
||||
|
||||
# Create repositories
|
||||
#
|
||||
# Create session factory
|
||||
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
|
||||
# Create workflow execution(aka workflow run) repository
|
||||
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
|
||||
session_factory=session_factory,
|
||||
user=user,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
triggered_from=WorkflowRunTriggeredFrom.DEBUGGING,
|
||||
)
|
||||
# Create workflow node execution repository
|
||||
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
|
||||
session_factory=session_factory,
|
||||
user=user,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
triggered_from=WorkflowNodeExecutionTriggeredFrom.SINGLE_STEP,
|
||||
)
|
||||
var_loader = DraftVarLoader(
|
||||
engine=db.engine,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
tenant_id=application_generate_entity.app_config.tenant_id,
|
||||
)
|
||||
draft_var_srv = WorkflowDraftVariableService(db.session())
|
||||
draft_var_srv.prefill_conversation_variable_default_values(workflow)
|
||||
|
||||
return self._generate(
|
||||
workflow=workflow,
|
||||
user=user,
|
||||
invoke_from=InvokeFrom.DEBUGGER,
|
||||
application_generate_entity=application_generate_entity,
|
||||
workflow_execution_repository=workflow_execution_repository,
|
||||
workflow_node_execution_repository=workflow_node_execution_repository,
|
||||
conversation=None,
|
||||
stream=streaming,
|
||||
variable_loader=var_loader,
|
||||
)
|
||||
|
||||
def single_loop_generate(
|
||||
self,
|
||||
app_model: App,
|
||||
workflow: Workflow,
|
||||
node_id: str,
|
||||
user: Account | EndUser,
|
||||
args: Mapping,
|
||||
streaming: bool = True,
|
||||
) -> Mapping[str, Any] | Generator[str | Mapping[str, Any], Any, None]:
|
||||
"""
|
||||
Generate App response.
|
||||
|
||||
:param app_model: App
|
||||
:param workflow: Workflow
|
||||
:param node_id: the node id
|
||||
:param user: account or end user
|
||||
:param args: request args
|
||||
:param streaming: is stream
|
||||
"""
|
||||
if not node_id:
|
||||
raise ValueError("node_id is required")
|
||||
|
||||
if args.get("inputs") is None:
|
||||
raise ValueError("inputs is required")
|
||||
|
||||
# convert to app config
|
||||
app_config = AdvancedChatAppConfigManager.get_app_config(app_model=app_model, workflow=workflow)
|
||||
|
||||
# init application generate entity
|
||||
application_generate_entity = AdvancedChatAppGenerateEntity(
|
||||
task_id=str(uuid.uuid4()),
|
||||
app_config=app_config,
|
||||
conversation_id=None,
|
||||
inputs={},
|
||||
query="",
|
||||
files=[],
|
||||
user_id=user.id,
|
||||
stream=streaming,
|
||||
invoke_from=InvokeFrom.DEBUGGER,
|
||||
extras={"auto_generate_conversation_name": False},
|
||||
single_loop_run=AdvancedChatAppGenerateEntity.SingleLoopRunEntity(node_id=node_id, inputs=args["inputs"]),
|
||||
)
|
||||
contexts.plugin_tool_providers.set({})
|
||||
contexts.plugin_tool_providers_lock.set(threading.Lock())
|
||||
|
||||
# Create repositories
|
||||
#
|
||||
# Create session factory
|
||||
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
|
||||
# Create workflow execution(aka workflow run) repository
|
||||
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
|
||||
session_factory=session_factory,
|
||||
user=user,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
triggered_from=WorkflowRunTriggeredFrom.DEBUGGING,
|
||||
)
|
||||
# Create workflow node execution repository
|
||||
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
|
||||
session_factory=session_factory,
|
||||
user=user,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
triggered_from=WorkflowNodeExecutionTriggeredFrom.SINGLE_STEP,
|
||||
)
|
||||
var_loader = DraftVarLoader(
|
||||
engine=db.engine,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
tenant_id=application_generate_entity.app_config.tenant_id,
|
||||
)
|
||||
draft_var_srv = WorkflowDraftVariableService(db.session())
|
||||
draft_var_srv.prefill_conversation_variable_default_values(workflow)
|
||||
|
||||
return self._generate(
|
||||
workflow=workflow,
|
||||
user=user,
|
||||
invoke_from=InvokeFrom.DEBUGGER,
|
||||
application_generate_entity=application_generate_entity,
|
||||
workflow_execution_repository=workflow_execution_repository,
|
||||
workflow_node_execution_repository=workflow_node_execution_repository,
|
||||
conversation=None,
|
||||
stream=streaming,
|
||||
variable_loader=var_loader,
|
||||
)
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
*,
|
||||
workflow: Workflow,
|
||||
user: Union[Account, EndUser],
|
||||
invoke_from: InvokeFrom,
|
||||
application_generate_entity: AdvancedChatAppGenerateEntity,
|
||||
workflow_execution_repository: WorkflowExecutionRepository,
|
||||
workflow_node_execution_repository: WorkflowNodeExecutionRepository,
|
||||
conversation: Conversation | None = None,
|
||||
stream: bool = True,
|
||||
variable_loader: VariableLoader = DUMMY_VARIABLE_LOADER,
|
||||
) -> Mapping[str, Any] | Generator[str | Mapping[str, Any], Any, None]:
|
||||
"""
|
||||
Generate App response.
|
||||
|
||||
:param workflow: Workflow
|
||||
:param user: account or end user
|
||||
:param invoke_from: invoke from source
|
||||
:param application_generate_entity: application generate entity
|
||||
:param workflow_execution_repository: repository for workflow execution
|
||||
:param workflow_node_execution_repository: repository for workflow node execution
|
||||
:param conversation: conversation
|
||||
:param stream: is stream
|
||||
"""
|
||||
is_first_conversation = False
|
||||
if not conversation:
|
||||
is_first_conversation = True
|
||||
|
||||
# init generate records
|
||||
(conversation, message) = self._init_generate_records(application_generate_entity, conversation)
|
||||
|
||||
if is_first_conversation:
|
||||
# update conversation features
|
||||
conversation.override_model_configs = workflow.features
|
||||
db.session.commit()
|
||||
db.session.refresh(conversation)
|
||||
|
||||
# get conversation dialogue count
|
||||
# NOTE: dialogue_count should not start from 0,
|
||||
# because during the first conversation, dialogue_count should be 1.
|
||||
self._dialogue_count = get_thread_messages_length(conversation.id) + 1
|
||||
|
||||
# init queue manager
|
||||
queue_manager = MessageBasedAppQueueManager(
|
||||
task_id=application_generate_entity.task_id,
|
||||
user_id=application_generate_entity.user_id,
|
||||
invoke_from=application_generate_entity.invoke_from,
|
||||
conversation_id=conversation.id,
|
||||
app_mode=conversation.mode,
|
||||
message_id=message.id,
|
||||
)
|
||||
|
||||
# new thread with request context and contextvars
|
||||
context = contextvars.copy_context()
|
||||
|
||||
worker_thread = threading.Thread(
|
||||
target=self._generate_worker,
|
||||
kwargs={
|
||||
"flask_app": current_app._get_current_object(), # type: ignore
|
||||
"application_generate_entity": application_generate_entity,
|
||||
"queue_manager": queue_manager,
|
||||
"conversation_id": conversation.id,
|
||||
"message_id": message.id,
|
||||
"context": context,
|
||||
"variable_loader": variable_loader,
|
||||
"workflow_execution_repository": workflow_execution_repository,
|
||||
"workflow_node_execution_repository": workflow_node_execution_repository,
|
||||
},
|
||||
)
|
||||
|
||||
worker_thread.start()
|
||||
|
||||
# release database connection, because the following new thread operations may take a long time
|
||||
db.session.refresh(workflow)
|
||||
db.session.refresh(message)
|
||||
# db.session.refresh(user)
|
||||
db.session.close()
|
||||
|
||||
# return response or stream generator
|
||||
response = self._handle_advanced_chat_response(
|
||||
application_generate_entity=application_generate_entity,
|
||||
workflow=workflow,
|
||||
queue_manager=queue_manager,
|
||||
conversation=conversation,
|
||||
message=message,
|
||||
user=user,
|
||||
stream=stream,
|
||||
draft_var_saver_factory=self._get_draft_var_saver_factory(invoke_from, account=user),
|
||||
)
|
||||
|
||||
return AdvancedChatAppGenerateResponseConverter.convert(response=response, invoke_from=invoke_from)
|
||||
|
||||
def _generate_worker(
|
||||
self,
|
||||
flask_app: Flask,
|
||||
application_generate_entity: AdvancedChatAppGenerateEntity,
|
||||
queue_manager: AppQueueManager,
|
||||
conversation_id: str,
|
||||
message_id: str,
|
||||
context: contextvars.Context,
|
||||
variable_loader: VariableLoader,
|
||||
workflow_execution_repository: WorkflowExecutionRepository,
|
||||
workflow_node_execution_repository: WorkflowNodeExecutionRepository,
|
||||
):
|
||||
"""
|
||||
Generate worker in a new thread.
|
||||
:param flask_app: Flask app
|
||||
:param application_generate_entity: application generate entity
|
||||
:param queue_manager: queue manager
|
||||
:param conversation_id: conversation ID
|
||||
:param message_id: message ID
|
||||
:return:
|
||||
"""
|
||||
|
||||
with preserve_flask_contexts(flask_app, context_vars=context):
|
||||
# get conversation and message
|
||||
conversation = self._get_conversation(conversation_id)
|
||||
message = self._get_message(message_id)
|
||||
|
||||
with Session(db.engine, expire_on_commit=False) as session:
|
||||
workflow = session.scalar(
|
||||
select(Workflow).where(
|
||||
Workflow.tenant_id == application_generate_entity.app_config.tenant_id,
|
||||
Workflow.app_id == application_generate_entity.app_config.app_id,
|
||||
Workflow.id == application_generate_entity.app_config.workflow_id,
|
||||
)
|
||||
)
|
||||
if workflow is None:
|
||||
raise ValueError("Workflow not found")
|
||||
|
||||
# Determine system_user_id based on invocation source
|
||||
is_external_api_call = application_generate_entity.invoke_from in {
|
||||
InvokeFrom.WEB_APP,
|
||||
InvokeFrom.SERVICE_API,
|
||||
}
|
||||
|
||||
if is_external_api_call:
|
||||
# For external API calls, use end user's session ID
|
||||
end_user = session.scalar(select(EndUser).where(EndUser.id == application_generate_entity.user_id))
|
||||
system_user_id = end_user.session_id if end_user else ""
|
||||
else:
|
||||
# For internal calls, use the original user ID
|
||||
system_user_id = application_generate_entity.user_id
|
||||
|
||||
app = session.scalar(select(App).where(App.id == application_generate_entity.app_config.app_id))
|
||||
if app is None:
|
||||
raise ValueError("App not found")
|
||||
|
||||
runner = AdvancedChatAppRunner(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
conversation=conversation,
|
||||
message=message,
|
||||
dialogue_count=self._dialogue_count,
|
||||
variable_loader=variable_loader,
|
||||
workflow=workflow,
|
||||
system_user_id=system_user_id,
|
||||
app=app,
|
||||
workflow_execution_repository=workflow_execution_repository,
|
||||
workflow_node_execution_repository=workflow_node_execution_repository,
|
||||
)
|
||||
|
||||
try:
|
||||
runner.run()
|
||||
except GenerateTaskStoppedError:
|
||||
pass
|
||||
except InvokeAuthorizationError:
|
||||
queue_manager.publish_error(
|
||||
InvokeAuthorizationError("Incorrect API key provided"), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
except ValidationError as e:
|
||||
logger.exception("Validation Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
except ValueError as e:
|
||||
if dify_config.DEBUG:
|
||||
logger.exception("Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
except Exception as e:
|
||||
logger.exception("Unknown Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
finally:
|
||||
db.session.close()
|
||||
|
||||
def _handle_advanced_chat_response(
|
||||
self,
|
||||
*,
|
||||
application_generate_entity: AdvancedChatAppGenerateEntity,
|
||||
workflow: Workflow,
|
||||
queue_manager: AppQueueManager,
|
||||
conversation: Conversation,
|
||||
message: Message,
|
||||
user: Union[Account, EndUser],
|
||||
draft_var_saver_factory: DraftVariableSaverFactory,
|
||||
stream: bool = False,
|
||||
) -> Union[ChatbotAppBlockingResponse, Generator[ChatbotAppStreamResponse, None, None]]:
|
||||
"""
|
||||
Handle response.
|
||||
:param application_generate_entity: application generate entity
|
||||
:param workflow: workflow
|
||||
:param queue_manager: queue manager
|
||||
:param conversation: conversation
|
||||
:param message: message
|
||||
:param user: account or end user
|
||||
:param stream: is stream
|
||||
:return:
|
||||
"""
|
||||
# init generate task pipeline
|
||||
generate_task_pipeline = AdvancedChatAppGenerateTaskPipeline(
|
||||
application_generate_entity=application_generate_entity,
|
||||
workflow=workflow,
|
||||
queue_manager=queue_manager,
|
||||
conversation=conversation,
|
||||
message=message,
|
||||
user=user,
|
||||
dialogue_count=self._dialogue_count,
|
||||
stream=stream,
|
||||
draft_var_saver_factory=draft_var_saver_factory,
|
||||
)
|
||||
|
||||
try:
|
||||
return generate_task_pipeline.process()
|
||||
except ValueError as e:
|
||||
if len(e.args) > 0 and e.args[0] == "I/O operation on closed file.": # ignore this error
|
||||
raise GenerateTaskStoppedError()
|
||||
else:
|
||||
logger.exception("Failed to process generate task pipeline, conversation_id: %s", conversation.id)
|
||||
raise e
|
||||
405
dify/api/core/app/apps/advanced_chat/app_runner.py
Normal file
405
dify/api/core/app/apps/advanced_chat/app_runner.py
Normal file
@@ -0,0 +1,405 @@
|
||||
import logging
|
||||
import time
|
||||
from collections.abc import Mapping, Sequence
|
||||
from typing import Any, cast
|
||||
|
||||
from sqlalchemy import select
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from core.app.apps.advanced_chat.app_config_manager import AdvancedChatAppConfig
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager
|
||||
from core.app.apps.workflow_app_runner import WorkflowBasedAppRunner
|
||||
from core.app.entities.app_invoke_entities import (
|
||||
AdvancedChatAppGenerateEntity,
|
||||
AppGenerateEntity,
|
||||
InvokeFrom,
|
||||
)
|
||||
from core.app.entities.queue_entities import (
|
||||
QueueAnnotationReplyEvent,
|
||||
QueueStopEvent,
|
||||
QueueTextChunkEvent,
|
||||
)
|
||||
from core.app.features.annotation_reply.annotation_reply import AnnotationReplyFeature
|
||||
from core.moderation.base import ModerationError
|
||||
from core.moderation.input_moderation import InputModeration
|
||||
from core.variables.variables import VariableUnion
|
||||
from core.workflow.enums import WorkflowType
|
||||
from core.workflow.graph_engine.command_channels.redis_channel import RedisChannel
|
||||
from core.workflow.graph_engine.layers.base import GraphEngineLayer
|
||||
from core.workflow.graph_engine.layers.persistence import PersistenceWorkflowInfo, WorkflowPersistenceLayer
|
||||
from core.workflow.repositories.workflow_execution_repository import WorkflowExecutionRepository
|
||||
from core.workflow.repositories.workflow_node_execution_repository import WorkflowNodeExecutionRepository
|
||||
from core.workflow.runtime import GraphRuntimeState, VariablePool
|
||||
from core.workflow.system_variable import SystemVariable
|
||||
from core.workflow.variable_loader import VariableLoader
|
||||
from core.workflow.workflow_entry import WorkflowEntry
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from models import Workflow
|
||||
from models.enums import UserFrom
|
||||
from models.model import App, Conversation, Message, MessageAnnotation
|
||||
from models.workflow import ConversationVariable
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AdvancedChatAppRunner(WorkflowBasedAppRunner):
|
||||
"""
|
||||
AdvancedChat Application Runner
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
application_generate_entity: AdvancedChatAppGenerateEntity,
|
||||
queue_manager: AppQueueManager,
|
||||
conversation: Conversation,
|
||||
message: Message,
|
||||
dialogue_count: int,
|
||||
variable_loader: VariableLoader,
|
||||
workflow: Workflow,
|
||||
system_user_id: str,
|
||||
app: App,
|
||||
workflow_execution_repository: WorkflowExecutionRepository,
|
||||
workflow_node_execution_repository: WorkflowNodeExecutionRepository,
|
||||
graph_engine_layers: Sequence[GraphEngineLayer] = (),
|
||||
):
|
||||
super().__init__(
|
||||
queue_manager=queue_manager,
|
||||
variable_loader=variable_loader,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
graph_engine_layers=graph_engine_layers,
|
||||
)
|
||||
self.application_generate_entity = application_generate_entity
|
||||
self.conversation = conversation
|
||||
self.message = message
|
||||
self._dialogue_count = dialogue_count
|
||||
self._workflow = workflow
|
||||
self.system_user_id = system_user_id
|
||||
self._app = app
|
||||
self._workflow_execution_repository = workflow_execution_repository
|
||||
self._workflow_node_execution_repository = workflow_node_execution_repository
|
||||
|
||||
def run(self):
|
||||
app_config = self.application_generate_entity.app_config
|
||||
app_config = cast(AdvancedChatAppConfig, app_config)
|
||||
|
||||
system_inputs = SystemVariable(
|
||||
query=self.application_generate_entity.query,
|
||||
files=self.application_generate_entity.files,
|
||||
conversation_id=self.conversation.id,
|
||||
user_id=self.system_user_id,
|
||||
dialogue_count=self._dialogue_count,
|
||||
app_id=app_config.app_id,
|
||||
workflow_id=app_config.workflow_id,
|
||||
workflow_execution_id=self.application_generate_entity.workflow_run_id,
|
||||
)
|
||||
|
||||
with Session(db.engine, expire_on_commit=False) as session:
|
||||
app_record = session.scalar(select(App).where(App.id == app_config.app_id))
|
||||
|
||||
if not app_record:
|
||||
raise ValueError("App not found")
|
||||
|
||||
if self.application_generate_entity.single_iteration_run or self.application_generate_entity.single_loop_run:
|
||||
# Handle single iteration or single loop run
|
||||
graph, variable_pool, graph_runtime_state = self._prepare_single_node_execution(
|
||||
workflow=self._workflow,
|
||||
single_iteration_run=self.application_generate_entity.single_iteration_run,
|
||||
single_loop_run=self.application_generate_entity.single_loop_run,
|
||||
)
|
||||
else:
|
||||
inputs = self.application_generate_entity.inputs
|
||||
query = self.application_generate_entity.query
|
||||
|
||||
# moderation
|
||||
if self.handle_input_moderation(
|
||||
app_record=self._app,
|
||||
app_generate_entity=self.application_generate_entity,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
message_id=self.message.id,
|
||||
):
|
||||
return
|
||||
|
||||
# annotation reply
|
||||
if self.handle_annotation_reply(
|
||||
app_record=self._app,
|
||||
message=self.message,
|
||||
query=query,
|
||||
app_generate_entity=self.application_generate_entity,
|
||||
):
|
||||
return
|
||||
|
||||
# Initialize conversation variables
|
||||
conversation_variables = self._initialize_conversation_variables()
|
||||
|
||||
# Create a variable pool.
|
||||
# init variable pool
|
||||
variable_pool = VariablePool(
|
||||
system_variables=system_inputs,
|
||||
user_inputs=inputs,
|
||||
environment_variables=self._workflow.environment_variables,
|
||||
# Based on the definition of `VariableUnion`,
|
||||
# `list[Variable]` can be safely used as `list[VariableUnion]` since they are compatible.
|
||||
conversation_variables=conversation_variables,
|
||||
)
|
||||
|
||||
# init graph
|
||||
graph_runtime_state = GraphRuntimeState(variable_pool=variable_pool, start_at=time.time())
|
||||
graph = self._init_graph(
|
||||
graph_config=self._workflow.graph_dict,
|
||||
graph_runtime_state=graph_runtime_state,
|
||||
workflow_id=self._workflow.id,
|
||||
tenant_id=self._workflow.tenant_id,
|
||||
user_id=self.application_generate_entity.user_id,
|
||||
)
|
||||
|
||||
db.session.close()
|
||||
|
||||
# RUN WORKFLOW
|
||||
# Create Redis command channel for this workflow execution
|
||||
task_id = self.application_generate_entity.task_id
|
||||
channel_key = f"workflow:{task_id}:commands"
|
||||
command_channel = RedisChannel(redis_client, channel_key)
|
||||
|
||||
workflow_entry = WorkflowEntry(
|
||||
tenant_id=self._workflow.tenant_id,
|
||||
app_id=self._workflow.app_id,
|
||||
workflow_id=self._workflow.id,
|
||||
graph=graph,
|
||||
graph_config=self._workflow.graph_dict,
|
||||
user_id=self.application_generate_entity.user_id,
|
||||
user_from=(
|
||||
UserFrom.ACCOUNT
|
||||
if self.application_generate_entity.invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER}
|
||||
else UserFrom.END_USER
|
||||
),
|
||||
invoke_from=self.application_generate_entity.invoke_from,
|
||||
call_depth=self.application_generate_entity.call_depth,
|
||||
variable_pool=variable_pool,
|
||||
graph_runtime_state=graph_runtime_state,
|
||||
command_channel=command_channel,
|
||||
)
|
||||
|
||||
self._queue_manager.graph_runtime_state = graph_runtime_state
|
||||
|
||||
persistence_layer = WorkflowPersistenceLayer(
|
||||
application_generate_entity=self.application_generate_entity,
|
||||
workflow_info=PersistenceWorkflowInfo(
|
||||
workflow_id=self._workflow.id,
|
||||
workflow_type=WorkflowType(self._workflow.type),
|
||||
version=self._workflow.version,
|
||||
graph_data=self._workflow.graph_dict,
|
||||
),
|
||||
workflow_execution_repository=self._workflow_execution_repository,
|
||||
workflow_node_execution_repository=self._workflow_node_execution_repository,
|
||||
trace_manager=self.application_generate_entity.trace_manager,
|
||||
)
|
||||
|
||||
workflow_entry.graph_engine.layer(persistence_layer)
|
||||
for layer in self._graph_engine_layers:
|
||||
workflow_entry.graph_engine.layer(layer)
|
||||
|
||||
generator = workflow_entry.run()
|
||||
|
||||
for event in generator:
|
||||
self._handle_event(workflow_entry, event)
|
||||
|
||||
def handle_input_moderation(
|
||||
self,
|
||||
app_record: App,
|
||||
app_generate_entity: AdvancedChatAppGenerateEntity,
|
||||
inputs: Mapping[str, Any],
|
||||
query: str,
|
||||
message_id: str,
|
||||
) -> bool:
|
||||
try:
|
||||
# process sensitive_word_avoidance
|
||||
_, inputs, query = self.moderation_for_inputs(
|
||||
app_id=app_record.id,
|
||||
tenant_id=app_generate_entity.app_config.tenant_id,
|
||||
app_generate_entity=app_generate_entity,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
message_id=message_id,
|
||||
)
|
||||
except ModerationError as e:
|
||||
self._complete_with_stream_output(text=str(e), stopped_by=QueueStopEvent.StopBy.INPUT_MODERATION)
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def handle_annotation_reply(
|
||||
self, app_record: App, message: Message, query: str, app_generate_entity: AdvancedChatAppGenerateEntity
|
||||
) -> bool:
|
||||
annotation_reply = self.query_app_annotations_to_reply(
|
||||
app_record=app_record,
|
||||
message=message,
|
||||
query=query,
|
||||
user_id=app_generate_entity.user_id,
|
||||
invoke_from=app_generate_entity.invoke_from,
|
||||
)
|
||||
|
||||
if annotation_reply:
|
||||
self._publish_event(QueueAnnotationReplyEvent(message_annotation_id=annotation_reply.id))
|
||||
|
||||
self._complete_with_stream_output(
|
||||
text=annotation_reply.content, stopped_by=QueueStopEvent.StopBy.ANNOTATION_REPLY
|
||||
)
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def _complete_with_stream_output(self, text: str, stopped_by: QueueStopEvent.StopBy):
|
||||
"""
|
||||
Direct output
|
||||
"""
|
||||
self._publish_event(QueueTextChunkEvent(text=text))
|
||||
|
||||
self._publish_event(QueueStopEvent(stopped_by=stopped_by))
|
||||
|
||||
def query_app_annotations_to_reply(
|
||||
self, app_record: App, message: Message, query: str, user_id: str, invoke_from: InvokeFrom
|
||||
) -> MessageAnnotation | None:
|
||||
"""
|
||||
Query app annotations to reply
|
||||
:param app_record: app record
|
||||
:param message: message
|
||||
:param query: query
|
||||
:param user_id: user id
|
||||
:param invoke_from: invoke from
|
||||
:return:
|
||||
"""
|
||||
annotation_reply_feature = AnnotationReplyFeature()
|
||||
return annotation_reply_feature.query(
|
||||
app_record=app_record, message=message, query=query, user_id=user_id, invoke_from=invoke_from
|
||||
)
|
||||
|
||||
def moderation_for_inputs(
|
||||
self,
|
||||
*,
|
||||
app_id: str,
|
||||
tenant_id: str,
|
||||
app_generate_entity: AppGenerateEntity,
|
||||
inputs: Mapping[str, Any],
|
||||
query: str | None = None,
|
||||
message_id: str,
|
||||
) -> tuple[bool, Mapping[str, Any], str]:
|
||||
"""
|
||||
Process sensitive_word_avoidance.
|
||||
:param app_id: app id
|
||||
:param tenant_id: tenant id
|
||||
:param app_generate_entity: app generate entity
|
||||
:param inputs: inputs
|
||||
:param query: query
|
||||
:param message_id: message id
|
||||
:return:
|
||||
"""
|
||||
moderation_feature = InputModeration()
|
||||
return moderation_feature.check(
|
||||
app_id=app_id,
|
||||
tenant_id=tenant_id,
|
||||
app_config=app_generate_entity.app_config,
|
||||
inputs=dict(inputs),
|
||||
query=query or "",
|
||||
message_id=message_id,
|
||||
trace_manager=app_generate_entity.trace_manager,
|
||||
)
|
||||
|
||||
def _initialize_conversation_variables(self) -> list[VariableUnion]:
|
||||
"""
|
||||
Initialize conversation variables for the current conversation.
|
||||
|
||||
This method:
|
||||
1. Loads existing variables from the database
|
||||
2. Creates new variables if none exist
|
||||
3. Syncs missing variables from the workflow definition
|
||||
|
||||
:return: List of conversation variables ready for use
|
||||
"""
|
||||
with Session(db.engine) as session:
|
||||
existing_variables = self._load_existing_conversation_variables(session)
|
||||
|
||||
if not existing_variables:
|
||||
# First time initialization - create all variables
|
||||
existing_variables = self._create_all_conversation_variables(session)
|
||||
else:
|
||||
# Check and add any missing variables from the workflow
|
||||
existing_variables = self._sync_missing_conversation_variables(session, existing_variables)
|
||||
|
||||
# Convert to Variable objects for use in the workflow
|
||||
conversation_variables = [var.to_variable() for var in existing_variables]
|
||||
|
||||
session.commit()
|
||||
return cast(list[VariableUnion], conversation_variables)
|
||||
|
||||
def _load_existing_conversation_variables(self, session: Session) -> list[ConversationVariable]:
|
||||
"""
|
||||
Load existing conversation variables from the database.
|
||||
|
||||
:param session: Database session
|
||||
:return: List of existing conversation variables
|
||||
"""
|
||||
stmt = select(ConversationVariable).where(
|
||||
ConversationVariable.app_id == self.conversation.app_id,
|
||||
ConversationVariable.conversation_id == self.conversation.id,
|
||||
)
|
||||
return list(session.scalars(stmt).all())
|
||||
|
||||
def _create_all_conversation_variables(self, session: Session) -> list[ConversationVariable]:
|
||||
"""
|
||||
Create all conversation variables for a new conversation.
|
||||
|
||||
:param session: Database session
|
||||
:return: List of created conversation variables
|
||||
"""
|
||||
new_variables = [
|
||||
ConversationVariable.from_variable(
|
||||
app_id=self.conversation.app_id, conversation_id=self.conversation.id, variable=variable
|
||||
)
|
||||
for variable in self._workflow.conversation_variables
|
||||
]
|
||||
|
||||
if new_variables:
|
||||
session.add_all(new_variables)
|
||||
|
||||
return new_variables
|
||||
|
||||
def _sync_missing_conversation_variables(
|
||||
self, session: Session, existing_variables: list[ConversationVariable]
|
||||
) -> list[ConversationVariable]:
|
||||
"""
|
||||
Sync missing conversation variables from the workflow definition.
|
||||
|
||||
This handles the case where new variables are added to a workflow
|
||||
after conversations have already been created.
|
||||
|
||||
:param session: Database session
|
||||
:param existing_variables: List of existing conversation variables
|
||||
:return: Updated list including any newly created variables
|
||||
"""
|
||||
# Get IDs of existing and workflow variables
|
||||
existing_ids = {var.id for var in existing_variables}
|
||||
workflow_variables = {var.id: var for var in self._workflow.conversation_variables}
|
||||
|
||||
# Find missing variable IDs
|
||||
missing_ids = set(workflow_variables.keys()) - existing_ids
|
||||
|
||||
if not missing_ids:
|
||||
return existing_variables
|
||||
|
||||
# Create missing variables with their default values
|
||||
new_variables = [
|
||||
ConversationVariable.from_variable(
|
||||
app_id=self.conversation.app_id,
|
||||
conversation_id=self.conversation.id,
|
||||
variable=workflow_variables[var_id],
|
||||
)
|
||||
for var_id in missing_ids
|
||||
]
|
||||
|
||||
session.add_all(new_variables)
|
||||
|
||||
# Return combined list
|
||||
return existing_variables + new_variables
|
||||
@@ -0,0 +1,125 @@
|
||||
from collections.abc import Generator
|
||||
from typing import Any, cast
|
||||
|
||||
from core.app.apps.base_app_generate_response_converter import AppGenerateResponseConverter
|
||||
from core.app.entities.task_entities import (
|
||||
AppBlockingResponse,
|
||||
AppStreamResponse,
|
||||
ChatbotAppBlockingResponse,
|
||||
ChatbotAppStreamResponse,
|
||||
ErrorStreamResponse,
|
||||
MessageEndStreamResponse,
|
||||
NodeFinishStreamResponse,
|
||||
NodeStartStreamResponse,
|
||||
PingStreamResponse,
|
||||
)
|
||||
|
||||
|
||||
class AdvancedChatAppGenerateResponseConverter(AppGenerateResponseConverter):
|
||||
_blocking_response_type = ChatbotAppBlockingResponse
|
||||
|
||||
@classmethod
|
||||
def convert_blocking_full_response(cls, blocking_response: AppBlockingResponse) -> dict[str, Any]:
|
||||
"""
|
||||
Convert blocking full response.
|
||||
:param blocking_response: blocking response
|
||||
:return:
|
||||
"""
|
||||
blocking_response = cast(ChatbotAppBlockingResponse, blocking_response)
|
||||
response = {
|
||||
"event": "message",
|
||||
"task_id": blocking_response.task_id,
|
||||
"id": blocking_response.data.id,
|
||||
"message_id": blocking_response.data.message_id,
|
||||
"conversation_id": blocking_response.data.conversation_id,
|
||||
"mode": blocking_response.data.mode,
|
||||
"answer": blocking_response.data.answer,
|
||||
"metadata": blocking_response.data.metadata,
|
||||
"created_at": blocking_response.data.created_at,
|
||||
}
|
||||
|
||||
return response
|
||||
|
||||
@classmethod
|
||||
def convert_blocking_simple_response(cls, blocking_response: AppBlockingResponse) -> dict[str, Any]:
|
||||
"""
|
||||
Convert blocking simple response.
|
||||
:param blocking_response: blocking response
|
||||
:return:
|
||||
"""
|
||||
response = cls.convert_blocking_full_response(blocking_response)
|
||||
|
||||
metadata = response.get("metadata", {})
|
||||
response["metadata"] = cls._get_simple_metadata(metadata)
|
||||
|
||||
return response
|
||||
|
||||
@classmethod
|
||||
def convert_stream_full_response(
|
||||
cls, stream_response: Generator[AppStreamResponse, None, None]
|
||||
) -> Generator[dict | str, Any, None]:
|
||||
"""
|
||||
Convert stream full response.
|
||||
:param stream_response: stream response
|
||||
:return:
|
||||
"""
|
||||
for chunk in stream_response:
|
||||
chunk = cast(ChatbotAppStreamResponse, chunk)
|
||||
sub_stream_response = chunk.stream_response
|
||||
|
||||
if isinstance(sub_stream_response, PingStreamResponse):
|
||||
yield "ping"
|
||||
continue
|
||||
|
||||
response_chunk: dict[str, Any] = {
|
||||
"event": sub_stream_response.event.value,
|
||||
"conversation_id": chunk.conversation_id,
|
||||
"message_id": chunk.message_id,
|
||||
"created_at": chunk.created_at,
|
||||
}
|
||||
|
||||
if isinstance(sub_stream_response, ErrorStreamResponse):
|
||||
data = cls._error_to_stream_response(sub_stream_response.err)
|
||||
response_chunk.update(data)
|
||||
else:
|
||||
response_chunk.update(sub_stream_response.model_dump(mode="json"))
|
||||
yield response_chunk
|
||||
|
||||
@classmethod
|
||||
def convert_stream_simple_response(
|
||||
cls, stream_response: Generator[AppStreamResponse, None, None]
|
||||
) -> Generator[dict | str, Any, None]:
|
||||
"""
|
||||
Convert stream simple response.
|
||||
:param stream_response: stream response
|
||||
:return:
|
||||
"""
|
||||
for chunk in stream_response:
|
||||
chunk = cast(ChatbotAppStreamResponse, chunk)
|
||||
sub_stream_response = chunk.stream_response
|
||||
|
||||
if isinstance(sub_stream_response, PingStreamResponse):
|
||||
yield "ping"
|
||||
continue
|
||||
|
||||
response_chunk: dict[str, Any] = {
|
||||
"event": sub_stream_response.event.value,
|
||||
"conversation_id": chunk.conversation_id,
|
||||
"message_id": chunk.message_id,
|
||||
"created_at": chunk.created_at,
|
||||
}
|
||||
|
||||
if isinstance(sub_stream_response, MessageEndStreamResponse):
|
||||
sub_stream_response_dict = sub_stream_response.model_dump(mode="json")
|
||||
metadata = sub_stream_response_dict.get("metadata", {})
|
||||
sub_stream_response_dict["metadata"] = cls._get_simple_metadata(metadata)
|
||||
response_chunk.update(sub_stream_response_dict)
|
||||
if isinstance(sub_stream_response, ErrorStreamResponse):
|
||||
data = cls._error_to_stream_response(sub_stream_response.err)
|
||||
response_chunk.update(data)
|
||||
elif isinstance(sub_stream_response, NodeStartStreamResponse | NodeFinishStreamResponse):
|
||||
response_chunk.update(sub_stream_response.to_ignore_detail_dict())
|
||||
else:
|
||||
response_chunk.update(sub_stream_response.model_dump(mode="json"))
|
||||
|
||||
yield response_chunk
|
||||
891
dify/api/core/app/apps/advanced_chat/generate_task_pipeline.py
Normal file
891
dify/api/core/app/apps/advanced_chat/generate_task_pipeline.py
Normal file
@@ -0,0 +1,891 @@
|
||||
import json
|
||||
import logging
|
||||
import re
|
||||
import time
|
||||
from collections.abc import Callable, Generator, Mapping
|
||||
from contextlib import contextmanager
|
||||
from threading import Thread
|
||||
from typing import Any, Union
|
||||
|
||||
from sqlalchemy import select
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from constants.tts_auto_play_timeout import TTS_AUTO_PLAY_TIMEOUT, TTS_AUTO_PLAY_YIELD_CPU_TIME
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
from core.app.apps.common.graph_runtime_state_support import GraphRuntimeStateSupport
|
||||
from core.app.apps.common.workflow_response_converter import WorkflowResponseConverter
|
||||
from core.app.entities.app_invoke_entities import (
|
||||
AdvancedChatAppGenerateEntity,
|
||||
InvokeFrom,
|
||||
)
|
||||
from core.app.entities.queue_entities import (
|
||||
MessageQueueMessage,
|
||||
QueueAdvancedChatMessageEndEvent,
|
||||
QueueAgentLogEvent,
|
||||
QueueAnnotationReplyEvent,
|
||||
QueueErrorEvent,
|
||||
QueueIterationCompletedEvent,
|
||||
QueueIterationNextEvent,
|
||||
QueueIterationStartEvent,
|
||||
QueueLoopCompletedEvent,
|
||||
QueueLoopNextEvent,
|
||||
QueueLoopStartEvent,
|
||||
QueueMessageReplaceEvent,
|
||||
QueueNodeExceptionEvent,
|
||||
QueueNodeFailedEvent,
|
||||
QueueNodeRetryEvent,
|
||||
QueueNodeStartedEvent,
|
||||
QueueNodeSucceededEvent,
|
||||
QueuePingEvent,
|
||||
QueueRetrieverResourcesEvent,
|
||||
QueueStopEvent,
|
||||
QueueTextChunkEvent,
|
||||
QueueWorkflowFailedEvent,
|
||||
QueueWorkflowPartialSuccessEvent,
|
||||
QueueWorkflowStartedEvent,
|
||||
QueueWorkflowSucceededEvent,
|
||||
WorkflowQueueMessage,
|
||||
)
|
||||
from core.app.entities.task_entities import (
|
||||
ChatbotAppBlockingResponse,
|
||||
ChatbotAppStreamResponse,
|
||||
ErrorStreamResponse,
|
||||
MessageAudioEndStreamResponse,
|
||||
MessageAudioStreamResponse,
|
||||
MessageEndStreamResponse,
|
||||
PingStreamResponse,
|
||||
StreamResponse,
|
||||
WorkflowTaskState,
|
||||
)
|
||||
from core.app.task_pipeline.based_generate_task_pipeline import BasedGenerateTaskPipeline
|
||||
from core.app.task_pipeline.message_cycle_manager import MessageCycleManager
|
||||
from core.base.tts import AppGeneratorTTSPublisher, AudioTrunk
|
||||
from core.model_runtime.entities.llm_entities import LLMUsage
|
||||
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||
from core.ops.ops_trace_manager import TraceQueueManager
|
||||
from core.workflow.enums import WorkflowExecutionStatus
|
||||
from core.workflow.nodes import NodeType
|
||||
from core.workflow.repositories.draft_variable_repository import DraftVariableSaverFactory
|
||||
from core.workflow.runtime import GraphRuntimeState
|
||||
from core.workflow.system_variable import SystemVariable
|
||||
from extensions.ext_database import db
|
||||
from libs.datetime_utils import naive_utc_now
|
||||
from models import Account, Conversation, EndUser, Message, MessageFile
|
||||
from models.enums import CreatorUserRole
|
||||
from models.workflow import Workflow
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
|
||||
"""
|
||||
AdvancedChatAppGenerateTaskPipeline is a class that generate stream output and state management for Application.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
application_generate_entity: AdvancedChatAppGenerateEntity,
|
||||
workflow: Workflow,
|
||||
queue_manager: AppQueueManager,
|
||||
conversation: Conversation,
|
||||
message: Message,
|
||||
user: Union[Account, EndUser],
|
||||
stream: bool,
|
||||
dialogue_count: int,
|
||||
draft_var_saver_factory: DraftVariableSaverFactory,
|
||||
):
|
||||
self._base_task_pipeline = BasedGenerateTaskPipeline(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
stream=stream,
|
||||
)
|
||||
|
||||
if isinstance(user, EndUser):
|
||||
self._user_id = user.id
|
||||
user_session_id = user.session_id
|
||||
self._created_by_role = CreatorUserRole.END_USER
|
||||
elif isinstance(user, Account):
|
||||
self._user_id = user.id
|
||||
user_session_id = user.id
|
||||
self._created_by_role = CreatorUserRole.ACCOUNT
|
||||
else:
|
||||
raise NotImplementedError(f"User type not supported: {type(user)}")
|
||||
|
||||
self._workflow_system_variables = SystemVariable(
|
||||
query=message.query,
|
||||
files=application_generate_entity.files,
|
||||
conversation_id=conversation.id,
|
||||
user_id=user_session_id,
|
||||
dialogue_count=dialogue_count,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
workflow_id=workflow.id,
|
||||
workflow_execution_id=application_generate_entity.workflow_run_id,
|
||||
)
|
||||
self._workflow_response_converter = WorkflowResponseConverter(
|
||||
application_generate_entity=application_generate_entity,
|
||||
user=user,
|
||||
system_variables=self._workflow_system_variables,
|
||||
)
|
||||
|
||||
self._task_state = WorkflowTaskState()
|
||||
self._message_cycle_manager = MessageCycleManager(
|
||||
application_generate_entity=application_generate_entity, task_state=self._task_state
|
||||
)
|
||||
|
||||
self._application_generate_entity = application_generate_entity
|
||||
self._workflow_id = workflow.id
|
||||
self._workflow_features_dict = workflow.features_dict
|
||||
self._conversation_id = conversation.id
|
||||
self._conversation_mode = conversation.mode
|
||||
self._message_id = message.id
|
||||
self._message_created_at = int(message.created_at.timestamp())
|
||||
self._conversation_name_generate_thread: Thread | None = None
|
||||
self._recorded_files: list[Mapping[str, Any]] = []
|
||||
self._workflow_run_id: str = ""
|
||||
self._draft_var_saver_factory = draft_var_saver_factory
|
||||
self._graph_runtime_state: GraphRuntimeState | None = None
|
||||
self._seed_graph_runtime_state_from_queue_manager()
|
||||
|
||||
def process(self) -> Union[ChatbotAppBlockingResponse, Generator[ChatbotAppStreamResponse, None, None]]:
|
||||
"""
|
||||
Process generate task pipeline.
|
||||
:return:
|
||||
"""
|
||||
self._conversation_name_generate_thread = self._message_cycle_manager.generate_conversation_name(
|
||||
conversation_id=self._conversation_id, query=self._application_generate_entity.query
|
||||
)
|
||||
|
||||
generator = self._wrapper_process_stream_response(trace_manager=self._application_generate_entity.trace_manager)
|
||||
|
||||
if self._base_task_pipeline.stream:
|
||||
return self._to_stream_response(generator)
|
||||
else:
|
||||
return self._to_blocking_response(generator)
|
||||
|
||||
def _to_blocking_response(self, generator: Generator[StreamResponse, None, None]) -> ChatbotAppBlockingResponse:
|
||||
"""
|
||||
Process blocking response.
|
||||
:return:
|
||||
"""
|
||||
for stream_response in generator:
|
||||
if isinstance(stream_response, ErrorStreamResponse):
|
||||
raise stream_response.err
|
||||
elif isinstance(stream_response, MessageEndStreamResponse):
|
||||
extras = {}
|
||||
if stream_response.metadata:
|
||||
extras["metadata"] = stream_response.metadata
|
||||
|
||||
return ChatbotAppBlockingResponse(
|
||||
task_id=stream_response.task_id,
|
||||
data=ChatbotAppBlockingResponse.Data(
|
||||
id=self._message_id,
|
||||
mode=self._conversation_mode,
|
||||
conversation_id=self._conversation_id,
|
||||
message_id=self._message_id,
|
||||
answer=self._task_state.answer,
|
||||
created_at=self._message_created_at,
|
||||
**extras,
|
||||
),
|
||||
)
|
||||
else:
|
||||
continue
|
||||
|
||||
raise ValueError("queue listening stopped unexpectedly.")
|
||||
|
||||
def _to_stream_response(
|
||||
self, generator: Generator[StreamResponse, None, None]
|
||||
) -> Generator[ChatbotAppStreamResponse, Any, None]:
|
||||
"""
|
||||
To stream response.
|
||||
:return:
|
||||
"""
|
||||
for stream_response in generator:
|
||||
yield ChatbotAppStreamResponse(
|
||||
conversation_id=self._conversation_id,
|
||||
message_id=self._message_id,
|
||||
created_at=self._message_created_at,
|
||||
stream_response=stream_response,
|
||||
)
|
||||
|
||||
def _listen_audio_msg(self, publisher: AppGeneratorTTSPublisher | None, task_id: str):
|
||||
if not publisher:
|
||||
return None
|
||||
audio_msg = publisher.check_and_get_audio()
|
||||
if audio_msg and isinstance(audio_msg, AudioTrunk) and audio_msg.status != "finish":
|
||||
return MessageAudioStreamResponse(audio=audio_msg.audio, task_id=task_id)
|
||||
return None
|
||||
|
||||
def _wrapper_process_stream_response(
|
||||
self, trace_manager: TraceQueueManager | None = None
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
tts_publisher = None
|
||||
task_id = self._application_generate_entity.task_id
|
||||
tenant_id = self._application_generate_entity.app_config.tenant_id
|
||||
features_dict = self._workflow_features_dict
|
||||
|
||||
if (
|
||||
features_dict.get("text_to_speech")
|
||||
and features_dict["text_to_speech"].get("enabled")
|
||||
and features_dict["text_to_speech"].get("autoPlay") == "enabled"
|
||||
):
|
||||
tts_publisher = AppGeneratorTTSPublisher(
|
||||
tenant_id, features_dict["text_to_speech"].get("voice"), features_dict["text_to_speech"].get("language")
|
||||
)
|
||||
|
||||
for response in self._process_stream_response(tts_publisher=tts_publisher, trace_manager=trace_manager):
|
||||
while True:
|
||||
audio_response = self._listen_audio_msg(publisher=tts_publisher, task_id=task_id)
|
||||
if audio_response:
|
||||
yield audio_response
|
||||
else:
|
||||
break
|
||||
yield response
|
||||
|
||||
start_listener_time = time.time()
|
||||
while (time.time() - start_listener_time) < TTS_AUTO_PLAY_TIMEOUT:
|
||||
try:
|
||||
if not tts_publisher:
|
||||
break
|
||||
audio_trunk = tts_publisher.check_and_get_audio()
|
||||
if audio_trunk is None:
|
||||
time.sleep(TTS_AUTO_PLAY_YIELD_CPU_TIME)
|
||||
continue
|
||||
if audio_trunk.status == "finish":
|
||||
break
|
||||
else:
|
||||
start_listener_time = time.time()
|
||||
yield MessageAudioStreamResponse(audio=audio_trunk.audio, task_id=task_id)
|
||||
except Exception:
|
||||
logger.exception("Failed to listen audio message, task_id: %s", task_id)
|
||||
break
|
||||
if tts_publisher:
|
||||
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
|
||||
|
||||
@contextmanager
|
||||
def _database_session(self):
|
||||
"""Context manager for database sessions."""
|
||||
with Session(db.engine, expire_on_commit=False) as session:
|
||||
try:
|
||||
yield session
|
||||
session.commit()
|
||||
except Exception:
|
||||
session.rollback()
|
||||
raise
|
||||
|
||||
def _ensure_workflow_initialized(self):
|
||||
"""Fluent validation for workflow state."""
|
||||
if not self._workflow_run_id:
|
||||
raise ValueError("workflow run not initialized.")
|
||||
|
||||
def _handle_ping_event(self, event: QueuePingEvent, **kwargs) -> Generator[PingStreamResponse, None, None]:
|
||||
"""Handle ping events."""
|
||||
yield self._base_task_pipeline.ping_stream_response()
|
||||
|
||||
def _handle_error_event(self, event: QueueErrorEvent, **kwargs) -> Generator[ErrorStreamResponse, None, None]:
|
||||
"""Handle error events."""
|
||||
with self._database_session() as session:
|
||||
err = self._base_task_pipeline.handle_error(event=event, session=session, message_id=self._message_id)
|
||||
yield self._base_task_pipeline.error_to_stream_response(err)
|
||||
|
||||
def _handle_workflow_started_event(
|
||||
self,
|
||||
event: QueueWorkflowStartedEvent,
|
||||
**kwargs,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle workflow started events."""
|
||||
runtime_state = self._resolve_graph_runtime_state()
|
||||
run_id = self._extract_workflow_run_id(runtime_state)
|
||||
self._workflow_run_id = run_id
|
||||
|
||||
with self._database_session() as session:
|
||||
message = self._get_message(session=session)
|
||||
if not message:
|
||||
raise ValueError(f"Message not found: {self._message_id}")
|
||||
|
||||
message.workflow_run_id = run_id
|
||||
|
||||
workflow_start_resp = self._workflow_response_converter.workflow_start_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_run_id=run_id,
|
||||
workflow_id=self._workflow_id,
|
||||
)
|
||||
|
||||
yield workflow_start_resp
|
||||
|
||||
def _handle_node_retry_event(self, event: QueueNodeRetryEvent, **kwargs) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle node retry events."""
|
||||
self._ensure_workflow_initialized()
|
||||
|
||||
node_retry_resp = self._workflow_response_converter.workflow_node_retry_to_stream_response(
|
||||
event=event,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
)
|
||||
|
||||
if node_retry_resp:
|
||||
yield node_retry_resp
|
||||
|
||||
def _handle_node_started_event(
|
||||
self, event: QueueNodeStartedEvent, **kwargs
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle node started events."""
|
||||
self._ensure_workflow_initialized()
|
||||
|
||||
node_start_resp = self._workflow_response_converter.workflow_node_start_to_stream_response(
|
||||
event=event,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
)
|
||||
|
||||
if node_start_resp:
|
||||
yield node_start_resp
|
||||
|
||||
def _handle_node_succeeded_event(
|
||||
self, event: QueueNodeSucceededEvent, **kwargs
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle node succeeded events."""
|
||||
# Record files if it's an answer node or end node
|
||||
if event.node_type in [NodeType.ANSWER, NodeType.END, NodeType.LLM]:
|
||||
self._recorded_files.extend(
|
||||
self._workflow_response_converter.fetch_files_from_node_outputs(event.outputs or {})
|
||||
)
|
||||
|
||||
node_finish_resp = self._workflow_response_converter.workflow_node_finish_to_stream_response(
|
||||
event=event,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
)
|
||||
|
||||
self._save_output_for_event(event, event.node_execution_id)
|
||||
|
||||
if node_finish_resp:
|
||||
yield node_finish_resp
|
||||
|
||||
def _handle_node_failed_events(
|
||||
self,
|
||||
event: Union[QueueNodeFailedEvent, QueueNodeExceptionEvent],
|
||||
**kwargs,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle various node failure events."""
|
||||
node_finish_resp = self._workflow_response_converter.workflow_node_finish_to_stream_response(
|
||||
event=event,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
)
|
||||
|
||||
if isinstance(event, QueueNodeExceptionEvent):
|
||||
self._save_output_for_event(event, event.node_execution_id)
|
||||
|
||||
if node_finish_resp:
|
||||
yield node_finish_resp
|
||||
|
||||
def _handle_text_chunk_event(
|
||||
self,
|
||||
event: QueueTextChunkEvent,
|
||||
*,
|
||||
tts_publisher: AppGeneratorTTSPublisher | None = None,
|
||||
queue_message: Union[WorkflowQueueMessage, MessageQueueMessage] | None = None,
|
||||
**kwargs,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle text chunk events."""
|
||||
delta_text = event.text
|
||||
if delta_text is None:
|
||||
return
|
||||
|
||||
# Handle output moderation chunk
|
||||
should_direct_answer = self._handle_output_moderation_chunk(delta_text)
|
||||
if should_direct_answer:
|
||||
return
|
||||
|
||||
current_time = time.perf_counter()
|
||||
if self._task_state.first_token_time is None and delta_text.strip():
|
||||
self._task_state.first_token_time = current_time
|
||||
self._task_state.is_streaming_response = True
|
||||
|
||||
if delta_text.strip():
|
||||
self._task_state.last_token_time = current_time
|
||||
|
||||
# Only publish tts message at text chunk streaming
|
||||
if tts_publisher and queue_message:
|
||||
tts_publisher.publish(queue_message)
|
||||
|
||||
self._task_state.answer += delta_text
|
||||
yield self._message_cycle_manager.message_to_stream_response(
|
||||
answer=delta_text, message_id=self._message_id, from_variable_selector=event.from_variable_selector
|
||||
)
|
||||
|
||||
def _handle_iteration_start_event(
|
||||
self, event: QueueIterationStartEvent, **kwargs
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle iteration start events."""
|
||||
self._ensure_workflow_initialized()
|
||||
|
||||
iter_start_resp = self._workflow_response_converter.workflow_iteration_start_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_execution_id=self._workflow_run_id,
|
||||
event=event,
|
||||
)
|
||||
yield iter_start_resp
|
||||
|
||||
def _handle_iteration_next_event(
|
||||
self, event: QueueIterationNextEvent, **kwargs
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle iteration next events."""
|
||||
self._ensure_workflow_initialized()
|
||||
|
||||
iter_next_resp = self._workflow_response_converter.workflow_iteration_next_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_execution_id=self._workflow_run_id,
|
||||
event=event,
|
||||
)
|
||||
yield iter_next_resp
|
||||
|
||||
def _handle_iteration_completed_event(
|
||||
self, event: QueueIterationCompletedEvent, **kwargs
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle iteration completed events."""
|
||||
self._ensure_workflow_initialized()
|
||||
|
||||
iter_finish_resp = self._workflow_response_converter.workflow_iteration_completed_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_execution_id=self._workflow_run_id,
|
||||
event=event,
|
||||
)
|
||||
yield iter_finish_resp
|
||||
|
||||
def _handle_loop_start_event(self, event: QueueLoopStartEvent, **kwargs) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle loop start events."""
|
||||
self._ensure_workflow_initialized()
|
||||
|
||||
loop_start_resp = self._workflow_response_converter.workflow_loop_start_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_execution_id=self._workflow_run_id,
|
||||
event=event,
|
||||
)
|
||||
yield loop_start_resp
|
||||
|
||||
def _handle_loop_next_event(self, event: QueueLoopNextEvent, **kwargs) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle loop next events."""
|
||||
self._ensure_workflow_initialized()
|
||||
|
||||
loop_next_resp = self._workflow_response_converter.workflow_loop_next_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_execution_id=self._workflow_run_id,
|
||||
event=event,
|
||||
)
|
||||
yield loop_next_resp
|
||||
|
||||
def _handle_loop_completed_event(
|
||||
self, event: QueueLoopCompletedEvent, **kwargs
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle loop completed events."""
|
||||
self._ensure_workflow_initialized()
|
||||
|
||||
loop_finish_resp = self._workflow_response_converter.workflow_loop_completed_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_execution_id=self._workflow_run_id,
|
||||
event=event,
|
||||
)
|
||||
yield loop_finish_resp
|
||||
|
||||
def _handle_workflow_succeeded_event(
|
||||
self,
|
||||
event: QueueWorkflowSucceededEvent,
|
||||
*,
|
||||
trace_manager: TraceQueueManager | None = None,
|
||||
**kwargs,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle workflow succeeded events."""
|
||||
_ = trace_manager
|
||||
self._ensure_workflow_initialized()
|
||||
validated_state = self._ensure_graph_runtime_initialized()
|
||||
workflow_finish_resp = self._workflow_response_converter.workflow_finish_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_id=self._workflow_id,
|
||||
status=WorkflowExecutionStatus.SUCCEEDED,
|
||||
graph_runtime_state=validated_state,
|
||||
)
|
||||
|
||||
yield workflow_finish_resp
|
||||
self._base_task_pipeline.queue_manager.publish(QueueAdvancedChatMessageEndEvent(), PublishFrom.TASK_PIPELINE)
|
||||
|
||||
def _handle_workflow_partial_success_event(
|
||||
self,
|
||||
event: QueueWorkflowPartialSuccessEvent,
|
||||
*,
|
||||
trace_manager: TraceQueueManager | None = None,
|
||||
**kwargs,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle workflow partial success events."""
|
||||
_ = trace_manager
|
||||
self._ensure_workflow_initialized()
|
||||
validated_state = self._ensure_graph_runtime_initialized()
|
||||
workflow_finish_resp = self._workflow_response_converter.workflow_finish_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_id=self._workflow_id,
|
||||
status=WorkflowExecutionStatus.PARTIAL_SUCCEEDED,
|
||||
graph_runtime_state=validated_state,
|
||||
exceptions_count=event.exceptions_count,
|
||||
)
|
||||
|
||||
yield workflow_finish_resp
|
||||
self._base_task_pipeline.queue_manager.publish(QueueAdvancedChatMessageEndEvent(), PublishFrom.TASK_PIPELINE)
|
||||
|
||||
def _handle_workflow_failed_event(
|
||||
self,
|
||||
event: QueueWorkflowFailedEvent,
|
||||
*,
|
||||
trace_manager: TraceQueueManager | None = None,
|
||||
**kwargs,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle workflow failed events."""
|
||||
_ = trace_manager
|
||||
self._ensure_workflow_initialized()
|
||||
validated_state = self._ensure_graph_runtime_initialized()
|
||||
|
||||
workflow_finish_resp = self._workflow_response_converter.workflow_finish_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_id=self._workflow_id,
|
||||
status=WorkflowExecutionStatus.FAILED,
|
||||
graph_runtime_state=validated_state,
|
||||
error=event.error,
|
||||
exceptions_count=event.exceptions_count,
|
||||
)
|
||||
|
||||
with self._database_session() as session:
|
||||
err_event = QueueErrorEvent(error=ValueError(f"Run failed: {event.error}"))
|
||||
err = self._base_task_pipeline.handle_error(event=err_event, session=session, message_id=self._message_id)
|
||||
|
||||
yield workflow_finish_resp
|
||||
yield self._base_task_pipeline.error_to_stream_response(err)
|
||||
|
||||
def _handle_stop_event(
|
||||
self,
|
||||
event: QueueStopEvent,
|
||||
*,
|
||||
graph_runtime_state: GraphRuntimeState | None = None,
|
||||
trace_manager: TraceQueueManager | None = None,
|
||||
**kwargs,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle stop events."""
|
||||
_ = trace_manager
|
||||
resolved_state = None
|
||||
if self._workflow_run_id:
|
||||
resolved_state = self._resolve_graph_runtime_state(graph_runtime_state)
|
||||
|
||||
if self._workflow_run_id and resolved_state:
|
||||
workflow_finish_resp = self._workflow_response_converter.workflow_finish_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_id=self._workflow_id,
|
||||
status=WorkflowExecutionStatus.STOPPED,
|
||||
graph_runtime_state=resolved_state,
|
||||
error=event.get_stop_reason(),
|
||||
)
|
||||
|
||||
with self._database_session() as session:
|
||||
# Save message
|
||||
self._save_message(session=session, graph_runtime_state=resolved_state)
|
||||
|
||||
yield workflow_finish_resp
|
||||
elif event.stopped_by in (
|
||||
QueueStopEvent.StopBy.INPUT_MODERATION,
|
||||
QueueStopEvent.StopBy.ANNOTATION_REPLY,
|
||||
):
|
||||
# When hitting input-moderation or annotation-reply, the workflow will not start
|
||||
with self._database_session() as session:
|
||||
# Save message
|
||||
self._save_message(session=session)
|
||||
|
||||
yield self._message_end_to_stream_response()
|
||||
|
||||
def _handle_advanced_chat_message_end_event(
|
||||
self,
|
||||
event: QueueAdvancedChatMessageEndEvent,
|
||||
*,
|
||||
graph_runtime_state: GraphRuntimeState | None = None,
|
||||
**kwargs,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle advanced chat message end events."""
|
||||
resolved_state = self._ensure_graph_runtime_initialized(graph_runtime_state)
|
||||
|
||||
output_moderation_answer = self._base_task_pipeline.handle_output_moderation_when_task_finished(
|
||||
self._task_state.answer
|
||||
)
|
||||
if output_moderation_answer:
|
||||
self._task_state.answer = output_moderation_answer
|
||||
yield self._message_cycle_manager.message_replace_to_stream_response(
|
||||
answer=output_moderation_answer,
|
||||
reason=QueueMessageReplaceEvent.MessageReplaceReason.OUTPUT_MODERATION,
|
||||
)
|
||||
|
||||
# Save message
|
||||
with self._database_session() as session:
|
||||
self._save_message(session=session, graph_runtime_state=resolved_state)
|
||||
|
||||
yield self._message_end_to_stream_response()
|
||||
|
||||
def _handle_retriever_resources_event(
|
||||
self, event: QueueRetrieverResourcesEvent, **kwargs
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle retriever resources events."""
|
||||
self._message_cycle_manager.handle_retriever_resources(event)
|
||||
return
|
||||
yield # Make this a generator
|
||||
|
||||
def _handle_annotation_reply_event(
|
||||
self, event: QueueAnnotationReplyEvent, **kwargs
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle annotation reply events."""
|
||||
self._message_cycle_manager.handle_annotation_reply(event)
|
||||
return
|
||||
yield # Make this a generator
|
||||
|
||||
def _handle_message_replace_event(
|
||||
self, event: QueueMessageReplaceEvent, **kwargs
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle message replace events."""
|
||||
yield self._message_cycle_manager.message_replace_to_stream_response(answer=event.text, reason=event.reason)
|
||||
|
||||
def _handle_agent_log_event(self, event: QueueAgentLogEvent, **kwargs) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle agent log events."""
|
||||
yield self._workflow_response_converter.handle_agent_log(
|
||||
task_id=self._application_generate_entity.task_id, event=event
|
||||
)
|
||||
|
||||
def _get_event_handlers(self) -> dict[type, Callable]:
|
||||
"""Get mapping of event types to their handlers using fluent pattern."""
|
||||
return {
|
||||
# Basic events
|
||||
QueuePingEvent: self._handle_ping_event,
|
||||
QueueErrorEvent: self._handle_error_event,
|
||||
QueueTextChunkEvent: self._handle_text_chunk_event,
|
||||
# Workflow events
|
||||
QueueWorkflowStartedEvent: self._handle_workflow_started_event,
|
||||
QueueWorkflowSucceededEvent: self._handle_workflow_succeeded_event,
|
||||
QueueWorkflowPartialSuccessEvent: self._handle_workflow_partial_success_event,
|
||||
QueueWorkflowFailedEvent: self._handle_workflow_failed_event,
|
||||
# Node events
|
||||
QueueNodeRetryEvent: self._handle_node_retry_event,
|
||||
QueueNodeStartedEvent: self._handle_node_started_event,
|
||||
QueueNodeSucceededEvent: self._handle_node_succeeded_event,
|
||||
# Iteration events
|
||||
QueueIterationStartEvent: self._handle_iteration_start_event,
|
||||
QueueIterationNextEvent: self._handle_iteration_next_event,
|
||||
QueueIterationCompletedEvent: self._handle_iteration_completed_event,
|
||||
# Loop events
|
||||
QueueLoopStartEvent: self._handle_loop_start_event,
|
||||
QueueLoopNextEvent: self._handle_loop_next_event,
|
||||
QueueLoopCompletedEvent: self._handle_loop_completed_event,
|
||||
# Control events
|
||||
QueueStopEvent: self._handle_stop_event,
|
||||
# Message events
|
||||
QueueRetrieverResourcesEvent: self._handle_retriever_resources_event,
|
||||
QueueAnnotationReplyEvent: self._handle_annotation_reply_event,
|
||||
QueueMessageReplaceEvent: self._handle_message_replace_event,
|
||||
QueueAdvancedChatMessageEndEvent: self._handle_advanced_chat_message_end_event,
|
||||
QueueAgentLogEvent: self._handle_agent_log_event,
|
||||
}
|
||||
|
||||
def _dispatch_event(
|
||||
self,
|
||||
event: Any,
|
||||
*,
|
||||
tts_publisher: AppGeneratorTTSPublisher | None = None,
|
||||
trace_manager: TraceQueueManager | None = None,
|
||||
queue_message: Union[WorkflowQueueMessage, MessageQueueMessage] | None = None,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Dispatch events using elegant pattern matching."""
|
||||
handlers = self._get_event_handlers()
|
||||
event_type = type(event)
|
||||
|
||||
# Direct handler lookup
|
||||
if handler := handlers.get(event_type):
|
||||
yield from handler(
|
||||
event,
|
||||
tts_publisher=tts_publisher,
|
||||
trace_manager=trace_manager,
|
||||
queue_message=queue_message,
|
||||
)
|
||||
return
|
||||
|
||||
# Handle node failure events with isinstance check
|
||||
if isinstance(
|
||||
event,
|
||||
(
|
||||
QueueNodeFailedEvent,
|
||||
QueueNodeExceptionEvent,
|
||||
),
|
||||
):
|
||||
yield from self._handle_node_failed_events(
|
||||
event,
|
||||
tts_publisher=tts_publisher,
|
||||
trace_manager=trace_manager,
|
||||
queue_message=queue_message,
|
||||
)
|
||||
return
|
||||
|
||||
# For unhandled events, we continue (original behavior)
|
||||
return
|
||||
|
||||
def _process_stream_response(
|
||||
self,
|
||||
tts_publisher: AppGeneratorTTSPublisher | None = None,
|
||||
trace_manager: TraceQueueManager | None = None,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""
|
||||
Process stream response using elegant Fluent Python patterns.
|
||||
Maintains exact same functionality as original 57-if-statement version.
|
||||
"""
|
||||
for queue_message in self._base_task_pipeline.queue_manager.listen():
|
||||
event = queue_message.event
|
||||
|
||||
match event:
|
||||
case QueueWorkflowStartedEvent():
|
||||
self._resolve_graph_runtime_state()
|
||||
yield from self._handle_workflow_started_event(event)
|
||||
|
||||
case QueueErrorEvent():
|
||||
yield from self._handle_error_event(event)
|
||||
break
|
||||
|
||||
case QueueWorkflowFailedEvent():
|
||||
yield from self._handle_workflow_failed_event(event, trace_manager=trace_manager)
|
||||
break
|
||||
|
||||
case QueueStopEvent():
|
||||
yield from self._handle_stop_event(event, graph_runtime_state=None, trace_manager=trace_manager)
|
||||
break
|
||||
|
||||
# Handle all other events through elegant dispatch
|
||||
case _:
|
||||
if responses := list(
|
||||
self._dispatch_event(
|
||||
event,
|
||||
tts_publisher=tts_publisher,
|
||||
trace_manager=trace_manager,
|
||||
queue_message=queue_message,
|
||||
)
|
||||
):
|
||||
yield from responses
|
||||
|
||||
if tts_publisher:
|
||||
tts_publisher.publish(None)
|
||||
|
||||
if self._conversation_name_generate_thread:
|
||||
self._conversation_name_generate_thread.join()
|
||||
|
||||
def _save_message(self, *, session: Session, graph_runtime_state: GraphRuntimeState | None = None):
|
||||
message = self._get_message(session=session)
|
||||
|
||||
# If there are assistant files, remove markdown image links from answer
|
||||
answer_text = self._task_state.answer
|
||||
if self._recorded_files:
|
||||
# Remove markdown image links since we're storing files separately
|
||||
answer_text = re.sub(r"!\[.*?\]\(.*?\)", "", answer_text).strip()
|
||||
|
||||
message.answer = answer_text
|
||||
message.updated_at = naive_utc_now()
|
||||
message.provider_response_latency = time.perf_counter() - self._base_task_pipeline.start_at
|
||||
|
||||
# Set usage first before dumping metadata
|
||||
if graph_runtime_state and graph_runtime_state.llm_usage:
|
||||
usage = graph_runtime_state.llm_usage
|
||||
message.message_tokens = usage.prompt_tokens
|
||||
message.message_unit_price = usage.prompt_unit_price
|
||||
message.message_price_unit = usage.prompt_price_unit
|
||||
message.answer_tokens = usage.completion_tokens
|
||||
message.answer_unit_price = usage.completion_unit_price
|
||||
message.answer_price_unit = usage.completion_price_unit
|
||||
message.total_price = usage.total_price
|
||||
message.currency = usage.currency
|
||||
self._task_state.metadata.usage = usage
|
||||
else:
|
||||
usage = LLMUsage.empty_usage()
|
||||
self._task_state.metadata.usage = usage
|
||||
|
||||
# Add streaming metrics to usage if available
|
||||
if self._task_state.is_streaming_response and self._task_state.first_token_time:
|
||||
start_time = self._base_task_pipeline.start_at
|
||||
first_token_time = self._task_state.first_token_time
|
||||
last_token_time = self._task_state.last_token_time or first_token_time
|
||||
usage.time_to_first_token = round(first_token_time - start_time, 3)
|
||||
usage.time_to_generate = round(last_token_time - first_token_time, 3)
|
||||
|
||||
metadata = self._task_state.metadata.model_dump()
|
||||
message.message_metadata = json.dumps(jsonable_encoder(metadata))
|
||||
message_files = [
|
||||
MessageFile(
|
||||
message_id=message.id,
|
||||
type=file["type"],
|
||||
transfer_method=file["transfer_method"],
|
||||
url=file["remote_url"],
|
||||
belongs_to="assistant",
|
||||
upload_file_id=file["related_id"],
|
||||
created_by_role=CreatorUserRole.ACCOUNT
|
||||
if message.invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER}
|
||||
else CreatorUserRole.END_USER,
|
||||
created_by=message.from_account_id or message.from_end_user_id or "",
|
||||
)
|
||||
for file in self._recorded_files
|
||||
]
|
||||
session.add_all(message_files)
|
||||
|
||||
def _seed_graph_runtime_state_from_queue_manager(self) -> None:
|
||||
"""Bootstrap the cached runtime state from the queue manager when present."""
|
||||
candidate = self._base_task_pipeline.queue_manager.graph_runtime_state
|
||||
if candidate is not None:
|
||||
self._graph_runtime_state = candidate
|
||||
|
||||
def _message_end_to_stream_response(self) -> MessageEndStreamResponse:
|
||||
"""
|
||||
Message end to stream response.
|
||||
:return:
|
||||
"""
|
||||
extras = self._task_state.metadata.model_dump()
|
||||
|
||||
if self._task_state.metadata.annotation_reply:
|
||||
del extras["annotation_reply"]
|
||||
|
||||
return MessageEndStreamResponse(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
id=self._message_id,
|
||||
files=self._recorded_files,
|
||||
metadata=extras,
|
||||
)
|
||||
|
||||
def _handle_output_moderation_chunk(self, text: str) -> bool:
|
||||
"""
|
||||
Handle output moderation chunk.
|
||||
:param text: text
|
||||
:return: True if output moderation should direct output, otherwise False
|
||||
"""
|
||||
if self._base_task_pipeline.output_moderation_handler:
|
||||
if self._base_task_pipeline.output_moderation_handler.should_direct_output():
|
||||
self._task_state.answer = self._base_task_pipeline.output_moderation_handler.get_final_output()
|
||||
self._base_task_pipeline.queue_manager.publish(
|
||||
QueueTextChunkEvent(text=self._task_state.answer), PublishFrom.TASK_PIPELINE
|
||||
)
|
||||
|
||||
self._base_task_pipeline.queue_manager.publish(
|
||||
QueueStopEvent(stopped_by=QueueStopEvent.StopBy.OUTPUT_MODERATION), PublishFrom.TASK_PIPELINE
|
||||
)
|
||||
return True
|
||||
else:
|
||||
self._base_task_pipeline.output_moderation_handler.append_new_token(text)
|
||||
|
||||
return False
|
||||
|
||||
def _get_message(self, *, session: Session):
|
||||
stmt = select(Message).where(Message.id == self._message_id)
|
||||
message = session.scalar(stmt)
|
||||
if not message:
|
||||
raise ValueError(f"Message not found: {self._message_id}")
|
||||
return message
|
||||
|
||||
def _save_output_for_event(self, event: QueueNodeSucceededEvent | QueueNodeExceptionEvent, node_execution_id: str):
|
||||
with Session(db.engine) as session, session.begin():
|
||||
saver = self._draft_var_saver_factory(
|
||||
session=session,
|
||||
app_id=self._application_generate_entity.app_config.app_id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type,
|
||||
node_execution_id=node_execution_id,
|
||||
enclosing_node_id=event.in_loop_id or event.in_iteration_id,
|
||||
)
|
||||
saver.save(event.process_data, event.outputs)
|
||||
0
dify/api/core/app/apps/agent_chat/__init__.py
Normal file
0
dify/api/core/app/apps/agent_chat/__init__.py
Normal file
236
dify/api/core/app/apps/agent_chat/app_config_manager.py
Normal file
236
dify/api/core/app/apps/agent_chat/app_config_manager.py
Normal file
@@ -0,0 +1,236 @@
|
||||
import uuid
|
||||
from collections.abc import Mapping
|
||||
from typing import Any, cast
|
||||
|
||||
from core.agent.entities import AgentEntity
|
||||
from core.app.app_config.base_app_config_manager import BaseAppConfigManager
|
||||
from core.app.app_config.common.sensitive_word_avoidance.manager import SensitiveWordAvoidanceConfigManager
|
||||
from core.app.app_config.easy_ui_based_app.agent.manager import AgentConfigManager
|
||||
from core.app.app_config.easy_ui_based_app.dataset.manager import DatasetConfigManager
|
||||
from core.app.app_config.easy_ui_based_app.model_config.manager import ModelConfigManager
|
||||
from core.app.app_config.easy_ui_based_app.prompt_template.manager import PromptTemplateConfigManager
|
||||
from core.app.app_config.easy_ui_based_app.variables.manager import BasicVariablesConfigManager
|
||||
from core.app.app_config.entities import EasyUIBasedAppConfig, EasyUIBasedAppModelConfigFrom
|
||||
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
|
||||
from core.app.app_config.features.opening_statement.manager import OpeningStatementConfigManager
|
||||
from core.app.app_config.features.retrieval_resource.manager import RetrievalResourceConfigManager
|
||||
from core.app.app_config.features.speech_to_text.manager import SpeechToTextConfigManager
|
||||
from core.app.app_config.features.suggested_questions_after_answer.manager import (
|
||||
SuggestedQuestionsAfterAnswerConfigManager,
|
||||
)
|
||||
from core.app.app_config.features.text_to_speech.manager import TextToSpeechConfigManager
|
||||
from core.entities.agent_entities import PlanningStrategy
|
||||
from models.model import App, AppMode, AppModelConfig, Conversation
|
||||
|
||||
OLD_TOOLS = ["dataset", "google_search", "web_reader", "wikipedia", "current_datetime"]
|
||||
|
||||
|
||||
class AgentChatAppConfig(EasyUIBasedAppConfig):
|
||||
"""
|
||||
Agent Chatbot App Config Entity.
|
||||
"""
|
||||
|
||||
agent: AgentEntity | None = None
|
||||
|
||||
|
||||
class AgentChatAppConfigManager(BaseAppConfigManager):
|
||||
@classmethod
|
||||
def get_app_config(
|
||||
cls,
|
||||
app_model: App,
|
||||
app_model_config: AppModelConfig,
|
||||
conversation: Conversation | None = None,
|
||||
override_config_dict: dict | None = None,
|
||||
) -> AgentChatAppConfig:
|
||||
"""
|
||||
Convert app model config to agent chat app config
|
||||
:param app_model: app model
|
||||
:param app_model_config: app model config
|
||||
:param conversation: conversation
|
||||
:param override_config_dict: app model config dict
|
||||
:return:
|
||||
"""
|
||||
if override_config_dict:
|
||||
config_from = EasyUIBasedAppModelConfigFrom.ARGS
|
||||
elif conversation:
|
||||
config_from = EasyUIBasedAppModelConfigFrom.CONVERSATION_SPECIFIC_CONFIG
|
||||
else:
|
||||
config_from = EasyUIBasedAppModelConfigFrom.APP_LATEST_CONFIG
|
||||
|
||||
if config_from != EasyUIBasedAppModelConfigFrom.ARGS:
|
||||
app_model_config_dict = app_model_config.to_dict()
|
||||
config_dict = app_model_config_dict.copy()
|
||||
else:
|
||||
config_dict = override_config_dict or {}
|
||||
|
||||
app_mode = AppMode.value_of(app_model.mode)
|
||||
app_config = AgentChatAppConfig(
|
||||
tenant_id=app_model.tenant_id,
|
||||
app_id=app_model.id,
|
||||
app_mode=app_mode,
|
||||
app_model_config_from=config_from,
|
||||
app_model_config_id=app_model_config.id,
|
||||
app_model_config_dict=config_dict,
|
||||
model=ModelConfigManager.convert(config=config_dict),
|
||||
prompt_template=PromptTemplateConfigManager.convert(config=config_dict),
|
||||
sensitive_word_avoidance=SensitiveWordAvoidanceConfigManager.convert(config=config_dict),
|
||||
dataset=DatasetConfigManager.convert(config=config_dict),
|
||||
agent=AgentConfigManager.convert(config=config_dict),
|
||||
additional_features=cls.convert_features(config_dict, app_mode),
|
||||
)
|
||||
|
||||
app_config.variables, app_config.external_data_variables = BasicVariablesConfigManager.convert(
|
||||
config=config_dict
|
||||
)
|
||||
|
||||
return app_config
|
||||
|
||||
@classmethod
|
||||
def config_validate(cls, tenant_id: str, config: Mapping[str, Any]):
|
||||
"""
|
||||
Validate for agent chat app model config
|
||||
|
||||
:param tenant_id: tenant id
|
||||
:param config: app model config args
|
||||
"""
|
||||
app_mode = AppMode.AGENT_CHAT
|
||||
|
||||
related_config_keys = []
|
||||
|
||||
# model
|
||||
config, current_related_config_keys = ModelConfigManager.validate_and_set_defaults(tenant_id, config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# user_input_form
|
||||
config, current_related_config_keys = BasicVariablesConfigManager.validate_and_set_defaults(tenant_id, config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# file upload validation
|
||||
config, current_related_config_keys = FileUploadConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# prompt
|
||||
config, current_related_config_keys = PromptTemplateConfigManager.validate_and_set_defaults(app_mode, config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# agent_mode
|
||||
config, current_related_config_keys = cls.validate_agent_mode_and_set_defaults(tenant_id, config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# opening_statement
|
||||
config, current_related_config_keys = OpeningStatementConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# suggested_questions_after_answer
|
||||
config, current_related_config_keys = SuggestedQuestionsAfterAnswerConfigManager.validate_and_set_defaults(
|
||||
config
|
||||
)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# speech_to_text
|
||||
config, current_related_config_keys = SpeechToTextConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# text_to_speech
|
||||
config, current_related_config_keys = TextToSpeechConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# return retriever resource
|
||||
config, current_related_config_keys = RetrievalResourceConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# dataset configs
|
||||
# dataset_query_variable
|
||||
config, current_related_config_keys = DatasetConfigManager.validate_and_set_defaults(
|
||||
tenant_id, app_mode, config
|
||||
)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# moderation validation
|
||||
config, current_related_config_keys = SensitiveWordAvoidanceConfigManager.validate_and_set_defaults(
|
||||
tenant_id, config
|
||||
)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
related_config_keys = list(set(related_config_keys))
|
||||
|
||||
# Filter out extra parameters
|
||||
filtered_config = {key: config.get(key) for key in related_config_keys}
|
||||
|
||||
return filtered_config
|
||||
|
||||
@classmethod
|
||||
def validate_agent_mode_and_set_defaults(
|
||||
cls, tenant_id: str, config: dict[str, Any]
|
||||
) -> tuple[dict[str, Any], list[str]]:
|
||||
"""
|
||||
Validate agent_mode and set defaults for agent feature
|
||||
|
||||
:param tenant_id: tenant ID
|
||||
:param config: app model config args
|
||||
"""
|
||||
if not config.get("agent_mode"):
|
||||
config["agent_mode"] = {"enabled": False, "tools": []}
|
||||
|
||||
agent_mode = config["agent_mode"]
|
||||
if not isinstance(agent_mode, dict):
|
||||
raise ValueError("agent_mode must be of object type")
|
||||
|
||||
# FIXME(-LAN-): Cast needed due to basedpyright limitation with dict type narrowing
|
||||
agent_mode = cast(dict[str, Any], agent_mode)
|
||||
|
||||
if "enabled" not in agent_mode or not agent_mode["enabled"]:
|
||||
agent_mode["enabled"] = False
|
||||
|
||||
if not isinstance(agent_mode["enabled"], bool):
|
||||
raise ValueError("enabled in agent_mode must be of boolean type")
|
||||
|
||||
if not agent_mode.get("strategy"):
|
||||
agent_mode["strategy"] = PlanningStrategy.ROUTER
|
||||
|
||||
if agent_mode["strategy"] not in [member.value for member in list(PlanningStrategy.__members__.values())]:
|
||||
raise ValueError("strategy in agent_mode must be in the specified strategy list")
|
||||
|
||||
if not agent_mode.get("tools"):
|
||||
agent_mode["tools"] = []
|
||||
|
||||
if not isinstance(agent_mode["tools"], list):
|
||||
raise ValueError("tools in agent_mode must be a list of objects")
|
||||
|
||||
for tool in agent_mode["tools"]:
|
||||
key = list(tool.keys())[0]
|
||||
if key in OLD_TOOLS:
|
||||
# old style, use tool name as key
|
||||
tool_item = tool[key]
|
||||
|
||||
if "enabled" not in tool_item or not tool_item["enabled"]:
|
||||
tool_item["enabled"] = False
|
||||
|
||||
if not isinstance(tool_item["enabled"], bool):
|
||||
raise ValueError("enabled in agent_mode.tools must be of boolean type")
|
||||
|
||||
if key == "dataset":
|
||||
if "id" not in tool_item:
|
||||
raise ValueError("id is required in dataset")
|
||||
|
||||
try:
|
||||
uuid.UUID(tool_item["id"])
|
||||
except ValueError:
|
||||
raise ValueError("id in dataset must be of UUID type")
|
||||
|
||||
if not DatasetConfigManager.is_dataset_exists(tenant_id, tool_item["id"]):
|
||||
raise ValueError("Dataset ID does not exist, please check your permission.")
|
||||
else:
|
||||
# latest style, use key-value pair
|
||||
if "enabled" not in tool or not tool["enabled"]:
|
||||
tool["enabled"] = False
|
||||
if "provider_type" not in tool:
|
||||
raise ValueError("provider_type is required in agent_mode.tools")
|
||||
if "provider_id" not in tool:
|
||||
raise ValueError("provider_id is required in agent_mode.tools")
|
||||
if "tool_name" not in tool:
|
||||
raise ValueError("tool_name is required in agent_mode.tools")
|
||||
if "tool_parameters" not in tool:
|
||||
raise ValueError("tool_parameters is required in agent_mode.tools")
|
||||
|
||||
return config, ["agent_mode"]
|
||||
266
dify/api/core/app/apps/agent_chat/app_generator.py
Normal file
266
dify/api/core/app/apps/agent_chat/app_generator.py
Normal file
@@ -0,0 +1,266 @@
|
||||
import contextvars
|
||||
import logging
|
||||
import threading
|
||||
import uuid
|
||||
from collections.abc import Generator, Mapping
|
||||
from typing import Any, Literal, Union, overload
|
||||
|
||||
from flask import Flask, current_app
|
||||
from pydantic import ValidationError
|
||||
|
||||
from configs import dify_config
|
||||
from constants import UUID_NIL
|
||||
from core.app.app_config.easy_ui_based_app.model_config.converter import ModelConfigConverter
|
||||
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
|
||||
from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfigManager
|
||||
from core.app.apps.agent_chat.app_runner import AgentChatAppRunner
|
||||
from core.app.apps.agent_chat.generate_response_converter import AgentChatAppGenerateResponseConverter
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
from core.app.apps.exc import GenerateTaskStoppedError
|
||||
from core.app.apps.message_based_app_generator import MessageBasedAppGenerator
|
||||
from core.app.apps.message_based_app_queue_manager import MessageBasedAppQueueManager
|
||||
from core.app.entities.app_invoke_entities import AgentChatAppGenerateEntity, InvokeFrom
|
||||
from core.model_runtime.errors.invoke import InvokeAuthorizationError
|
||||
from core.ops.ops_trace_manager import TraceQueueManager
|
||||
from extensions.ext_database import db
|
||||
from factories import file_factory
|
||||
from libs.flask_utils import preserve_flask_contexts
|
||||
from models import Account, App, EndUser
|
||||
from services.conversation_service import ConversationService
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AgentChatAppGenerator(MessageBasedAppGenerator):
|
||||
@overload
|
||||
def generate(
|
||||
self,
|
||||
*,
|
||||
app_model: App,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: Literal[False],
|
||||
) -> Mapping[str, Any]: ...
|
||||
|
||||
@overload
|
||||
def generate(
|
||||
self,
|
||||
*,
|
||||
app_model: App,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: Literal[True],
|
||||
) -> Generator[Mapping | str, None, None]: ...
|
||||
|
||||
@overload
|
||||
def generate(
|
||||
self,
|
||||
*,
|
||||
app_model: App,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: bool,
|
||||
) -> Union[Mapping, Generator[Mapping | str, None, None]]: ...
|
||||
|
||||
def generate(
|
||||
self,
|
||||
*,
|
||||
app_model: App,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: bool = True,
|
||||
) -> Union[Mapping, Generator[Mapping | str, None, None]]:
|
||||
"""
|
||||
Generate App response.
|
||||
|
||||
:param app_model: App
|
||||
:param user: account or end user
|
||||
:param args: request args
|
||||
:param invoke_from: invoke from source
|
||||
:param streaming: is stream
|
||||
"""
|
||||
if not streaming:
|
||||
raise ValueError("Agent Chat App does not support blocking mode")
|
||||
|
||||
if not args.get("query"):
|
||||
raise ValueError("query is required")
|
||||
|
||||
query = args["query"]
|
||||
if not isinstance(query, str):
|
||||
raise ValueError("query must be a string")
|
||||
|
||||
query = query.replace("\x00", "")
|
||||
inputs = args["inputs"]
|
||||
|
||||
extras = {"auto_generate_conversation_name": args.get("auto_generate_name", True)}
|
||||
|
||||
# get conversation
|
||||
conversation = None
|
||||
conversation_id = args.get("conversation_id")
|
||||
if conversation_id:
|
||||
conversation = ConversationService.get_conversation(
|
||||
app_model=app_model, conversation_id=conversation_id, user=user
|
||||
)
|
||||
# get app model config
|
||||
app_model_config = self._get_app_model_config(app_model=app_model, conversation=conversation)
|
||||
|
||||
# validate override model config
|
||||
override_model_config_dict = None
|
||||
if args.get("model_config"):
|
||||
if invoke_from != InvokeFrom.DEBUGGER:
|
||||
raise ValueError("Only in App debug mode can override model config")
|
||||
|
||||
# validate config
|
||||
override_model_config_dict = AgentChatAppConfigManager.config_validate(
|
||||
tenant_id=app_model.tenant_id,
|
||||
config=args["model_config"],
|
||||
)
|
||||
|
||||
# always enable retriever resource in debugger mode
|
||||
override_model_config_dict["retriever_resource"] = {"enabled": True}
|
||||
|
||||
# parse files
|
||||
# TODO(QuantumGhost): Move file parsing logic to the API controller layer
|
||||
# for better separation of concerns.
|
||||
#
|
||||
# For implementation reference, see the `_parse_file` function and
|
||||
# `DraftWorkflowNodeRunApi` class which handle this properly.
|
||||
files = args.get("files") or []
|
||||
file_extra_config = FileUploadConfigManager.convert(override_model_config_dict or app_model_config.to_dict())
|
||||
if file_extra_config:
|
||||
file_objs = file_factory.build_from_mappings(
|
||||
mappings=files,
|
||||
tenant_id=app_model.tenant_id,
|
||||
config=file_extra_config,
|
||||
)
|
||||
else:
|
||||
file_objs = []
|
||||
|
||||
# convert to app config
|
||||
app_config = AgentChatAppConfigManager.get_app_config(
|
||||
app_model=app_model,
|
||||
app_model_config=app_model_config,
|
||||
conversation=conversation,
|
||||
override_config_dict=override_model_config_dict,
|
||||
)
|
||||
|
||||
# get tracing instance
|
||||
trace_manager = TraceQueueManager(app_model.id, user.id if isinstance(user, Account) else user.session_id)
|
||||
|
||||
# init application generate entity
|
||||
application_generate_entity = AgentChatAppGenerateEntity(
|
||||
task_id=str(uuid.uuid4()),
|
||||
app_config=app_config,
|
||||
model_conf=ModelConfigConverter.convert(app_config),
|
||||
file_upload_config=file_extra_config,
|
||||
conversation_id=conversation.id if conversation else None,
|
||||
inputs=self._prepare_user_inputs(
|
||||
user_inputs=inputs, variables=app_config.variables, tenant_id=app_model.tenant_id
|
||||
),
|
||||
query=query,
|
||||
files=list(file_objs),
|
||||
parent_message_id=args.get("parent_message_id") if invoke_from != InvokeFrom.SERVICE_API else UUID_NIL,
|
||||
user_id=user.id,
|
||||
stream=streaming,
|
||||
invoke_from=invoke_from,
|
||||
extras=extras,
|
||||
call_depth=0,
|
||||
trace_manager=trace_manager,
|
||||
)
|
||||
|
||||
# init generate records
|
||||
(conversation, message) = self._init_generate_records(application_generate_entity, conversation)
|
||||
|
||||
# init queue manager
|
||||
queue_manager = MessageBasedAppQueueManager(
|
||||
task_id=application_generate_entity.task_id,
|
||||
user_id=application_generate_entity.user_id,
|
||||
invoke_from=application_generate_entity.invoke_from,
|
||||
conversation_id=conversation.id,
|
||||
app_mode=conversation.mode,
|
||||
message_id=message.id,
|
||||
)
|
||||
|
||||
# new thread with request context and contextvars
|
||||
context = contextvars.copy_context()
|
||||
|
||||
worker_thread = threading.Thread(
|
||||
target=self._generate_worker,
|
||||
kwargs={
|
||||
"flask_app": current_app._get_current_object(), # type: ignore
|
||||
"context": context,
|
||||
"application_generate_entity": application_generate_entity,
|
||||
"queue_manager": queue_manager,
|
||||
"conversation_id": conversation.id,
|
||||
"message_id": message.id,
|
||||
},
|
||||
)
|
||||
|
||||
worker_thread.start()
|
||||
|
||||
# return response or stream generator
|
||||
response = self._handle_response(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
conversation=conversation,
|
||||
message=message,
|
||||
user=user,
|
||||
stream=streaming,
|
||||
)
|
||||
return AgentChatAppGenerateResponseConverter.convert(response=response, invoke_from=invoke_from)
|
||||
|
||||
def _generate_worker(
|
||||
self,
|
||||
flask_app: Flask,
|
||||
context: contextvars.Context,
|
||||
application_generate_entity: AgentChatAppGenerateEntity,
|
||||
queue_manager: AppQueueManager,
|
||||
conversation_id: str,
|
||||
message_id: str,
|
||||
):
|
||||
"""
|
||||
Generate worker in a new thread.
|
||||
:param flask_app: Flask app
|
||||
:param application_generate_entity: application generate entity
|
||||
:param queue_manager: queue manager
|
||||
:param conversation_id: conversation ID
|
||||
:param message_id: message ID
|
||||
:return:
|
||||
"""
|
||||
|
||||
with preserve_flask_contexts(flask_app, context_vars=context):
|
||||
try:
|
||||
# get conversation and message
|
||||
conversation = self._get_conversation(conversation_id)
|
||||
message = self._get_message(message_id)
|
||||
|
||||
# chatbot app
|
||||
runner = AgentChatAppRunner()
|
||||
runner.run(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
conversation=conversation,
|
||||
message=message,
|
||||
)
|
||||
except GenerateTaskStoppedError:
|
||||
pass
|
||||
except InvokeAuthorizationError:
|
||||
queue_manager.publish_error(
|
||||
InvokeAuthorizationError("Incorrect API key provided"), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
except ValidationError as e:
|
||||
logger.exception("Validation Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
except ValueError as e:
|
||||
if dify_config.DEBUG:
|
||||
logger.exception("Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
except Exception as e:
|
||||
logger.exception("Unknown Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
finally:
|
||||
db.session.close()
|
||||
239
dify/api/core/app/apps/agent_chat/app_runner.py
Normal file
239
dify/api/core/app/apps/agent_chat/app_runner.py
Normal file
@@ -0,0 +1,239 @@
|
||||
import logging
|
||||
from typing import cast
|
||||
|
||||
from sqlalchemy import select
|
||||
|
||||
from core.agent.cot_chat_agent_runner import CotChatAgentRunner
|
||||
from core.agent.cot_completion_agent_runner import CotCompletionAgentRunner
|
||||
from core.agent.entities import AgentEntity
|
||||
from core.agent.fc_agent_runner import FunctionCallAgentRunner
|
||||
from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfig
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
from core.app.apps.base_app_runner import AppRunner
|
||||
from core.app.entities.app_invoke_entities import AgentChatAppGenerateEntity
|
||||
from core.app.entities.queue_entities import QueueAnnotationReplyEvent
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.llm_entities import LLMMode
|
||||
from core.model_runtime.entities.model_entities import ModelFeature, ModelPropertyKey
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.moderation.base import ModerationError
|
||||
from extensions.ext_database import db
|
||||
from models.model import App, Conversation, Message
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AgentChatAppRunner(AppRunner):
|
||||
"""
|
||||
Agent Application Runner
|
||||
"""
|
||||
|
||||
def run(
|
||||
self,
|
||||
application_generate_entity: AgentChatAppGenerateEntity,
|
||||
queue_manager: AppQueueManager,
|
||||
conversation: Conversation,
|
||||
message: Message,
|
||||
):
|
||||
"""
|
||||
Run assistant application
|
||||
:param application_generate_entity: application generate entity
|
||||
:param queue_manager: application queue manager
|
||||
:param conversation: conversation
|
||||
:param message: message
|
||||
:return:
|
||||
"""
|
||||
app_config = application_generate_entity.app_config
|
||||
app_config = cast(AgentChatAppConfig, app_config)
|
||||
app_stmt = select(App).where(App.id == app_config.app_id)
|
||||
app_record = db.session.scalar(app_stmt)
|
||||
if not app_record:
|
||||
raise ValueError("App not found")
|
||||
|
||||
inputs = application_generate_entity.inputs
|
||||
query = application_generate_entity.query
|
||||
files = application_generate_entity.files
|
||||
|
||||
memory = None
|
||||
if application_generate_entity.conversation_id:
|
||||
# get memory of conversation (read-only)
|
||||
model_instance = ModelInstance(
|
||||
provider_model_bundle=application_generate_entity.model_conf.provider_model_bundle,
|
||||
model=application_generate_entity.model_conf.model,
|
||||
)
|
||||
|
||||
memory = TokenBufferMemory(conversation=conversation, model_instance=model_instance)
|
||||
|
||||
# organize all inputs and template to prompt messages
|
||||
# Include: prompt template, inputs, query(optional), files(optional)
|
||||
# memory(optional)
|
||||
prompt_messages, _ = self.organize_prompt_messages(
|
||||
app_record=app_record,
|
||||
model_config=application_generate_entity.model_conf,
|
||||
prompt_template_entity=app_config.prompt_template,
|
||||
inputs=dict(inputs),
|
||||
files=list(files),
|
||||
query=query,
|
||||
memory=memory,
|
||||
)
|
||||
|
||||
# moderation
|
||||
try:
|
||||
# process sensitive_word_avoidance
|
||||
_, inputs, query = self.moderation_for_inputs(
|
||||
app_id=app_record.id,
|
||||
tenant_id=app_config.tenant_id,
|
||||
app_generate_entity=application_generate_entity,
|
||||
inputs=dict(inputs),
|
||||
query=query or "",
|
||||
message_id=message.id,
|
||||
)
|
||||
except ModerationError as e:
|
||||
self.direct_output(
|
||||
queue_manager=queue_manager,
|
||||
app_generate_entity=application_generate_entity,
|
||||
prompt_messages=prompt_messages,
|
||||
text=str(e),
|
||||
stream=application_generate_entity.stream,
|
||||
)
|
||||
return
|
||||
|
||||
if query:
|
||||
# annotation reply
|
||||
annotation_reply = self.query_app_annotations_to_reply(
|
||||
app_record=app_record,
|
||||
message=message,
|
||||
query=query,
|
||||
user_id=application_generate_entity.user_id,
|
||||
invoke_from=application_generate_entity.invoke_from,
|
||||
)
|
||||
|
||||
if annotation_reply:
|
||||
queue_manager.publish(
|
||||
QueueAnnotationReplyEvent(message_annotation_id=annotation_reply.id),
|
||||
PublishFrom.APPLICATION_MANAGER,
|
||||
)
|
||||
|
||||
self.direct_output(
|
||||
queue_manager=queue_manager,
|
||||
app_generate_entity=application_generate_entity,
|
||||
prompt_messages=prompt_messages,
|
||||
text=annotation_reply.content,
|
||||
stream=application_generate_entity.stream,
|
||||
)
|
||||
return
|
||||
|
||||
# fill in variable inputs from external data tools if exists
|
||||
external_data_tools = app_config.external_data_variables
|
||||
if external_data_tools:
|
||||
inputs = self.fill_in_inputs_from_external_data_tools(
|
||||
tenant_id=app_record.tenant_id,
|
||||
app_id=app_record.id,
|
||||
external_data_tools=external_data_tools,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
)
|
||||
|
||||
# reorganize all inputs and template to prompt messages
|
||||
# Include: prompt template, inputs, query(optional), files(optional)
|
||||
# memory(optional), external data, dataset context(optional)
|
||||
prompt_messages, _ = self.organize_prompt_messages(
|
||||
app_record=app_record,
|
||||
model_config=application_generate_entity.model_conf,
|
||||
prompt_template_entity=app_config.prompt_template,
|
||||
inputs=dict(inputs),
|
||||
files=list(files),
|
||||
query=query,
|
||||
memory=memory,
|
||||
)
|
||||
|
||||
# check hosting moderation
|
||||
hosting_moderation_result = self.check_hosting_moderation(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
prompt_messages=prompt_messages,
|
||||
)
|
||||
|
||||
if hosting_moderation_result:
|
||||
return
|
||||
|
||||
agent_entity = app_config.agent
|
||||
assert agent_entity is not None
|
||||
|
||||
# init model instance
|
||||
model_instance = ModelInstance(
|
||||
provider_model_bundle=application_generate_entity.model_conf.provider_model_bundle,
|
||||
model=application_generate_entity.model_conf.model,
|
||||
)
|
||||
prompt_message, _ = self.organize_prompt_messages(
|
||||
app_record=app_record,
|
||||
model_config=application_generate_entity.model_conf,
|
||||
prompt_template_entity=app_config.prompt_template,
|
||||
inputs=dict(inputs),
|
||||
files=list(files),
|
||||
query=query,
|
||||
memory=memory,
|
||||
)
|
||||
|
||||
# change function call strategy based on LLM model
|
||||
llm_model = cast(LargeLanguageModel, model_instance.model_type_instance)
|
||||
model_schema = llm_model.get_model_schema(model_instance.model, model_instance.credentials)
|
||||
if not model_schema:
|
||||
raise ValueError("Model schema not found")
|
||||
|
||||
if {ModelFeature.MULTI_TOOL_CALL, ModelFeature.TOOL_CALL}.intersection(model_schema.features or []):
|
||||
agent_entity.strategy = AgentEntity.Strategy.FUNCTION_CALLING
|
||||
conversation_stmt = select(Conversation).where(Conversation.id == conversation.id)
|
||||
conversation_result = db.session.scalar(conversation_stmt)
|
||||
if conversation_result is None:
|
||||
raise ValueError("Conversation not found")
|
||||
msg_stmt = select(Message).where(Message.id == message.id)
|
||||
message_result = db.session.scalar(msg_stmt)
|
||||
if message_result is None:
|
||||
raise ValueError("Message not found")
|
||||
db.session.close()
|
||||
|
||||
runner_cls: type[FunctionCallAgentRunner] | type[CotChatAgentRunner] | type[CotCompletionAgentRunner]
|
||||
# start agent runner
|
||||
if agent_entity.strategy == AgentEntity.Strategy.CHAIN_OF_THOUGHT:
|
||||
# check LLM mode
|
||||
if model_schema.model_properties.get(ModelPropertyKey.MODE) == LLMMode.CHAT:
|
||||
runner_cls = CotChatAgentRunner
|
||||
elif model_schema.model_properties.get(ModelPropertyKey.MODE) == LLMMode.COMPLETION:
|
||||
runner_cls = CotCompletionAgentRunner
|
||||
else:
|
||||
raise ValueError(f"Invalid LLM mode: {model_schema.model_properties.get(ModelPropertyKey.MODE)}")
|
||||
elif agent_entity.strategy == AgentEntity.Strategy.FUNCTION_CALLING:
|
||||
runner_cls = FunctionCallAgentRunner
|
||||
else:
|
||||
raise ValueError(f"Invalid agent strategy: {agent_entity.strategy}")
|
||||
|
||||
runner = runner_cls(
|
||||
tenant_id=app_config.tenant_id,
|
||||
application_generate_entity=application_generate_entity,
|
||||
conversation=conversation_result,
|
||||
app_config=app_config,
|
||||
model_config=application_generate_entity.model_conf,
|
||||
config=agent_entity,
|
||||
queue_manager=queue_manager,
|
||||
message=message_result,
|
||||
user_id=application_generate_entity.user_id,
|
||||
memory=memory,
|
||||
prompt_messages=prompt_message,
|
||||
model_instance=model_instance,
|
||||
)
|
||||
|
||||
invoke_result = runner.run(
|
||||
message=message,
|
||||
query=query,
|
||||
inputs=inputs,
|
||||
)
|
||||
|
||||
# handle invoke result
|
||||
self._handle_invoke_result(
|
||||
invoke_result=invoke_result,
|
||||
queue_manager=queue_manager,
|
||||
stream=application_generate_entity.stream,
|
||||
agent=True,
|
||||
)
|
||||
122
dify/api/core/app/apps/agent_chat/generate_response_converter.py
Normal file
122
dify/api/core/app/apps/agent_chat/generate_response_converter.py
Normal file
@@ -0,0 +1,122 @@
|
||||
from collections.abc import Generator
|
||||
from typing import cast
|
||||
|
||||
from core.app.apps.base_app_generate_response_converter import AppGenerateResponseConverter
|
||||
from core.app.entities.task_entities import (
|
||||
AppStreamResponse,
|
||||
ChatbotAppBlockingResponse,
|
||||
ChatbotAppStreamResponse,
|
||||
ErrorStreamResponse,
|
||||
MessageEndStreamResponse,
|
||||
PingStreamResponse,
|
||||
)
|
||||
|
||||
|
||||
class AgentChatAppGenerateResponseConverter(AppGenerateResponseConverter):
|
||||
_blocking_response_type = ChatbotAppBlockingResponse
|
||||
|
||||
@classmethod
|
||||
def convert_blocking_full_response(cls, blocking_response: ChatbotAppBlockingResponse): # type: ignore[override]
|
||||
"""
|
||||
Convert blocking full response.
|
||||
:param blocking_response: blocking response
|
||||
:return:
|
||||
"""
|
||||
response = {
|
||||
"event": "message",
|
||||
"task_id": blocking_response.task_id,
|
||||
"id": blocking_response.data.id,
|
||||
"message_id": blocking_response.data.message_id,
|
||||
"conversation_id": blocking_response.data.conversation_id,
|
||||
"mode": blocking_response.data.mode,
|
||||
"answer": blocking_response.data.answer,
|
||||
"metadata": blocking_response.data.metadata,
|
||||
"created_at": blocking_response.data.created_at,
|
||||
}
|
||||
|
||||
return response
|
||||
|
||||
@classmethod
|
||||
def convert_blocking_simple_response(cls, blocking_response: ChatbotAppBlockingResponse): # type: ignore[override]
|
||||
"""
|
||||
Convert blocking simple response.
|
||||
:param blocking_response: blocking response
|
||||
:return:
|
||||
"""
|
||||
response = cls.convert_blocking_full_response(blocking_response)
|
||||
|
||||
metadata = response.get("metadata", {})
|
||||
if isinstance(metadata, dict):
|
||||
response["metadata"] = cls._get_simple_metadata(metadata)
|
||||
else:
|
||||
response["metadata"] = {}
|
||||
|
||||
return response
|
||||
|
||||
@classmethod
|
||||
def convert_stream_full_response(
|
||||
cls, stream_response: Generator[AppStreamResponse, None, None]
|
||||
) -> Generator[dict | str, None, None]:
|
||||
"""
|
||||
Convert stream full response.
|
||||
:param stream_response: stream response
|
||||
:return:
|
||||
"""
|
||||
for chunk in stream_response:
|
||||
chunk = cast(ChatbotAppStreamResponse, chunk)
|
||||
sub_stream_response = chunk.stream_response
|
||||
|
||||
if isinstance(sub_stream_response, PingStreamResponse):
|
||||
yield "ping"
|
||||
continue
|
||||
|
||||
response_chunk = {
|
||||
"event": sub_stream_response.event.value,
|
||||
"conversation_id": chunk.conversation_id,
|
||||
"message_id": chunk.message_id,
|
||||
"created_at": chunk.created_at,
|
||||
}
|
||||
|
||||
if isinstance(sub_stream_response, ErrorStreamResponse):
|
||||
data = cls._error_to_stream_response(sub_stream_response.err)
|
||||
response_chunk.update(data)
|
||||
else:
|
||||
response_chunk.update(sub_stream_response.model_dump(mode="json"))
|
||||
yield response_chunk
|
||||
|
||||
@classmethod
|
||||
def convert_stream_simple_response(
|
||||
cls, stream_response: Generator[AppStreamResponse, None, None]
|
||||
) -> Generator[dict | str, None, None]:
|
||||
"""
|
||||
Convert stream simple response.
|
||||
:param stream_response: stream response
|
||||
:return:
|
||||
"""
|
||||
for chunk in stream_response:
|
||||
chunk = cast(ChatbotAppStreamResponse, chunk)
|
||||
sub_stream_response = chunk.stream_response
|
||||
|
||||
if isinstance(sub_stream_response, PingStreamResponse):
|
||||
yield "ping"
|
||||
continue
|
||||
|
||||
response_chunk = {
|
||||
"event": sub_stream_response.event.value,
|
||||
"conversation_id": chunk.conversation_id,
|
||||
"message_id": chunk.message_id,
|
||||
"created_at": chunk.created_at,
|
||||
}
|
||||
|
||||
if isinstance(sub_stream_response, MessageEndStreamResponse):
|
||||
sub_stream_response_dict = sub_stream_response.model_dump(mode="json")
|
||||
metadata = sub_stream_response_dict.get("metadata", {})
|
||||
sub_stream_response_dict["metadata"] = cls._get_simple_metadata(metadata)
|
||||
response_chunk.update(sub_stream_response_dict)
|
||||
if isinstance(sub_stream_response, ErrorStreamResponse):
|
||||
data = cls._error_to_stream_response(sub_stream_response.err)
|
||||
response_chunk.update(data)
|
||||
else:
|
||||
response_chunk.update(sub_stream_response.model_dump(mode="json"))
|
||||
|
||||
yield response_chunk
|
||||
132
dify/api/core/app/apps/base_app_generate_response_converter.py
Normal file
132
dify/api/core/app/apps/base_app_generate_response_converter.py
Normal file
@@ -0,0 +1,132 @@
|
||||
import logging
|
||||
from abc import ABC, abstractmethod
|
||||
from collections.abc import Generator, Mapping
|
||||
from typing import Any, Union
|
||||
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom
|
||||
from core.app.entities.task_entities import AppBlockingResponse, AppStreamResponse
|
||||
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
|
||||
from core.model_runtime.errors.invoke import InvokeError
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AppGenerateResponseConverter(ABC):
|
||||
_blocking_response_type: type[AppBlockingResponse]
|
||||
|
||||
@classmethod
|
||||
def convert(
|
||||
cls, response: Union[AppBlockingResponse, Generator[AppStreamResponse, Any, None]], invoke_from: InvokeFrom
|
||||
) -> Mapping[str, Any] | Generator[str | Mapping[str, Any], Any, None]:
|
||||
if invoke_from in {InvokeFrom.DEBUGGER, InvokeFrom.SERVICE_API}:
|
||||
if isinstance(response, AppBlockingResponse):
|
||||
return cls.convert_blocking_full_response(response)
|
||||
else:
|
||||
|
||||
def _generate_full_response() -> Generator[dict | str, Any, None]:
|
||||
yield from cls.convert_stream_full_response(response)
|
||||
|
||||
return _generate_full_response()
|
||||
else:
|
||||
if isinstance(response, AppBlockingResponse):
|
||||
return cls.convert_blocking_simple_response(response)
|
||||
else:
|
||||
|
||||
def _generate_simple_response() -> Generator[dict | str, Any, None]:
|
||||
yield from cls.convert_stream_simple_response(response)
|
||||
|
||||
return _generate_simple_response()
|
||||
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
def convert_blocking_full_response(cls, blocking_response: AppBlockingResponse) -> dict[str, Any]:
|
||||
raise NotImplementedError
|
||||
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
def convert_blocking_simple_response(cls, blocking_response: AppBlockingResponse) -> dict[str, Any]:
|
||||
raise NotImplementedError
|
||||
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
def convert_stream_full_response(
|
||||
cls, stream_response: Generator[AppStreamResponse, None, None]
|
||||
) -> Generator[dict | str, None, None]:
|
||||
raise NotImplementedError
|
||||
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
def convert_stream_simple_response(
|
||||
cls, stream_response: Generator[AppStreamResponse, None, None]
|
||||
) -> Generator[dict | str, None, None]:
|
||||
raise NotImplementedError
|
||||
|
||||
@classmethod
|
||||
def _get_simple_metadata(cls, metadata: dict[str, Any]):
|
||||
"""
|
||||
Get simple metadata.
|
||||
:param metadata: metadata
|
||||
:return:
|
||||
"""
|
||||
# show_retrieve_source
|
||||
updated_resources = []
|
||||
if "retriever_resources" in metadata:
|
||||
for resource in metadata["retriever_resources"]:
|
||||
updated_resources.append(
|
||||
{
|
||||
"segment_id": resource.get("segment_id", ""),
|
||||
"position": resource["position"],
|
||||
"document_name": resource["document_name"],
|
||||
"score": resource["score"],
|
||||
"content": resource["content"],
|
||||
}
|
||||
)
|
||||
metadata["retriever_resources"] = updated_resources
|
||||
|
||||
# show annotation reply
|
||||
if "annotation_reply" in metadata:
|
||||
del metadata["annotation_reply"]
|
||||
|
||||
# show usage
|
||||
if "usage" in metadata:
|
||||
del metadata["usage"]
|
||||
|
||||
return metadata
|
||||
|
||||
@classmethod
|
||||
def _error_to_stream_response(cls, e: Exception):
|
||||
"""
|
||||
Error to stream response.
|
||||
:param e: exception
|
||||
:return:
|
||||
"""
|
||||
error_responses = {
|
||||
ValueError: {"code": "invalid_param", "status": 400},
|
||||
ProviderTokenNotInitError: {"code": "provider_not_initialize", "status": 400},
|
||||
QuotaExceededError: {
|
||||
"code": "provider_quota_exceeded",
|
||||
"message": "Your quota for Dify Hosted Model Provider has been exhausted. "
|
||||
"Please go to Settings -> Model Provider to complete your own provider credentials.",
|
||||
"status": 400,
|
||||
},
|
||||
ModelCurrentlyNotSupportError: {"code": "model_currently_not_support", "status": 400},
|
||||
InvokeError: {"code": "completion_request_error", "status": 400},
|
||||
}
|
||||
|
||||
# Determine the response based on the type of exception
|
||||
data = None
|
||||
for k, v in error_responses.items():
|
||||
if isinstance(e, k):
|
||||
data = v
|
||||
|
||||
if data:
|
||||
data.setdefault("message", getattr(e, "description", str(e)))
|
||||
else:
|
||||
logger.error(e)
|
||||
data = {
|
||||
"code": "internal_server_error",
|
||||
"message": "Internal Server Error, please contact support.",
|
||||
"status": 500,
|
||||
}
|
||||
|
||||
return data
|
||||
232
dify/api/core/app/apps/base_app_generator.py
Normal file
232
dify/api/core/app/apps/base_app_generator.py
Normal file
@@ -0,0 +1,232 @@
|
||||
from collections.abc import Generator, Mapping, Sequence
|
||||
from typing import TYPE_CHECKING, Any, Union, final
|
||||
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from core.app.app_config.entities import VariableEntityType
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom
|
||||
from core.file import File, FileUploadConfig
|
||||
from core.workflow.enums import NodeType
|
||||
from core.workflow.repositories.draft_variable_repository import (
|
||||
DraftVariableSaver,
|
||||
DraftVariableSaverFactory,
|
||||
NoopDraftVariableSaver,
|
||||
)
|
||||
from factories import file_factory
|
||||
from libs.orjson import orjson_dumps
|
||||
from models import Account, EndUser
|
||||
from services.workflow_draft_variable_service import DraftVariableSaver as DraftVariableSaverImpl
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from core.app.app_config.entities import VariableEntity
|
||||
|
||||
|
||||
class BaseAppGenerator:
|
||||
def _prepare_user_inputs(
|
||||
self,
|
||||
*,
|
||||
user_inputs: Mapping[str, Any] | None,
|
||||
variables: Sequence["VariableEntity"],
|
||||
tenant_id: str,
|
||||
strict_type_validation: bool = False,
|
||||
) -> Mapping[str, Any]:
|
||||
user_inputs = user_inputs or {}
|
||||
# Filter input variables from form configuration, handle required fields, default values, and option values
|
||||
user_inputs = {
|
||||
var.variable: self._validate_inputs(value=user_inputs.get(var.variable), variable_entity=var)
|
||||
for var in variables
|
||||
}
|
||||
user_inputs = {k: self._sanitize_value(v) for k, v in user_inputs.items()}
|
||||
# Convert files in inputs to File
|
||||
entity_dictionary = {item.variable: item for item in variables}
|
||||
# Convert single file to File
|
||||
files_inputs = {
|
||||
k: file_factory.build_from_mapping(
|
||||
mapping=v,
|
||||
tenant_id=tenant_id,
|
||||
config=FileUploadConfig(
|
||||
allowed_file_types=entity_dictionary[k].allowed_file_types or [],
|
||||
allowed_file_extensions=entity_dictionary[k].allowed_file_extensions or [],
|
||||
allowed_file_upload_methods=entity_dictionary[k].allowed_file_upload_methods or [],
|
||||
),
|
||||
strict_type_validation=strict_type_validation,
|
||||
)
|
||||
for k, v in user_inputs.items()
|
||||
if isinstance(v, dict) and entity_dictionary[k].type == VariableEntityType.FILE
|
||||
}
|
||||
# Convert list of files to File
|
||||
file_list_inputs = {
|
||||
k: file_factory.build_from_mappings(
|
||||
mappings=v,
|
||||
tenant_id=tenant_id,
|
||||
config=FileUploadConfig(
|
||||
allowed_file_types=entity_dictionary[k].allowed_file_types or [],
|
||||
allowed_file_extensions=entity_dictionary[k].allowed_file_extensions or [],
|
||||
allowed_file_upload_methods=entity_dictionary[k].allowed_file_upload_methods or [],
|
||||
),
|
||||
)
|
||||
for k, v in user_inputs.items()
|
||||
if isinstance(v, list)
|
||||
# Ensure skip List<File>
|
||||
and all(isinstance(item, dict) for item in v)
|
||||
and entity_dictionary[k].type == VariableEntityType.FILE_LIST
|
||||
}
|
||||
# Merge all inputs
|
||||
user_inputs = {**user_inputs, **files_inputs, **file_list_inputs}
|
||||
|
||||
# Check if all files are converted to File
|
||||
if any(filter(lambda v: isinstance(v, dict), user_inputs.values())):
|
||||
raise ValueError("Invalid input type")
|
||||
if any(
|
||||
filter(lambda v: isinstance(v, dict), filter(lambda item: isinstance(item, list), user_inputs.values()))
|
||||
):
|
||||
raise ValueError("Invalid input type")
|
||||
|
||||
return user_inputs
|
||||
|
||||
def _validate_inputs(
|
||||
self,
|
||||
*,
|
||||
variable_entity: "VariableEntity",
|
||||
value: Any,
|
||||
):
|
||||
if value is None:
|
||||
if variable_entity.required:
|
||||
raise ValueError(f"{variable_entity.variable} is required in input form")
|
||||
# Use default value and continue validation to ensure type conversion
|
||||
value = variable_entity.default
|
||||
# If default is also None, return None directly
|
||||
if value is None:
|
||||
return None
|
||||
|
||||
if variable_entity.type in {
|
||||
VariableEntityType.TEXT_INPUT,
|
||||
VariableEntityType.SELECT,
|
||||
VariableEntityType.PARAGRAPH,
|
||||
} and not isinstance(value, str):
|
||||
raise ValueError(
|
||||
f"(type '{variable_entity.type}') {variable_entity.variable} in input form must be a string"
|
||||
)
|
||||
|
||||
if variable_entity.type == VariableEntityType.NUMBER:
|
||||
if isinstance(value, (int, float)):
|
||||
return value
|
||||
elif isinstance(value, str):
|
||||
# handle empty string case
|
||||
if not value.strip():
|
||||
return None
|
||||
# may raise ValueError if user_input_value is not a valid number
|
||||
try:
|
||||
if "." in value:
|
||||
return float(value)
|
||||
else:
|
||||
return int(value)
|
||||
except ValueError:
|
||||
raise ValueError(f"{variable_entity.variable} in input form must be a valid number")
|
||||
else:
|
||||
raise TypeError(f"expected value type int, float or str, got {type(value)}, value: {value}")
|
||||
|
||||
match variable_entity.type:
|
||||
case VariableEntityType.SELECT:
|
||||
if value not in variable_entity.options:
|
||||
raise ValueError(
|
||||
f"{variable_entity.variable} in input form must be one of the following: "
|
||||
f"{variable_entity.options}"
|
||||
)
|
||||
case VariableEntityType.TEXT_INPUT | VariableEntityType.PARAGRAPH:
|
||||
if variable_entity.max_length and len(value) > variable_entity.max_length:
|
||||
raise ValueError(
|
||||
f"{variable_entity.variable} in input form must be less than {variable_entity.max_length} "
|
||||
"characters"
|
||||
)
|
||||
case VariableEntityType.FILE:
|
||||
if not isinstance(value, dict) and not isinstance(value, File):
|
||||
raise ValueError(f"{variable_entity.variable} in input form must be a file")
|
||||
case VariableEntityType.FILE_LIST:
|
||||
# if number of files exceeds the limit, raise ValueError
|
||||
if not (
|
||||
isinstance(value, list)
|
||||
and (all(isinstance(item, dict) for item in value) or all(isinstance(item, File) for item in value))
|
||||
):
|
||||
raise ValueError(f"{variable_entity.variable} in input form must be a list of files")
|
||||
|
||||
if variable_entity.max_length and len(value) > variable_entity.max_length:
|
||||
raise ValueError(
|
||||
f"{variable_entity.variable} in input form must be less than {variable_entity.max_length} files"
|
||||
)
|
||||
case VariableEntityType.CHECKBOX:
|
||||
if isinstance(value, str):
|
||||
normalized_value = value.strip().lower()
|
||||
if normalized_value in {"true", "1", "yes", "on"}:
|
||||
value = True
|
||||
elif normalized_value in {"false", "0", "no", "off"}:
|
||||
value = False
|
||||
elif isinstance(value, (int, float)):
|
||||
if value == 1:
|
||||
value = True
|
||||
elif value == 0:
|
||||
value = False
|
||||
case _:
|
||||
raise AssertionError("this statement should be unreachable.")
|
||||
|
||||
return value
|
||||
|
||||
def _sanitize_value(self, value: Any):
|
||||
if isinstance(value, str):
|
||||
return value.replace("\x00", "")
|
||||
return value
|
||||
|
||||
@classmethod
|
||||
def convert_to_event_stream(cls, generator: Union[Mapping, Generator[Mapping | str, None, None]]):
|
||||
"""
|
||||
Convert messages into event stream
|
||||
"""
|
||||
if isinstance(generator, dict):
|
||||
return generator
|
||||
else:
|
||||
|
||||
def gen():
|
||||
for message in generator:
|
||||
if isinstance(message, Mapping | dict):
|
||||
yield f"data: {orjson_dumps(message)}\n\n"
|
||||
else:
|
||||
yield f"event: {message}\n\n"
|
||||
|
||||
return gen()
|
||||
|
||||
@final
|
||||
@staticmethod
|
||||
def _get_draft_var_saver_factory(invoke_from: InvokeFrom, account: Account | EndUser) -> DraftVariableSaverFactory:
|
||||
if invoke_from == InvokeFrom.DEBUGGER:
|
||||
assert isinstance(account, Account)
|
||||
|
||||
def draft_var_saver_factory(
|
||||
session: Session,
|
||||
app_id: str,
|
||||
node_id: str,
|
||||
node_type: NodeType,
|
||||
node_execution_id: str,
|
||||
enclosing_node_id: str | None = None,
|
||||
) -> DraftVariableSaver:
|
||||
return DraftVariableSaverImpl(
|
||||
session=session,
|
||||
app_id=app_id,
|
||||
node_id=node_id,
|
||||
node_type=node_type,
|
||||
node_execution_id=node_execution_id,
|
||||
enclosing_node_id=enclosing_node_id,
|
||||
user=account,
|
||||
)
|
||||
else:
|
||||
|
||||
def draft_var_saver_factory(
|
||||
session: Session,
|
||||
app_id: str,
|
||||
node_id: str,
|
||||
node_type: NodeType,
|
||||
node_execution_id: str,
|
||||
enclosing_node_id: str | None = None,
|
||||
) -> DraftVariableSaver:
|
||||
return NoopDraftVariableSaver()
|
||||
|
||||
return draft_var_saver_factory
|
||||
219
dify/api/core/app/apps/base_app_queue_manager.py
Normal file
219
dify/api/core/app/apps/base_app_queue_manager.py
Normal file
@@ -0,0 +1,219 @@
|
||||
import logging
|
||||
import queue
|
||||
import threading
|
||||
import time
|
||||
from abc import abstractmethod
|
||||
from enum import IntEnum, auto
|
||||
from typing import Any
|
||||
|
||||
from cachetools import TTLCache, cachedmethod
|
||||
from redis.exceptions import RedisError
|
||||
from sqlalchemy.orm import DeclarativeMeta
|
||||
|
||||
from configs import dify_config
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom
|
||||
from core.app.entities.queue_entities import (
|
||||
AppQueueEvent,
|
||||
MessageQueueMessage,
|
||||
QueueErrorEvent,
|
||||
QueuePingEvent,
|
||||
QueueStopEvent,
|
||||
WorkflowQueueMessage,
|
||||
)
|
||||
from core.workflow.runtime import GraphRuntimeState
|
||||
from extensions.ext_redis import redis_client
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class PublishFrom(IntEnum):
|
||||
APPLICATION_MANAGER = auto()
|
||||
TASK_PIPELINE = auto()
|
||||
|
||||
|
||||
class AppQueueManager:
|
||||
def __init__(self, task_id: str, user_id: str, invoke_from: InvokeFrom):
|
||||
if not user_id:
|
||||
raise ValueError("user is required")
|
||||
|
||||
self._task_id = task_id
|
||||
self._user_id = user_id
|
||||
self._invoke_from = invoke_from
|
||||
self.invoke_from = invoke_from # Public accessor for invoke_from
|
||||
|
||||
user_prefix = "account" if self._invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER} else "end-user"
|
||||
self._task_belong_cache_key = AppQueueManager._generate_task_belong_cache_key(self._task_id)
|
||||
redis_client.setex(self._task_belong_cache_key, 1800, f"{user_prefix}-{self._user_id}")
|
||||
|
||||
q: queue.Queue[WorkflowQueueMessage | MessageQueueMessage | None] = queue.Queue()
|
||||
|
||||
self._q = q
|
||||
self._graph_runtime_state: GraphRuntimeState | None = None
|
||||
self._stopped_cache: TTLCache[tuple, bool] = TTLCache(maxsize=1, ttl=1)
|
||||
self._cache_lock = threading.Lock()
|
||||
|
||||
def listen(self):
|
||||
"""
|
||||
Listen to queue
|
||||
:return:
|
||||
"""
|
||||
# wait for APP_MAX_EXECUTION_TIME seconds to stop listen
|
||||
listen_timeout = dify_config.APP_MAX_EXECUTION_TIME
|
||||
start_time = time.time()
|
||||
last_ping_time: int | float = 0
|
||||
while True:
|
||||
try:
|
||||
message = self._q.get(timeout=1)
|
||||
if message is None:
|
||||
break
|
||||
|
||||
yield message
|
||||
except queue.Empty:
|
||||
continue
|
||||
finally:
|
||||
elapsed_time = time.time() - start_time
|
||||
if elapsed_time >= listen_timeout or self._is_stopped():
|
||||
# publish two messages to make sure the client can receive the stop signal
|
||||
# and stop listening after the stop signal processed
|
||||
self.publish(
|
||||
QueueStopEvent(stopped_by=QueueStopEvent.StopBy.USER_MANUAL), PublishFrom.TASK_PIPELINE
|
||||
)
|
||||
|
||||
if elapsed_time // 10 > last_ping_time:
|
||||
self.publish(QueuePingEvent(), PublishFrom.TASK_PIPELINE)
|
||||
last_ping_time = elapsed_time // 10
|
||||
|
||||
def stop_listen(self):
|
||||
"""
|
||||
Stop listen to queue
|
||||
:return:
|
||||
"""
|
||||
self._clear_task_belong_cache()
|
||||
self._q.put(None)
|
||||
|
||||
def _clear_task_belong_cache(self) -> None:
|
||||
"""
|
||||
Remove the task belong cache key once listening is finished.
|
||||
"""
|
||||
try:
|
||||
redis_client.delete(self._task_belong_cache_key)
|
||||
except RedisError:
|
||||
logger.exception(
|
||||
"Failed to clear task belong cache for task %s (key: %s)", self._task_id, self._task_belong_cache_key
|
||||
)
|
||||
|
||||
def publish_error(self, e, pub_from: PublishFrom) -> None:
|
||||
"""
|
||||
Publish error
|
||||
:param e: error
|
||||
:param pub_from: publish from
|
||||
:return:
|
||||
"""
|
||||
self.publish(QueueErrorEvent(error=e), pub_from)
|
||||
|
||||
@property
|
||||
def graph_runtime_state(self) -> GraphRuntimeState | None:
|
||||
"""Retrieve the attached graph runtime state, if available."""
|
||||
return self._graph_runtime_state
|
||||
|
||||
@graph_runtime_state.setter
|
||||
def graph_runtime_state(self, graph_runtime_state: GraphRuntimeState | None) -> None:
|
||||
"""Attach the live graph runtime state reference for downstream consumers."""
|
||||
self._graph_runtime_state = graph_runtime_state
|
||||
|
||||
def publish(self, event: AppQueueEvent, pub_from: PublishFrom):
|
||||
"""
|
||||
Publish event to queue
|
||||
:param event:
|
||||
:param pub_from:
|
||||
:return:
|
||||
"""
|
||||
self._check_for_sqlalchemy_models(event.model_dump())
|
||||
self._publish(event, pub_from)
|
||||
|
||||
@abstractmethod
|
||||
def _publish(self, event: AppQueueEvent, pub_from: PublishFrom):
|
||||
"""
|
||||
Publish event to queue
|
||||
:param event:
|
||||
:param pub_from:
|
||||
:return:
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@classmethod
|
||||
def set_stop_flag(cls, task_id: str, invoke_from: InvokeFrom, user_id: str):
|
||||
"""
|
||||
Set task stop flag
|
||||
:return:
|
||||
"""
|
||||
result: Any | None = redis_client.get(cls._generate_task_belong_cache_key(task_id))
|
||||
if result is None:
|
||||
return
|
||||
|
||||
user_prefix = "account" if invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER} else "end-user"
|
||||
if result.decode("utf-8") != f"{user_prefix}-{user_id}":
|
||||
return
|
||||
|
||||
stopped_cache_key = cls._generate_stopped_cache_key(task_id)
|
||||
redis_client.setex(stopped_cache_key, 600, 1)
|
||||
|
||||
@classmethod
|
||||
def set_stop_flag_no_user_check(cls, task_id: str) -> None:
|
||||
"""
|
||||
Set task stop flag without user permission check.
|
||||
This method allows stopping workflows without user context.
|
||||
|
||||
:param task_id: The task ID to stop
|
||||
:return:
|
||||
"""
|
||||
if not task_id:
|
||||
return
|
||||
|
||||
stopped_cache_key = cls._generate_stopped_cache_key(task_id)
|
||||
redis_client.setex(stopped_cache_key, 600, 1)
|
||||
|
||||
@cachedmethod(lambda self: self._stopped_cache, lock=lambda self: self._cache_lock)
|
||||
def _is_stopped(self) -> bool:
|
||||
"""
|
||||
Check if task is stopped
|
||||
:return:
|
||||
"""
|
||||
stopped_cache_key = AppQueueManager._generate_stopped_cache_key(self._task_id)
|
||||
result = redis_client.get(stopped_cache_key)
|
||||
if result is not None:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
@classmethod
|
||||
def _generate_task_belong_cache_key(cls, task_id: str) -> str:
|
||||
"""
|
||||
Generate task belong cache key
|
||||
:param task_id: task id
|
||||
:return:
|
||||
"""
|
||||
return f"generate_task_belong:{task_id}"
|
||||
|
||||
@classmethod
|
||||
def _generate_stopped_cache_key(cls, task_id: str) -> str:
|
||||
"""
|
||||
Generate stopped cache key
|
||||
:param task_id: task id
|
||||
:return:
|
||||
"""
|
||||
return f"generate_task_stopped:{task_id}"
|
||||
|
||||
def _check_for_sqlalchemy_models(self, data: Any):
|
||||
# from entity to dict or list
|
||||
if isinstance(data, dict):
|
||||
for value in data.values():
|
||||
self._check_for_sqlalchemy_models(value)
|
||||
elif isinstance(data, list):
|
||||
for item in data:
|
||||
self._check_for_sqlalchemy_models(item)
|
||||
else:
|
||||
if isinstance(data, DeclarativeMeta) or hasattr(data, "_sa_instance_state"):
|
||||
raise TypeError(
|
||||
"Critical Error: Passing SQLAlchemy Model instances that cause thread safety issues is not allowed."
|
||||
)
|
||||
388
dify/api/core/app/apps/base_app_runner.py
Normal file
388
dify/api/core/app/apps/base_app_runner.py
Normal file
@@ -0,0 +1,388 @@
|
||||
import logging
|
||||
import time
|
||||
from collections.abc import Generator, Mapping, Sequence
|
||||
from typing import TYPE_CHECKING, Any, Union
|
||||
|
||||
from core.app.app_config.entities import ExternalDataVariableEntity, PromptTemplateEntity
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
from core.app.entities.app_invoke_entities import (
|
||||
AppGenerateEntity,
|
||||
EasyUIBasedAppGenerateEntity,
|
||||
InvokeFrom,
|
||||
ModelConfigWithCredentialsEntity,
|
||||
)
|
||||
from core.app.entities.queue_entities import QueueAgentMessageEvent, QueueLLMChunkEvent, QueueMessageEndEvent
|
||||
from core.app.features.annotation_reply.annotation_reply import AnnotationReplyFeature
|
||||
from core.app.features.hosting_moderation.hosting_moderation import HostingModerationFeature
|
||||
from core.external_data_tool.external_data_fetch import ExternalDataFetch
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
|
||||
from core.model_runtime.entities.message_entities import (
|
||||
AssistantPromptMessage,
|
||||
ImagePromptMessageContent,
|
||||
PromptMessage,
|
||||
)
|
||||
from core.model_runtime.entities.model_entities import ModelPropertyKey
|
||||
from core.model_runtime.errors.invoke import InvokeBadRequestError
|
||||
from core.moderation.input_moderation import InputModeration
|
||||
from core.prompt.advanced_prompt_transform import AdvancedPromptTransform
|
||||
from core.prompt.entities.advanced_prompt_entities import ChatModelMessage, CompletionModelPromptTemplate, MemoryConfig
|
||||
from core.prompt.simple_prompt_transform import ModelMode, SimplePromptTransform
|
||||
from models.model import App, AppMode, Message, MessageAnnotation
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from core.file.models import File
|
||||
|
||||
_logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AppRunner:
|
||||
def recalc_llm_max_tokens(
|
||||
self, model_config: ModelConfigWithCredentialsEntity, prompt_messages: list[PromptMessage]
|
||||
):
|
||||
# recalc max_tokens if sum(prompt_token + max_tokens) over model token limit
|
||||
model_instance = ModelInstance(
|
||||
provider_model_bundle=model_config.provider_model_bundle, model=model_config.model
|
||||
)
|
||||
|
||||
model_context_tokens = model_config.model_schema.model_properties.get(ModelPropertyKey.CONTEXT_SIZE)
|
||||
|
||||
max_tokens = 0
|
||||
for parameter_rule in model_config.model_schema.parameter_rules:
|
||||
if parameter_rule.name == "max_tokens" or (
|
||||
parameter_rule.use_template and parameter_rule.use_template == "max_tokens"
|
||||
):
|
||||
max_tokens = (
|
||||
model_config.parameters.get(parameter_rule.name)
|
||||
or model_config.parameters.get(parameter_rule.use_template or "")
|
||||
) or 0
|
||||
|
||||
if model_context_tokens is None:
|
||||
return -1
|
||||
|
||||
prompt_tokens = model_instance.get_llm_num_tokens(prompt_messages)
|
||||
|
||||
if prompt_tokens + max_tokens > model_context_tokens:
|
||||
max_tokens = max(model_context_tokens - prompt_tokens, 16)
|
||||
|
||||
for parameter_rule in model_config.model_schema.parameter_rules:
|
||||
if parameter_rule.name == "max_tokens" or (
|
||||
parameter_rule.use_template and parameter_rule.use_template == "max_tokens"
|
||||
):
|
||||
model_config.parameters[parameter_rule.name] = max_tokens
|
||||
|
||||
def organize_prompt_messages(
|
||||
self,
|
||||
app_record: App,
|
||||
model_config: ModelConfigWithCredentialsEntity,
|
||||
prompt_template_entity: PromptTemplateEntity,
|
||||
inputs: Mapping[str, str],
|
||||
files: Sequence["File"],
|
||||
query: str = "",
|
||||
context: str | None = None,
|
||||
memory: TokenBufferMemory | None = None,
|
||||
image_detail_config: ImagePromptMessageContent.DETAIL | None = None,
|
||||
) -> tuple[list[PromptMessage], list[str] | None]:
|
||||
"""
|
||||
Organize prompt messages
|
||||
:param context:
|
||||
:param app_record: app record
|
||||
:param model_config: model config entity
|
||||
:param prompt_template_entity: prompt template entity
|
||||
:param inputs: inputs
|
||||
:param files: files
|
||||
:param query: query
|
||||
:param memory: memory
|
||||
:param image_detail_config: the image quality config
|
||||
:return:
|
||||
"""
|
||||
# get prompt without memory and context
|
||||
if prompt_template_entity.prompt_type == PromptTemplateEntity.PromptType.SIMPLE:
|
||||
prompt_transform: Union[SimplePromptTransform, AdvancedPromptTransform]
|
||||
prompt_transform = SimplePromptTransform()
|
||||
prompt_messages, stop = prompt_transform.get_prompt(
|
||||
app_mode=AppMode.value_of(app_record.mode),
|
||||
prompt_template_entity=prompt_template_entity,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
files=files,
|
||||
context=context,
|
||||
memory=memory,
|
||||
model_config=model_config,
|
||||
image_detail_config=image_detail_config,
|
||||
)
|
||||
else:
|
||||
memory_config = MemoryConfig(window=MemoryConfig.WindowConfig(enabled=False))
|
||||
|
||||
model_mode = ModelMode(model_config.mode)
|
||||
prompt_template: Union[CompletionModelPromptTemplate, list[ChatModelMessage]]
|
||||
if model_mode == ModelMode.COMPLETION:
|
||||
advanced_completion_prompt_template = prompt_template_entity.advanced_completion_prompt_template
|
||||
if not advanced_completion_prompt_template:
|
||||
raise InvokeBadRequestError("Advanced completion prompt template is required.")
|
||||
prompt_template = CompletionModelPromptTemplate(text=advanced_completion_prompt_template.prompt)
|
||||
|
||||
if advanced_completion_prompt_template.role_prefix:
|
||||
memory_config.role_prefix = MemoryConfig.RolePrefix(
|
||||
user=advanced_completion_prompt_template.role_prefix.user,
|
||||
assistant=advanced_completion_prompt_template.role_prefix.assistant,
|
||||
)
|
||||
else:
|
||||
if not prompt_template_entity.advanced_chat_prompt_template:
|
||||
raise InvokeBadRequestError("Advanced chat prompt template is required.")
|
||||
prompt_template = []
|
||||
for message in prompt_template_entity.advanced_chat_prompt_template.messages:
|
||||
prompt_template.append(ChatModelMessage(text=message.text, role=message.role))
|
||||
|
||||
prompt_transform = AdvancedPromptTransform()
|
||||
prompt_messages = prompt_transform.get_prompt(
|
||||
prompt_template=prompt_template,
|
||||
inputs=inputs,
|
||||
query=query or "",
|
||||
files=files,
|
||||
context=context,
|
||||
memory_config=memory_config,
|
||||
memory=memory,
|
||||
model_config=model_config,
|
||||
image_detail_config=image_detail_config,
|
||||
)
|
||||
stop = model_config.stop
|
||||
|
||||
return prompt_messages, stop
|
||||
|
||||
def direct_output(
|
||||
self,
|
||||
queue_manager: AppQueueManager,
|
||||
app_generate_entity: EasyUIBasedAppGenerateEntity,
|
||||
prompt_messages: list,
|
||||
text: str,
|
||||
stream: bool,
|
||||
usage: LLMUsage | None = None,
|
||||
):
|
||||
"""
|
||||
Direct output
|
||||
:param queue_manager: application queue manager
|
||||
:param app_generate_entity: app generate entity
|
||||
:param prompt_messages: prompt messages
|
||||
:param text: text
|
||||
:param stream: stream
|
||||
:param usage: usage
|
||||
:return:
|
||||
"""
|
||||
if stream:
|
||||
index = 0
|
||||
for token in text:
|
||||
chunk = LLMResultChunk(
|
||||
model=app_generate_entity.model_conf.model,
|
||||
prompt_messages=prompt_messages,
|
||||
delta=LLMResultChunkDelta(index=index, message=AssistantPromptMessage(content=token)),
|
||||
)
|
||||
|
||||
queue_manager.publish(QueueLLMChunkEvent(chunk=chunk), PublishFrom.APPLICATION_MANAGER)
|
||||
index += 1
|
||||
time.sleep(0.01)
|
||||
|
||||
queue_manager.publish(
|
||||
QueueMessageEndEvent(
|
||||
llm_result=LLMResult(
|
||||
model=app_generate_entity.model_conf.model,
|
||||
prompt_messages=prompt_messages,
|
||||
message=AssistantPromptMessage(content=text),
|
||||
usage=usage or LLMUsage.empty_usage(),
|
||||
),
|
||||
),
|
||||
PublishFrom.APPLICATION_MANAGER,
|
||||
)
|
||||
|
||||
def _handle_invoke_result(
|
||||
self,
|
||||
invoke_result: Union[LLMResult, Generator[Any, None, None]],
|
||||
queue_manager: AppQueueManager,
|
||||
stream: bool,
|
||||
agent: bool = False,
|
||||
):
|
||||
"""
|
||||
Handle invoke result
|
||||
:param invoke_result: invoke result
|
||||
:param queue_manager: application queue manager
|
||||
:param stream: stream
|
||||
:param agent: agent
|
||||
:return:
|
||||
"""
|
||||
if not stream and isinstance(invoke_result, LLMResult):
|
||||
self._handle_invoke_result_direct(invoke_result=invoke_result, queue_manager=queue_manager, agent=agent)
|
||||
elif stream and isinstance(invoke_result, Generator):
|
||||
self._handle_invoke_result_stream(invoke_result=invoke_result, queue_manager=queue_manager, agent=agent)
|
||||
else:
|
||||
raise NotImplementedError(f"unsupported invoke result type: {type(invoke_result)}")
|
||||
|
||||
def _handle_invoke_result_direct(self, invoke_result: LLMResult, queue_manager: AppQueueManager, agent: bool):
|
||||
"""
|
||||
Handle invoke result direct
|
||||
:param invoke_result: invoke result
|
||||
:param queue_manager: application queue manager
|
||||
:param agent: agent
|
||||
:return:
|
||||
"""
|
||||
queue_manager.publish(
|
||||
QueueMessageEndEvent(
|
||||
llm_result=invoke_result,
|
||||
),
|
||||
PublishFrom.APPLICATION_MANAGER,
|
||||
)
|
||||
|
||||
def _handle_invoke_result_stream(
|
||||
self, invoke_result: Generator[LLMResultChunk, None, None], queue_manager: AppQueueManager, agent: bool
|
||||
):
|
||||
"""
|
||||
Handle invoke result
|
||||
:param invoke_result: invoke result
|
||||
:param queue_manager: application queue manager
|
||||
:param agent: agent
|
||||
:return:
|
||||
"""
|
||||
model: str = ""
|
||||
prompt_messages: list[PromptMessage] = []
|
||||
text = ""
|
||||
usage = None
|
||||
for result in invoke_result:
|
||||
if not agent:
|
||||
queue_manager.publish(QueueLLMChunkEvent(chunk=result), PublishFrom.APPLICATION_MANAGER)
|
||||
else:
|
||||
queue_manager.publish(QueueAgentMessageEvent(chunk=result), PublishFrom.APPLICATION_MANAGER)
|
||||
|
||||
message = result.delta.message
|
||||
if isinstance(message.content, str):
|
||||
text += message.content
|
||||
elif isinstance(message.content, list):
|
||||
for content in message.content:
|
||||
if not isinstance(content, str):
|
||||
# TODO(QuantumGhost): Add multimodal output support for easy ui.
|
||||
_logger.warning("received multimodal output, type=%s", type(content))
|
||||
text += content.data
|
||||
else:
|
||||
text += content # failback to str
|
||||
|
||||
if not model:
|
||||
model = result.model
|
||||
|
||||
if not prompt_messages:
|
||||
prompt_messages = list(result.prompt_messages)
|
||||
|
||||
if result.delta.usage:
|
||||
usage = result.delta.usage
|
||||
|
||||
if usage is None:
|
||||
usage = LLMUsage.empty_usage()
|
||||
|
||||
llm_result = LLMResult(
|
||||
model=model, prompt_messages=prompt_messages, message=AssistantPromptMessage(content=text), usage=usage
|
||||
)
|
||||
|
||||
queue_manager.publish(
|
||||
QueueMessageEndEvent(
|
||||
llm_result=llm_result,
|
||||
),
|
||||
PublishFrom.APPLICATION_MANAGER,
|
||||
)
|
||||
|
||||
def moderation_for_inputs(
|
||||
self,
|
||||
*,
|
||||
app_id: str,
|
||||
tenant_id: str,
|
||||
app_generate_entity: AppGenerateEntity,
|
||||
inputs: Mapping[str, Any],
|
||||
query: str | None = None,
|
||||
message_id: str,
|
||||
) -> tuple[bool, Mapping[str, Any], str]:
|
||||
"""
|
||||
Process sensitive_word_avoidance.
|
||||
:param app_id: app id
|
||||
:param tenant_id: tenant id
|
||||
:param app_generate_entity: app generate entity
|
||||
:param inputs: inputs
|
||||
:param query: query
|
||||
:param message_id: message id
|
||||
:return:
|
||||
"""
|
||||
moderation_feature = InputModeration()
|
||||
return moderation_feature.check(
|
||||
app_id=app_id,
|
||||
tenant_id=tenant_id,
|
||||
app_config=app_generate_entity.app_config,
|
||||
inputs=dict(inputs),
|
||||
query=query or "",
|
||||
message_id=message_id,
|
||||
trace_manager=app_generate_entity.trace_manager,
|
||||
)
|
||||
|
||||
def check_hosting_moderation(
|
||||
self,
|
||||
application_generate_entity: EasyUIBasedAppGenerateEntity,
|
||||
queue_manager: AppQueueManager,
|
||||
prompt_messages: list[PromptMessage],
|
||||
) -> bool:
|
||||
"""
|
||||
Check hosting moderation
|
||||
:param application_generate_entity: application generate entity
|
||||
:param queue_manager: queue manager
|
||||
:param prompt_messages: prompt messages
|
||||
:return:
|
||||
"""
|
||||
hosting_moderation_feature = HostingModerationFeature()
|
||||
moderation_result = hosting_moderation_feature.check(
|
||||
application_generate_entity=application_generate_entity, prompt_messages=prompt_messages
|
||||
)
|
||||
|
||||
if moderation_result:
|
||||
self.direct_output(
|
||||
queue_manager=queue_manager,
|
||||
app_generate_entity=application_generate_entity,
|
||||
prompt_messages=prompt_messages,
|
||||
text="I apologize for any confusion, but I'm an AI assistant to be helpful, harmless, and honest.",
|
||||
stream=application_generate_entity.stream,
|
||||
)
|
||||
|
||||
return moderation_result
|
||||
|
||||
def fill_in_inputs_from_external_data_tools(
|
||||
self,
|
||||
tenant_id: str,
|
||||
app_id: str,
|
||||
external_data_tools: list[ExternalDataVariableEntity],
|
||||
inputs: Mapping[str, Any],
|
||||
query: str,
|
||||
) -> Mapping[str, Any]:
|
||||
"""
|
||||
Fill in variable inputs from external data tools if exists.
|
||||
|
||||
:param tenant_id: workspace id
|
||||
:param app_id: app id
|
||||
:param external_data_tools: external data tools configs
|
||||
:param inputs: the inputs
|
||||
:param query: the query
|
||||
:return: the filled inputs
|
||||
"""
|
||||
external_data_fetch_feature = ExternalDataFetch()
|
||||
return external_data_fetch_feature.fetch(
|
||||
tenant_id=tenant_id, app_id=app_id, external_data_tools=external_data_tools, inputs=inputs, query=query
|
||||
)
|
||||
|
||||
def query_app_annotations_to_reply(
|
||||
self, app_record: App, message: Message, query: str, user_id: str, invoke_from: InvokeFrom
|
||||
) -> MessageAnnotation | None:
|
||||
"""
|
||||
Query app annotations to reply
|
||||
:param app_record: app record
|
||||
:param message: message
|
||||
:param query: query
|
||||
:param user_id: user id
|
||||
:param invoke_from: invoke from
|
||||
:return:
|
||||
"""
|
||||
annotation_reply_feature = AnnotationReplyFeature()
|
||||
return annotation_reply_feature.query(
|
||||
app_record=app_record, message=message, query=query, user_id=user_id, invoke_from=invoke_from
|
||||
)
|
||||
0
dify/api/core/app/apps/chat/__init__.py
Normal file
0
dify/api/core/app/apps/chat/__init__.py
Normal file
148
dify/api/core/app/apps/chat/app_config_manager.py
Normal file
148
dify/api/core/app/apps/chat/app_config_manager.py
Normal file
@@ -0,0 +1,148 @@
|
||||
from core.app.app_config.base_app_config_manager import BaseAppConfigManager
|
||||
from core.app.app_config.common.sensitive_word_avoidance.manager import SensitiveWordAvoidanceConfigManager
|
||||
from core.app.app_config.easy_ui_based_app.dataset.manager import DatasetConfigManager
|
||||
from core.app.app_config.easy_ui_based_app.model_config.manager import ModelConfigManager
|
||||
from core.app.app_config.easy_ui_based_app.prompt_template.manager import PromptTemplateConfigManager
|
||||
from core.app.app_config.easy_ui_based_app.variables.manager import BasicVariablesConfigManager
|
||||
from core.app.app_config.entities import EasyUIBasedAppConfig, EasyUIBasedAppModelConfigFrom
|
||||
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
|
||||
from core.app.app_config.features.opening_statement.manager import OpeningStatementConfigManager
|
||||
from core.app.app_config.features.retrieval_resource.manager import RetrievalResourceConfigManager
|
||||
from core.app.app_config.features.speech_to_text.manager import SpeechToTextConfigManager
|
||||
from core.app.app_config.features.suggested_questions_after_answer.manager import (
|
||||
SuggestedQuestionsAfterAnswerConfigManager,
|
||||
)
|
||||
from core.app.app_config.features.text_to_speech.manager import TextToSpeechConfigManager
|
||||
from models.model import App, AppMode, AppModelConfig, Conversation
|
||||
|
||||
|
||||
class ChatAppConfig(EasyUIBasedAppConfig):
|
||||
"""
|
||||
Chatbot App Config Entity.
|
||||
"""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class ChatAppConfigManager(BaseAppConfigManager):
|
||||
@classmethod
|
||||
def get_app_config(
|
||||
cls,
|
||||
app_model: App,
|
||||
app_model_config: AppModelConfig,
|
||||
conversation: Conversation | None = None,
|
||||
override_config_dict: dict | None = None,
|
||||
) -> ChatAppConfig:
|
||||
"""
|
||||
Convert app model config to chat app config
|
||||
:param app_model: app model
|
||||
:param app_model_config: app model config
|
||||
:param conversation: conversation
|
||||
:param override_config_dict: app model config dict
|
||||
:return:
|
||||
"""
|
||||
if override_config_dict:
|
||||
config_from = EasyUIBasedAppModelConfigFrom.ARGS
|
||||
elif conversation:
|
||||
config_from = EasyUIBasedAppModelConfigFrom.CONVERSATION_SPECIFIC_CONFIG
|
||||
else:
|
||||
config_from = EasyUIBasedAppModelConfigFrom.APP_LATEST_CONFIG
|
||||
|
||||
if config_from != EasyUIBasedAppModelConfigFrom.ARGS:
|
||||
app_model_config_dict = app_model_config.to_dict()
|
||||
config_dict = app_model_config_dict.copy()
|
||||
else:
|
||||
if not override_config_dict:
|
||||
raise Exception("override_config_dict is required when config_from is ARGS")
|
||||
|
||||
config_dict = override_config_dict
|
||||
|
||||
app_mode = AppMode.value_of(app_model.mode)
|
||||
app_config = ChatAppConfig(
|
||||
tenant_id=app_model.tenant_id,
|
||||
app_id=app_model.id,
|
||||
app_mode=app_mode,
|
||||
app_model_config_from=config_from,
|
||||
app_model_config_id=app_model_config.id,
|
||||
app_model_config_dict=config_dict,
|
||||
model=ModelConfigManager.convert(config=config_dict),
|
||||
prompt_template=PromptTemplateConfigManager.convert(config=config_dict),
|
||||
sensitive_word_avoidance=SensitiveWordAvoidanceConfigManager.convert(config=config_dict),
|
||||
dataset=DatasetConfigManager.convert(config=config_dict),
|
||||
additional_features=cls.convert_features(config_dict, app_mode),
|
||||
)
|
||||
|
||||
app_config.variables, app_config.external_data_variables = BasicVariablesConfigManager.convert(
|
||||
config=config_dict
|
||||
)
|
||||
|
||||
return app_config
|
||||
|
||||
@classmethod
|
||||
def config_validate(cls, tenant_id: str, config: dict):
|
||||
"""
|
||||
Validate for chat app model config
|
||||
|
||||
:param tenant_id: tenant id
|
||||
:param config: app model config args
|
||||
"""
|
||||
app_mode = AppMode.CHAT
|
||||
|
||||
related_config_keys = []
|
||||
|
||||
# model
|
||||
config, current_related_config_keys = ModelConfigManager.validate_and_set_defaults(tenant_id, config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# user_input_form
|
||||
config, current_related_config_keys = BasicVariablesConfigManager.validate_and_set_defaults(tenant_id, config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# file upload validation
|
||||
config, current_related_config_keys = FileUploadConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# prompt
|
||||
config, current_related_config_keys = PromptTemplateConfigManager.validate_and_set_defaults(app_mode, config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# dataset_query_variable
|
||||
config, current_related_config_keys = DatasetConfigManager.validate_and_set_defaults(
|
||||
tenant_id, app_mode, config
|
||||
)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# opening_statement
|
||||
config, current_related_config_keys = OpeningStatementConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# suggested_questions_after_answer
|
||||
config, current_related_config_keys = SuggestedQuestionsAfterAnswerConfigManager.validate_and_set_defaults(
|
||||
config
|
||||
)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# speech_to_text
|
||||
config, current_related_config_keys = SpeechToTextConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# text_to_speech
|
||||
config, current_related_config_keys = TextToSpeechConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# return retriever resource
|
||||
config, current_related_config_keys = RetrievalResourceConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# moderation validation
|
||||
config, current_related_config_keys = SensitiveWordAvoidanceConfigManager.validate_and_set_defaults(
|
||||
tenant_id, config
|
||||
)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
related_config_keys = list(set(related_config_keys))
|
||||
|
||||
# Filter out extra parameters
|
||||
filtered_config = {key: config.get(key) for key in related_config_keys}
|
||||
|
||||
return filtered_config
|
||||
255
dify/api/core/app/apps/chat/app_generator.py
Normal file
255
dify/api/core/app/apps/chat/app_generator.py
Normal file
@@ -0,0 +1,255 @@
|
||||
import logging
|
||||
import threading
|
||||
import uuid
|
||||
from collections.abc import Generator, Mapping
|
||||
from typing import Any, Literal, Union, overload
|
||||
|
||||
from flask import Flask, copy_current_request_context, current_app
|
||||
from pydantic import ValidationError
|
||||
|
||||
from configs import dify_config
|
||||
from constants import UUID_NIL
|
||||
from core.app.app_config.easy_ui_based_app.model_config.converter import ModelConfigConverter
|
||||
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
from core.app.apps.chat.app_config_manager import ChatAppConfigManager
|
||||
from core.app.apps.chat.app_runner import ChatAppRunner
|
||||
from core.app.apps.chat.generate_response_converter import ChatAppGenerateResponseConverter
|
||||
from core.app.apps.exc import GenerateTaskStoppedError
|
||||
from core.app.apps.message_based_app_generator import MessageBasedAppGenerator
|
||||
from core.app.apps.message_based_app_queue_manager import MessageBasedAppQueueManager
|
||||
from core.app.entities.app_invoke_entities import ChatAppGenerateEntity, InvokeFrom
|
||||
from core.model_runtime.errors.invoke import InvokeAuthorizationError
|
||||
from core.ops.ops_trace_manager import TraceQueueManager
|
||||
from extensions.ext_database import db
|
||||
from factories import file_factory
|
||||
from models import Account
|
||||
from models.model import App, EndUser
|
||||
from services.conversation_service import ConversationService
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ChatAppGenerator(MessageBasedAppGenerator):
|
||||
@overload
|
||||
def generate(
|
||||
self,
|
||||
app_model: App,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: Literal[True],
|
||||
) -> Generator[Mapping | str, None, None]: ...
|
||||
|
||||
@overload
|
||||
def generate(
|
||||
self,
|
||||
app_model: App,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: Literal[False],
|
||||
) -> Mapping[str, Any]: ...
|
||||
|
||||
@overload
|
||||
def generate(
|
||||
self,
|
||||
app_model: App,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: bool,
|
||||
) -> Union[Mapping[str, Any], Generator[Mapping[str, Any] | str, None, None]]: ...
|
||||
|
||||
def generate(
|
||||
self,
|
||||
app_model: App,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: bool = True,
|
||||
) -> Union[Mapping[str, Any], Generator[Mapping[str, Any] | str, None, None]]:
|
||||
"""
|
||||
Generate App response.
|
||||
|
||||
:param app_model: App
|
||||
:param user: account or end user
|
||||
:param args: request args
|
||||
:param invoke_from: invoke from source
|
||||
:param streaming: is stream
|
||||
"""
|
||||
if not args.get("query"):
|
||||
raise ValueError("query is required")
|
||||
|
||||
query = args["query"]
|
||||
if not isinstance(query, str):
|
||||
raise ValueError("query must be a string")
|
||||
|
||||
query = query.replace("\x00", "")
|
||||
inputs = args["inputs"]
|
||||
|
||||
extras = {"auto_generate_conversation_name": args.get("auto_generate_name", True)}
|
||||
|
||||
# get conversation
|
||||
conversation = None
|
||||
conversation_id = args.get("conversation_id")
|
||||
if conversation_id:
|
||||
conversation = ConversationService.get_conversation(
|
||||
app_model=app_model, conversation_id=conversation_id, user=user
|
||||
)
|
||||
# get app model config
|
||||
app_model_config = self._get_app_model_config(app_model=app_model, conversation=conversation)
|
||||
|
||||
# validate override model config
|
||||
override_model_config_dict = None
|
||||
if args.get("model_config"):
|
||||
if invoke_from != InvokeFrom.DEBUGGER:
|
||||
raise ValueError("Only in App debug mode can override model config")
|
||||
|
||||
# validate config
|
||||
override_model_config_dict = ChatAppConfigManager.config_validate(
|
||||
tenant_id=app_model.tenant_id, config=args.get("model_config", {})
|
||||
)
|
||||
|
||||
# always enable retriever resource in debugger mode
|
||||
override_model_config_dict["retriever_resource"] = {"enabled": True}
|
||||
|
||||
# parse files
|
||||
# TODO(QuantumGhost): Move file parsing logic to the API controller layer
|
||||
# for better separation of concerns.
|
||||
#
|
||||
# For implementation reference, see the `_parse_file` function and
|
||||
# `DraftWorkflowNodeRunApi` class which handle this properly.
|
||||
files = args["files"] if args.get("files") else []
|
||||
file_extra_config = FileUploadConfigManager.convert(override_model_config_dict or app_model_config.to_dict())
|
||||
if file_extra_config:
|
||||
file_objs = file_factory.build_from_mappings(
|
||||
mappings=files,
|
||||
tenant_id=app_model.tenant_id,
|
||||
config=file_extra_config,
|
||||
)
|
||||
else:
|
||||
file_objs = []
|
||||
|
||||
# convert to app config
|
||||
app_config = ChatAppConfigManager.get_app_config(
|
||||
app_model=app_model,
|
||||
app_model_config=app_model_config,
|
||||
conversation=conversation,
|
||||
override_config_dict=override_model_config_dict,
|
||||
)
|
||||
|
||||
# get tracing instance
|
||||
trace_manager = TraceQueueManager(
|
||||
app_id=app_model.id, user_id=user.id if isinstance(user, Account) else user.session_id
|
||||
)
|
||||
|
||||
# init application generate entity
|
||||
application_generate_entity = ChatAppGenerateEntity(
|
||||
task_id=str(uuid.uuid4()),
|
||||
app_config=app_config,
|
||||
model_conf=ModelConfigConverter.convert(app_config),
|
||||
file_upload_config=file_extra_config,
|
||||
conversation_id=conversation.id if conversation else None,
|
||||
inputs=self._prepare_user_inputs(
|
||||
user_inputs=inputs, variables=app_config.variables, tenant_id=app_model.tenant_id
|
||||
),
|
||||
query=query,
|
||||
files=list(file_objs),
|
||||
parent_message_id=args.get("parent_message_id") if invoke_from != InvokeFrom.SERVICE_API else UUID_NIL,
|
||||
user_id=user.id,
|
||||
invoke_from=invoke_from,
|
||||
extras=extras,
|
||||
trace_manager=trace_manager,
|
||||
stream=streaming,
|
||||
)
|
||||
|
||||
# init generate records
|
||||
(conversation, message) = self._init_generate_records(application_generate_entity, conversation)
|
||||
|
||||
# init queue manager
|
||||
queue_manager = MessageBasedAppQueueManager(
|
||||
task_id=application_generate_entity.task_id,
|
||||
user_id=application_generate_entity.user_id,
|
||||
invoke_from=application_generate_entity.invoke_from,
|
||||
conversation_id=conversation.id,
|
||||
app_mode=conversation.mode,
|
||||
message_id=message.id,
|
||||
)
|
||||
|
||||
# new thread with request context
|
||||
@copy_current_request_context
|
||||
def worker_with_context():
|
||||
return self._generate_worker(
|
||||
flask_app=current_app._get_current_object(), # type: ignore
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
conversation_id=conversation.id,
|
||||
message_id=message.id,
|
||||
)
|
||||
|
||||
worker_thread = threading.Thread(target=worker_with_context)
|
||||
|
||||
worker_thread.start()
|
||||
|
||||
# return response or stream generator
|
||||
response = self._handle_response(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
conversation=conversation,
|
||||
message=message,
|
||||
user=user,
|
||||
stream=streaming,
|
||||
)
|
||||
|
||||
return ChatAppGenerateResponseConverter.convert(response=response, invoke_from=invoke_from)
|
||||
|
||||
def _generate_worker(
|
||||
self,
|
||||
flask_app: Flask,
|
||||
application_generate_entity: ChatAppGenerateEntity,
|
||||
queue_manager: AppQueueManager,
|
||||
conversation_id: str,
|
||||
message_id: str,
|
||||
):
|
||||
"""
|
||||
Generate worker in a new thread.
|
||||
:param flask_app: Flask app
|
||||
:param application_generate_entity: application generate entity
|
||||
:param queue_manager: queue manager
|
||||
:param conversation_id: conversation ID
|
||||
:param message_id: message ID
|
||||
:return:
|
||||
"""
|
||||
with flask_app.app_context():
|
||||
try:
|
||||
# get conversation and message
|
||||
conversation = self._get_conversation(conversation_id)
|
||||
message = self._get_message(message_id)
|
||||
|
||||
# chatbot app
|
||||
runner = ChatAppRunner()
|
||||
runner.run(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
conversation=conversation,
|
||||
message=message,
|
||||
)
|
||||
except GenerateTaskStoppedError:
|
||||
pass
|
||||
except InvokeAuthorizationError:
|
||||
queue_manager.publish_error(
|
||||
InvokeAuthorizationError("Incorrect API key provided"), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
except ValidationError as e:
|
||||
logger.exception("Validation Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
except ValueError as e:
|
||||
if dify_config.DEBUG:
|
||||
logger.exception("Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
except Exception as e:
|
||||
logger.exception("Unknown Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
finally:
|
||||
db.session.close()
|
||||
223
dify/api/core/app/apps/chat/app_runner.py
Normal file
223
dify/api/core/app/apps/chat/app_runner.py
Normal file
@@ -0,0 +1,223 @@
|
||||
import logging
|
||||
from typing import cast
|
||||
|
||||
from sqlalchemy import select
|
||||
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
from core.app.apps.base_app_runner import AppRunner
|
||||
from core.app.apps.chat.app_config_manager import ChatAppConfig
|
||||
from core.app.entities.app_invoke_entities import (
|
||||
ChatAppGenerateEntity,
|
||||
)
|
||||
from core.app.entities.queue_entities import QueueAnnotationReplyEvent
|
||||
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.message_entities import ImagePromptMessageContent
|
||||
from core.moderation.base import ModerationError
|
||||
from core.rag.retrieval.dataset_retrieval import DatasetRetrieval
|
||||
from extensions.ext_database import db
|
||||
from models.model import App, Conversation, Message
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ChatAppRunner(AppRunner):
|
||||
"""
|
||||
Chat Application Runner
|
||||
"""
|
||||
|
||||
def run(
|
||||
self,
|
||||
application_generate_entity: ChatAppGenerateEntity,
|
||||
queue_manager: AppQueueManager,
|
||||
conversation: Conversation,
|
||||
message: Message,
|
||||
):
|
||||
"""
|
||||
Run application
|
||||
:param application_generate_entity: application generate entity
|
||||
:param queue_manager: application queue manager
|
||||
:param conversation: conversation
|
||||
:param message: message
|
||||
:return:
|
||||
"""
|
||||
app_config = application_generate_entity.app_config
|
||||
app_config = cast(ChatAppConfig, app_config)
|
||||
stmt = select(App).where(App.id == app_config.app_id)
|
||||
app_record = db.session.scalar(stmt)
|
||||
if not app_record:
|
||||
raise ValueError("App not found")
|
||||
|
||||
inputs = application_generate_entity.inputs
|
||||
query = application_generate_entity.query
|
||||
files = application_generate_entity.files
|
||||
|
||||
image_detail_config = (
|
||||
application_generate_entity.file_upload_config.image_config.detail
|
||||
if (
|
||||
application_generate_entity.file_upload_config
|
||||
and application_generate_entity.file_upload_config.image_config
|
||||
)
|
||||
else None
|
||||
)
|
||||
image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
|
||||
|
||||
memory = None
|
||||
if application_generate_entity.conversation_id:
|
||||
# get memory of conversation (read-only)
|
||||
model_instance = ModelInstance(
|
||||
provider_model_bundle=application_generate_entity.model_conf.provider_model_bundle,
|
||||
model=application_generate_entity.model_conf.model,
|
||||
)
|
||||
|
||||
memory = TokenBufferMemory(conversation=conversation, model_instance=model_instance)
|
||||
|
||||
# organize all inputs and template to prompt messages
|
||||
# Include: prompt template, inputs, query(optional), files(optional)
|
||||
# memory(optional)
|
||||
prompt_messages, stop = self.organize_prompt_messages(
|
||||
app_record=app_record,
|
||||
model_config=application_generate_entity.model_conf,
|
||||
prompt_template_entity=app_config.prompt_template,
|
||||
inputs=inputs,
|
||||
files=files,
|
||||
query=query,
|
||||
memory=memory,
|
||||
image_detail_config=image_detail_config,
|
||||
)
|
||||
|
||||
# moderation
|
||||
try:
|
||||
# process sensitive_word_avoidance
|
||||
_, inputs, query = self.moderation_for_inputs(
|
||||
app_id=app_record.id,
|
||||
tenant_id=app_config.tenant_id,
|
||||
app_generate_entity=application_generate_entity,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
message_id=message.id,
|
||||
)
|
||||
except ModerationError as e:
|
||||
self.direct_output(
|
||||
queue_manager=queue_manager,
|
||||
app_generate_entity=application_generate_entity,
|
||||
prompt_messages=prompt_messages,
|
||||
text=str(e),
|
||||
stream=application_generate_entity.stream,
|
||||
)
|
||||
return
|
||||
|
||||
if query:
|
||||
# annotation reply
|
||||
annotation_reply = self.query_app_annotations_to_reply(
|
||||
app_record=app_record,
|
||||
message=message,
|
||||
query=query,
|
||||
user_id=application_generate_entity.user_id,
|
||||
invoke_from=application_generate_entity.invoke_from,
|
||||
)
|
||||
|
||||
if annotation_reply:
|
||||
queue_manager.publish(
|
||||
QueueAnnotationReplyEvent(message_annotation_id=annotation_reply.id),
|
||||
PublishFrom.APPLICATION_MANAGER,
|
||||
)
|
||||
|
||||
self.direct_output(
|
||||
queue_manager=queue_manager,
|
||||
app_generate_entity=application_generate_entity,
|
||||
prompt_messages=prompt_messages,
|
||||
text=annotation_reply.content,
|
||||
stream=application_generate_entity.stream,
|
||||
)
|
||||
return
|
||||
|
||||
# fill in variable inputs from external data tools if exists
|
||||
external_data_tools = app_config.external_data_variables
|
||||
if external_data_tools:
|
||||
inputs = self.fill_in_inputs_from_external_data_tools(
|
||||
tenant_id=app_record.tenant_id,
|
||||
app_id=app_record.id,
|
||||
external_data_tools=external_data_tools,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
)
|
||||
|
||||
# get context from datasets
|
||||
context = None
|
||||
if app_config.dataset and app_config.dataset.dataset_ids:
|
||||
hit_callback = DatasetIndexToolCallbackHandler(
|
||||
queue_manager,
|
||||
app_record.id,
|
||||
message.id,
|
||||
application_generate_entity.user_id,
|
||||
application_generate_entity.invoke_from,
|
||||
)
|
||||
|
||||
dataset_retrieval = DatasetRetrieval(application_generate_entity)
|
||||
context = dataset_retrieval.retrieve(
|
||||
app_id=app_record.id,
|
||||
user_id=application_generate_entity.user_id,
|
||||
tenant_id=app_record.tenant_id,
|
||||
model_config=application_generate_entity.model_conf,
|
||||
config=app_config.dataset,
|
||||
query=query,
|
||||
invoke_from=application_generate_entity.invoke_from,
|
||||
show_retrieve_source=(
|
||||
app_config.additional_features.show_retrieve_source if app_config.additional_features else False
|
||||
),
|
||||
hit_callback=hit_callback,
|
||||
memory=memory,
|
||||
message_id=message.id,
|
||||
inputs=inputs,
|
||||
)
|
||||
|
||||
# reorganize all inputs and template to prompt messages
|
||||
# Include: prompt template, inputs, query(optional), files(optional)
|
||||
# memory(optional), external data, dataset context(optional)
|
||||
prompt_messages, stop = self.organize_prompt_messages(
|
||||
app_record=app_record,
|
||||
model_config=application_generate_entity.model_conf,
|
||||
prompt_template_entity=app_config.prompt_template,
|
||||
inputs=inputs,
|
||||
files=files,
|
||||
query=query,
|
||||
context=context,
|
||||
memory=memory,
|
||||
image_detail_config=image_detail_config,
|
||||
)
|
||||
|
||||
# check hosting moderation
|
||||
hosting_moderation_result = self.check_hosting_moderation(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
prompt_messages=prompt_messages,
|
||||
)
|
||||
|
||||
if hosting_moderation_result:
|
||||
return
|
||||
|
||||
# Re-calculate the max tokens if sum(prompt_token + max_tokens) over model token limit
|
||||
self.recalc_llm_max_tokens(model_config=application_generate_entity.model_conf, prompt_messages=prompt_messages)
|
||||
|
||||
# Invoke model
|
||||
model_instance = ModelInstance(
|
||||
provider_model_bundle=application_generate_entity.model_conf.provider_model_bundle,
|
||||
model=application_generate_entity.model_conf.model,
|
||||
)
|
||||
|
||||
db.session.close()
|
||||
|
||||
invoke_result = model_instance.invoke_llm(
|
||||
prompt_messages=prompt_messages,
|
||||
model_parameters=application_generate_entity.model_conf.parameters,
|
||||
stop=stop,
|
||||
stream=application_generate_entity.stream,
|
||||
user=application_generate_entity.user_id,
|
||||
)
|
||||
|
||||
# handle invoke result
|
||||
self._handle_invoke_result(
|
||||
invoke_result=invoke_result, queue_manager=queue_manager, stream=application_generate_entity.stream
|
||||
)
|
||||
122
dify/api/core/app/apps/chat/generate_response_converter.py
Normal file
122
dify/api/core/app/apps/chat/generate_response_converter.py
Normal file
@@ -0,0 +1,122 @@
|
||||
from collections.abc import Generator
|
||||
from typing import cast
|
||||
|
||||
from core.app.apps.base_app_generate_response_converter import AppGenerateResponseConverter
|
||||
from core.app.entities.task_entities import (
|
||||
AppStreamResponse,
|
||||
ChatbotAppBlockingResponse,
|
||||
ChatbotAppStreamResponse,
|
||||
ErrorStreamResponse,
|
||||
MessageEndStreamResponse,
|
||||
PingStreamResponse,
|
||||
)
|
||||
|
||||
|
||||
class ChatAppGenerateResponseConverter(AppGenerateResponseConverter):
|
||||
_blocking_response_type = ChatbotAppBlockingResponse
|
||||
|
||||
@classmethod
|
||||
def convert_blocking_full_response(cls, blocking_response: ChatbotAppBlockingResponse): # type: ignore[override]
|
||||
"""
|
||||
Convert blocking full response.
|
||||
:param blocking_response: blocking response
|
||||
:return:
|
||||
"""
|
||||
response = {
|
||||
"event": "message",
|
||||
"task_id": blocking_response.task_id,
|
||||
"id": blocking_response.data.id,
|
||||
"message_id": blocking_response.data.message_id,
|
||||
"conversation_id": blocking_response.data.conversation_id,
|
||||
"mode": blocking_response.data.mode,
|
||||
"answer": blocking_response.data.answer,
|
||||
"metadata": blocking_response.data.metadata,
|
||||
"created_at": blocking_response.data.created_at,
|
||||
}
|
||||
|
||||
return response
|
||||
|
||||
@classmethod
|
||||
def convert_blocking_simple_response(cls, blocking_response: ChatbotAppBlockingResponse): # type: ignore[override]
|
||||
"""
|
||||
Convert blocking simple response.
|
||||
:param blocking_response: blocking response
|
||||
:return:
|
||||
"""
|
||||
response = cls.convert_blocking_full_response(blocking_response)
|
||||
|
||||
metadata = response.get("metadata", {})
|
||||
if isinstance(metadata, dict):
|
||||
response["metadata"] = cls._get_simple_metadata(metadata)
|
||||
else:
|
||||
response["metadata"] = {}
|
||||
|
||||
return response
|
||||
|
||||
@classmethod
|
||||
def convert_stream_full_response(
|
||||
cls, stream_response: Generator[AppStreamResponse, None, None]
|
||||
) -> Generator[dict | str, None, None]:
|
||||
"""
|
||||
Convert stream full response.
|
||||
:param stream_response: stream response
|
||||
:return:
|
||||
"""
|
||||
for chunk in stream_response:
|
||||
chunk = cast(ChatbotAppStreamResponse, chunk)
|
||||
sub_stream_response = chunk.stream_response
|
||||
|
||||
if isinstance(sub_stream_response, PingStreamResponse):
|
||||
yield "ping"
|
||||
continue
|
||||
|
||||
response_chunk = {
|
||||
"event": sub_stream_response.event.value,
|
||||
"conversation_id": chunk.conversation_id,
|
||||
"message_id": chunk.message_id,
|
||||
"created_at": chunk.created_at,
|
||||
}
|
||||
|
||||
if isinstance(sub_stream_response, ErrorStreamResponse):
|
||||
data = cls._error_to_stream_response(sub_stream_response.err)
|
||||
response_chunk.update(data)
|
||||
else:
|
||||
response_chunk.update(sub_stream_response.model_dump(mode="json"))
|
||||
yield response_chunk
|
||||
|
||||
@classmethod
|
||||
def convert_stream_simple_response(
|
||||
cls, stream_response: Generator[AppStreamResponse, None, None]
|
||||
) -> Generator[dict | str, None, None]:
|
||||
"""
|
||||
Convert stream simple response.
|
||||
:param stream_response: stream response
|
||||
:return:
|
||||
"""
|
||||
for chunk in stream_response:
|
||||
chunk = cast(ChatbotAppStreamResponse, chunk)
|
||||
sub_stream_response = chunk.stream_response
|
||||
|
||||
if isinstance(sub_stream_response, PingStreamResponse):
|
||||
yield "ping"
|
||||
continue
|
||||
|
||||
response_chunk = {
|
||||
"event": sub_stream_response.event.value,
|
||||
"conversation_id": chunk.conversation_id,
|
||||
"message_id": chunk.message_id,
|
||||
"created_at": chunk.created_at,
|
||||
}
|
||||
|
||||
if isinstance(sub_stream_response, MessageEndStreamResponse):
|
||||
sub_stream_response_dict = sub_stream_response.model_dump(mode="json")
|
||||
metadata = sub_stream_response_dict.get("metadata", {})
|
||||
sub_stream_response_dict["metadata"] = cls._get_simple_metadata(metadata)
|
||||
response_chunk.update(sub_stream_response_dict)
|
||||
if isinstance(sub_stream_response, ErrorStreamResponse):
|
||||
data = cls._error_to_stream_response(sub_stream_response.err)
|
||||
response_chunk.update(data)
|
||||
else:
|
||||
response_chunk.update(sub_stream_response.model_dump(mode="json"))
|
||||
|
||||
yield response_chunk
|
||||
0
dify/api/core/app/apps/common/__init__.py
Normal file
0
dify/api/core/app/apps/common/__init__.py
Normal file
55
dify/api/core/app/apps/common/graph_runtime_state_support.py
Normal file
55
dify/api/core/app/apps/common/graph_runtime_state_support.py
Normal file
@@ -0,0 +1,55 @@
|
||||
"""Shared helpers for managing GraphRuntimeState across task pipelines."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from core.workflow.runtime import GraphRuntimeState
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from core.app.task_pipeline.based_generate_task_pipeline import BasedGenerateTaskPipeline
|
||||
|
||||
|
||||
class GraphRuntimeStateSupport:
|
||||
"""
|
||||
Mixin that centralises common GraphRuntimeState access patterns used by task pipelines.
|
||||
|
||||
Subclasses are expected to provide:
|
||||
* `_base_task_pipeline` – exposing the queue manager with an optional cached runtime state.
|
||||
* `_graph_runtime_state` attribute used as the local cache for the runtime state.
|
||||
"""
|
||||
|
||||
_base_task_pipeline: BasedGenerateTaskPipeline
|
||||
_graph_runtime_state: GraphRuntimeState | None = None
|
||||
|
||||
def _ensure_graph_runtime_initialized(
|
||||
self,
|
||||
graph_runtime_state: GraphRuntimeState | None = None,
|
||||
) -> GraphRuntimeState:
|
||||
"""Validate and return the active graph runtime state."""
|
||||
return self._resolve_graph_runtime_state(graph_runtime_state)
|
||||
|
||||
def _extract_workflow_run_id(self, graph_runtime_state: GraphRuntimeState) -> str:
|
||||
system_variables = graph_runtime_state.variable_pool.system_variables
|
||||
if not system_variables or not system_variables.workflow_execution_id:
|
||||
raise ValueError("workflow_execution_id missing from runtime state")
|
||||
return str(system_variables.workflow_execution_id)
|
||||
|
||||
def _resolve_graph_runtime_state(
|
||||
self,
|
||||
graph_runtime_state: GraphRuntimeState | None = None,
|
||||
) -> GraphRuntimeState:
|
||||
"""Return the cached runtime state or bootstrap it from the queue manager."""
|
||||
if graph_runtime_state is not None:
|
||||
self._graph_runtime_state = graph_runtime_state
|
||||
return graph_runtime_state
|
||||
|
||||
if self._graph_runtime_state is None:
|
||||
candidate = self._base_task_pipeline.queue_manager.graph_runtime_state
|
||||
if candidate is not None:
|
||||
self._graph_runtime_state = candidate
|
||||
|
||||
if self._graph_runtime_state is None:
|
||||
raise ValueError("graph runtime state not initialized.")
|
||||
|
||||
return self._graph_runtime_state
|
||||
677
dify/api/core/app/apps/common/workflow_response_converter.py
Normal file
677
dify/api/core/app/apps/common/workflow_response_converter.py
Normal file
@@ -0,0 +1,677 @@
|
||||
import time
|
||||
from collections.abc import Mapping, Sequence
|
||||
from dataclasses import dataclass
|
||||
from datetime import datetime
|
||||
from typing import Any, NewType, Union
|
||||
|
||||
from core.app.entities.app_invoke_entities import AdvancedChatAppGenerateEntity, InvokeFrom, WorkflowAppGenerateEntity
|
||||
from core.app.entities.queue_entities import (
|
||||
QueueAgentLogEvent,
|
||||
QueueIterationCompletedEvent,
|
||||
QueueIterationNextEvent,
|
||||
QueueIterationStartEvent,
|
||||
QueueLoopCompletedEvent,
|
||||
QueueLoopNextEvent,
|
||||
QueueLoopStartEvent,
|
||||
QueueNodeExceptionEvent,
|
||||
QueueNodeFailedEvent,
|
||||
QueueNodeRetryEvent,
|
||||
QueueNodeStartedEvent,
|
||||
QueueNodeSucceededEvent,
|
||||
)
|
||||
from core.app.entities.task_entities import (
|
||||
AgentLogStreamResponse,
|
||||
IterationNodeCompletedStreamResponse,
|
||||
IterationNodeNextStreamResponse,
|
||||
IterationNodeStartStreamResponse,
|
||||
LoopNodeCompletedStreamResponse,
|
||||
LoopNodeNextStreamResponse,
|
||||
LoopNodeStartStreamResponse,
|
||||
NodeFinishStreamResponse,
|
||||
NodeRetryStreamResponse,
|
||||
NodeStartStreamResponse,
|
||||
WorkflowFinishStreamResponse,
|
||||
WorkflowStartStreamResponse,
|
||||
)
|
||||
from core.file import FILE_MODEL_IDENTITY, File
|
||||
from core.plugin.impl.datasource import PluginDatasourceManager
|
||||
from core.tools.entities.tool_entities import ToolProviderType
|
||||
from core.tools.tool_manager import ToolManager
|
||||
from core.trigger.trigger_manager import TriggerManager
|
||||
from core.variables.segments import ArrayFileSegment, FileSegment, Segment
|
||||
from core.workflow.enums import (
|
||||
NodeType,
|
||||
SystemVariableKey,
|
||||
WorkflowExecutionStatus,
|
||||
WorkflowNodeExecutionMetadataKey,
|
||||
WorkflowNodeExecutionStatus,
|
||||
)
|
||||
from core.workflow.runtime import GraphRuntimeState
|
||||
from core.workflow.system_variable import SystemVariable
|
||||
from core.workflow.workflow_entry import WorkflowEntry
|
||||
from core.workflow.workflow_type_encoder import WorkflowRuntimeTypeConverter
|
||||
from libs.datetime_utils import naive_utc_now
|
||||
from models import Account, EndUser
|
||||
from services.variable_truncator import BaseTruncator, DummyVariableTruncator, VariableTruncator
|
||||
|
||||
NodeExecutionId = NewType("NodeExecutionId", str)
|
||||
|
||||
|
||||
@dataclass(slots=True)
|
||||
class _NodeSnapshot:
|
||||
"""In-memory cache for node metadata between start and completion events."""
|
||||
|
||||
title: str
|
||||
index: int
|
||||
start_at: datetime
|
||||
iteration_id: str = ""
|
||||
"""Empty string means the node is not executing inside an iteration."""
|
||||
loop_id: str = ""
|
||||
"""Empty string means the node is not executing inside a loop."""
|
||||
|
||||
|
||||
class WorkflowResponseConverter:
|
||||
_truncator: BaseTruncator
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
application_generate_entity: Union[AdvancedChatAppGenerateEntity, WorkflowAppGenerateEntity],
|
||||
user: Union[Account, EndUser],
|
||||
system_variables: SystemVariable,
|
||||
):
|
||||
self._application_generate_entity = application_generate_entity
|
||||
self._user = user
|
||||
self._system_variables = system_variables
|
||||
self._workflow_inputs = self._prepare_workflow_inputs()
|
||||
|
||||
# Disable truncation for SERVICE_API calls to keep backward compatibility.
|
||||
if application_generate_entity.invoke_from == InvokeFrom.SERVICE_API:
|
||||
self._truncator = DummyVariableTruncator()
|
||||
else:
|
||||
self._truncator = VariableTruncator.default()
|
||||
|
||||
self._node_snapshots: dict[NodeExecutionId, _NodeSnapshot] = {}
|
||||
self._workflow_execution_id: str | None = None
|
||||
self._workflow_started_at: datetime | None = None
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
# Workflow lifecycle helpers
|
||||
# ------------------------------------------------------------------
|
||||
def _prepare_workflow_inputs(self) -> Mapping[str, Any]:
|
||||
inputs = dict(self._application_generate_entity.inputs)
|
||||
for field_name, value in self._system_variables.to_dict().items():
|
||||
# TODO(@future-refactor): store system variables separately from user inputs so we don't
|
||||
# need to flatten `sys.*` entries into the input payload just for rerun/export tooling.
|
||||
if field_name == SystemVariableKey.CONVERSATION_ID:
|
||||
# Conversation IDs are session-scoped; omitting them keeps workflow inputs
|
||||
# reusable without pinning new runs to a prior conversation.
|
||||
continue
|
||||
inputs[f"sys.{field_name}"] = value
|
||||
handled = WorkflowEntry.handle_special_values(inputs)
|
||||
return dict(handled or {})
|
||||
|
||||
def _ensure_workflow_run_id(self, workflow_run_id: str | None = None) -> str:
|
||||
"""Return the memoized workflow run id, optionally seeding it during start events."""
|
||||
if workflow_run_id is not None:
|
||||
self._workflow_execution_id = workflow_run_id
|
||||
if not self._workflow_execution_id:
|
||||
raise ValueError("workflow_run_id missing before streaming workflow events")
|
||||
return self._workflow_execution_id
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
# Node snapshot helpers
|
||||
# ------------------------------------------------------------------
|
||||
def _store_snapshot(self, event: QueueNodeStartedEvent) -> _NodeSnapshot:
|
||||
snapshot = _NodeSnapshot(
|
||||
title=event.node_title,
|
||||
index=event.node_run_index,
|
||||
start_at=event.start_at,
|
||||
iteration_id=event.in_iteration_id or "",
|
||||
loop_id=event.in_loop_id or "",
|
||||
)
|
||||
node_execution_id = NodeExecutionId(event.node_execution_id)
|
||||
self._node_snapshots[node_execution_id] = snapshot
|
||||
return snapshot
|
||||
|
||||
def _get_snapshot(self, node_execution_id: str) -> _NodeSnapshot | None:
|
||||
return self._node_snapshots.get(NodeExecutionId(node_execution_id))
|
||||
|
||||
def _pop_snapshot(self, node_execution_id: str) -> _NodeSnapshot | None:
|
||||
return self._node_snapshots.pop(NodeExecutionId(node_execution_id), None)
|
||||
|
||||
@staticmethod
|
||||
def _merge_metadata(
|
||||
base_metadata: Mapping[WorkflowNodeExecutionMetadataKey, Any] | None,
|
||||
snapshot: _NodeSnapshot | None,
|
||||
) -> Mapping[WorkflowNodeExecutionMetadataKey, Any] | None:
|
||||
if not base_metadata and not snapshot:
|
||||
return base_metadata
|
||||
|
||||
merged: dict[WorkflowNodeExecutionMetadataKey, Any] = {}
|
||||
if base_metadata:
|
||||
merged.update(base_metadata)
|
||||
|
||||
if snapshot:
|
||||
if snapshot.iteration_id:
|
||||
merged[WorkflowNodeExecutionMetadataKey.ITERATION_ID] = snapshot.iteration_id
|
||||
if snapshot.loop_id:
|
||||
merged[WorkflowNodeExecutionMetadataKey.LOOP_ID] = snapshot.loop_id
|
||||
|
||||
return merged or None
|
||||
|
||||
def _truncate_mapping(
|
||||
self,
|
||||
mapping: Mapping[str, Any] | None,
|
||||
) -> tuple[Mapping[str, Any] | None, bool]:
|
||||
if mapping is None:
|
||||
return None, False
|
||||
if not mapping:
|
||||
return {}, False
|
||||
|
||||
normalized = WorkflowEntry.handle_special_values(dict(mapping))
|
||||
if normalized is None:
|
||||
return None, False
|
||||
|
||||
truncated, is_truncated = self._truncator.truncate_variable_mapping(dict(normalized))
|
||||
return truncated, is_truncated
|
||||
|
||||
@staticmethod
|
||||
def _encode_outputs(outputs: Mapping[str, Any] | None) -> Mapping[str, Any] | None:
|
||||
if outputs is None:
|
||||
return None
|
||||
converter = WorkflowRuntimeTypeConverter()
|
||||
return converter.to_json_encodable(outputs)
|
||||
|
||||
def workflow_start_to_stream_response(
|
||||
self,
|
||||
*,
|
||||
task_id: str,
|
||||
workflow_run_id: str,
|
||||
workflow_id: str,
|
||||
) -> WorkflowStartStreamResponse:
|
||||
run_id = self._ensure_workflow_run_id(workflow_run_id)
|
||||
started_at = naive_utc_now()
|
||||
self._workflow_started_at = started_at
|
||||
|
||||
return WorkflowStartStreamResponse(
|
||||
task_id=task_id,
|
||||
workflow_run_id=run_id,
|
||||
data=WorkflowStartStreamResponse.Data(
|
||||
id=run_id,
|
||||
workflow_id=workflow_id,
|
||||
inputs=self._workflow_inputs,
|
||||
created_at=int(started_at.timestamp()),
|
||||
),
|
||||
)
|
||||
|
||||
def workflow_finish_to_stream_response(
|
||||
self,
|
||||
*,
|
||||
task_id: str,
|
||||
workflow_id: str,
|
||||
status: WorkflowExecutionStatus,
|
||||
graph_runtime_state: GraphRuntimeState,
|
||||
error: str | None = None,
|
||||
exceptions_count: int = 0,
|
||||
) -> WorkflowFinishStreamResponse:
|
||||
run_id = self._ensure_workflow_run_id()
|
||||
started_at = self._workflow_started_at
|
||||
if started_at is None:
|
||||
raise ValueError(
|
||||
"workflow_finish_to_stream_response called before workflow_start_to_stream_response",
|
||||
)
|
||||
|
||||
finished_at = naive_utc_now()
|
||||
elapsed_time = (finished_at - started_at).total_seconds()
|
||||
|
||||
outputs_mapping = graph_runtime_state.outputs or {}
|
||||
encoded_outputs = WorkflowRuntimeTypeConverter().to_json_encodable(outputs_mapping)
|
||||
|
||||
created_by: Mapping[str, object] | None
|
||||
user = self._user
|
||||
if isinstance(user, Account):
|
||||
created_by = {
|
||||
"id": user.id,
|
||||
"name": user.name,
|
||||
"email": user.email,
|
||||
}
|
||||
else:
|
||||
created_by = {
|
||||
"id": user.id,
|
||||
"user": user.session_id,
|
||||
}
|
||||
|
||||
return WorkflowFinishStreamResponse(
|
||||
task_id=task_id,
|
||||
workflow_run_id=run_id,
|
||||
data=WorkflowFinishStreamResponse.Data(
|
||||
id=run_id,
|
||||
workflow_id=workflow_id,
|
||||
status=status.value,
|
||||
outputs=encoded_outputs,
|
||||
error=error,
|
||||
elapsed_time=elapsed_time,
|
||||
total_tokens=graph_runtime_state.total_tokens,
|
||||
total_steps=graph_runtime_state.node_run_steps,
|
||||
created_by=created_by,
|
||||
created_at=int(started_at.timestamp()),
|
||||
finished_at=int(finished_at.timestamp()),
|
||||
files=self.fetch_files_from_node_outputs(outputs_mapping),
|
||||
exceptions_count=exceptions_count,
|
||||
),
|
||||
)
|
||||
|
||||
def workflow_node_start_to_stream_response(
|
||||
self,
|
||||
*,
|
||||
event: QueueNodeStartedEvent,
|
||||
task_id: str,
|
||||
) -> NodeStartStreamResponse | None:
|
||||
if event.node_type in {NodeType.ITERATION, NodeType.LOOP}:
|
||||
return None
|
||||
run_id = self._ensure_workflow_run_id()
|
||||
snapshot = self._store_snapshot(event)
|
||||
|
||||
response = NodeStartStreamResponse(
|
||||
task_id=task_id,
|
||||
workflow_run_id=run_id,
|
||||
data=NodeStartStreamResponse.Data(
|
||||
id=event.node_execution_id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type,
|
||||
title=snapshot.title,
|
||||
index=snapshot.index,
|
||||
created_at=int(snapshot.start_at.timestamp()),
|
||||
iteration_id=event.in_iteration_id,
|
||||
loop_id=event.in_loop_id,
|
||||
agent_strategy=event.agent_strategy,
|
||||
),
|
||||
)
|
||||
|
||||
if event.node_type == NodeType.TOOL:
|
||||
response.data.extras["icon"] = ToolManager.get_tool_icon(
|
||||
tenant_id=self._application_generate_entity.app_config.tenant_id,
|
||||
provider_type=ToolProviderType(event.provider_type),
|
||||
provider_id=event.provider_id,
|
||||
)
|
||||
elif event.node_type == NodeType.DATASOURCE:
|
||||
manager = PluginDatasourceManager()
|
||||
provider_entity = manager.fetch_datasource_provider(
|
||||
self._application_generate_entity.app_config.tenant_id,
|
||||
event.provider_id,
|
||||
)
|
||||
response.data.extras["icon"] = provider_entity.declaration.identity.generate_datasource_icon_url(
|
||||
self._application_generate_entity.app_config.tenant_id
|
||||
)
|
||||
elif event.node_type == NodeType.TRIGGER_PLUGIN:
|
||||
response.data.extras["icon"] = TriggerManager.get_trigger_plugin_icon(
|
||||
self._application_generate_entity.app_config.tenant_id,
|
||||
event.provider_id,
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
def workflow_node_finish_to_stream_response(
|
||||
self,
|
||||
*,
|
||||
event: QueueNodeSucceededEvent | QueueNodeFailedEvent | QueueNodeExceptionEvent,
|
||||
task_id: str,
|
||||
) -> NodeFinishStreamResponse | None:
|
||||
if event.node_type in {NodeType.ITERATION, NodeType.LOOP}:
|
||||
return None
|
||||
run_id = self._ensure_workflow_run_id()
|
||||
snapshot = self._pop_snapshot(event.node_execution_id)
|
||||
|
||||
start_at = snapshot.start_at if snapshot else event.start_at
|
||||
finished_at = naive_utc_now()
|
||||
elapsed_time = (finished_at - start_at).total_seconds()
|
||||
|
||||
inputs, inputs_truncated = self._truncate_mapping(event.inputs)
|
||||
process_data, process_data_truncated = self._truncate_mapping(event.process_data)
|
||||
encoded_outputs = self._encode_outputs(event.outputs)
|
||||
outputs, outputs_truncated = self._truncate_mapping(encoded_outputs)
|
||||
metadata = self._merge_metadata(event.execution_metadata, snapshot)
|
||||
|
||||
if isinstance(event, QueueNodeSucceededEvent):
|
||||
status = WorkflowNodeExecutionStatus.SUCCEEDED.value
|
||||
error_message = event.error
|
||||
elif isinstance(event, QueueNodeFailedEvent):
|
||||
status = WorkflowNodeExecutionStatus.FAILED.value
|
||||
error_message = event.error
|
||||
else:
|
||||
status = WorkflowNodeExecutionStatus.EXCEPTION.value
|
||||
error_message = event.error
|
||||
|
||||
return NodeFinishStreamResponse(
|
||||
task_id=task_id,
|
||||
workflow_run_id=run_id,
|
||||
data=NodeFinishStreamResponse.Data(
|
||||
id=event.node_execution_id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type,
|
||||
index=snapshot.index if snapshot else 0,
|
||||
title=snapshot.title if snapshot else "",
|
||||
inputs=inputs,
|
||||
inputs_truncated=inputs_truncated,
|
||||
process_data=process_data,
|
||||
process_data_truncated=process_data_truncated,
|
||||
outputs=outputs,
|
||||
outputs_truncated=outputs_truncated,
|
||||
status=status,
|
||||
error=error_message,
|
||||
elapsed_time=elapsed_time,
|
||||
execution_metadata=metadata,
|
||||
created_at=int(start_at.timestamp()),
|
||||
finished_at=int(finished_at.timestamp()),
|
||||
files=self.fetch_files_from_node_outputs(event.outputs or {}),
|
||||
iteration_id=event.in_iteration_id,
|
||||
loop_id=event.in_loop_id,
|
||||
),
|
||||
)
|
||||
|
||||
def workflow_node_retry_to_stream_response(
|
||||
self,
|
||||
*,
|
||||
event: QueueNodeRetryEvent,
|
||||
task_id: str,
|
||||
) -> NodeRetryStreamResponse | None:
|
||||
if event.node_type in {NodeType.ITERATION, NodeType.LOOP}:
|
||||
return None
|
||||
run_id = self._ensure_workflow_run_id()
|
||||
|
||||
snapshot = self._get_snapshot(event.node_execution_id)
|
||||
if snapshot is None:
|
||||
raise AssertionError("node retry event arrived without a stored snapshot")
|
||||
finished_at = naive_utc_now()
|
||||
elapsed_time = (finished_at - event.start_at).total_seconds()
|
||||
|
||||
inputs, inputs_truncated = self._truncate_mapping(event.inputs)
|
||||
process_data, process_data_truncated = self._truncate_mapping(event.process_data)
|
||||
encoded_outputs = self._encode_outputs(event.outputs)
|
||||
outputs, outputs_truncated = self._truncate_mapping(encoded_outputs)
|
||||
metadata = self._merge_metadata(event.execution_metadata, snapshot)
|
||||
|
||||
return NodeRetryStreamResponse(
|
||||
task_id=task_id,
|
||||
workflow_run_id=run_id,
|
||||
data=NodeRetryStreamResponse.Data(
|
||||
id=event.node_execution_id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type,
|
||||
index=snapshot.index,
|
||||
title=snapshot.title,
|
||||
inputs=inputs,
|
||||
inputs_truncated=inputs_truncated,
|
||||
process_data=process_data,
|
||||
process_data_truncated=process_data_truncated,
|
||||
outputs=outputs,
|
||||
outputs_truncated=outputs_truncated,
|
||||
status=WorkflowNodeExecutionStatus.RETRY.value,
|
||||
error=event.error,
|
||||
elapsed_time=elapsed_time,
|
||||
execution_metadata=metadata,
|
||||
created_at=int(snapshot.start_at.timestamp()),
|
||||
finished_at=int(finished_at.timestamp()),
|
||||
files=self.fetch_files_from_node_outputs(event.outputs or {}),
|
||||
iteration_id=event.in_iteration_id,
|
||||
loop_id=event.in_loop_id,
|
||||
retry_index=event.retry_index,
|
||||
),
|
||||
)
|
||||
|
||||
def workflow_iteration_start_to_stream_response(
|
||||
self,
|
||||
*,
|
||||
task_id: str,
|
||||
workflow_execution_id: str,
|
||||
event: QueueIterationStartEvent,
|
||||
) -> IterationNodeStartStreamResponse:
|
||||
new_inputs, truncated = self._truncator.truncate_variable_mapping(event.inputs or {})
|
||||
return IterationNodeStartStreamResponse(
|
||||
task_id=task_id,
|
||||
workflow_run_id=workflow_execution_id,
|
||||
data=IterationNodeStartStreamResponse.Data(
|
||||
id=event.node_id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type.value,
|
||||
title=event.node_title,
|
||||
created_at=int(time.time()),
|
||||
extras={},
|
||||
inputs=new_inputs,
|
||||
inputs_truncated=truncated,
|
||||
metadata=event.metadata or {},
|
||||
),
|
||||
)
|
||||
|
||||
def workflow_iteration_next_to_stream_response(
|
||||
self,
|
||||
*,
|
||||
task_id: str,
|
||||
workflow_execution_id: str,
|
||||
event: QueueIterationNextEvent,
|
||||
) -> IterationNodeNextStreamResponse:
|
||||
return IterationNodeNextStreamResponse(
|
||||
task_id=task_id,
|
||||
workflow_run_id=workflow_execution_id,
|
||||
data=IterationNodeNextStreamResponse.Data(
|
||||
id=event.node_id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type.value,
|
||||
title=event.node_title,
|
||||
index=event.index,
|
||||
created_at=int(time.time()),
|
||||
extras={},
|
||||
),
|
||||
)
|
||||
|
||||
def workflow_iteration_completed_to_stream_response(
|
||||
self,
|
||||
*,
|
||||
task_id: str,
|
||||
workflow_execution_id: str,
|
||||
event: QueueIterationCompletedEvent,
|
||||
) -> IterationNodeCompletedStreamResponse:
|
||||
json_converter = WorkflowRuntimeTypeConverter()
|
||||
|
||||
new_inputs, inputs_truncated = self._truncator.truncate_variable_mapping(event.inputs or {})
|
||||
new_outputs, outputs_truncated = self._truncator.truncate_variable_mapping(
|
||||
json_converter.to_json_encodable(event.outputs) or {}
|
||||
)
|
||||
return IterationNodeCompletedStreamResponse(
|
||||
task_id=task_id,
|
||||
workflow_run_id=workflow_execution_id,
|
||||
data=IterationNodeCompletedStreamResponse.Data(
|
||||
id=event.node_id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type.value,
|
||||
title=event.node_title,
|
||||
outputs=new_outputs,
|
||||
outputs_truncated=outputs_truncated,
|
||||
created_at=int(time.time()),
|
||||
extras={},
|
||||
inputs=new_inputs,
|
||||
inputs_truncated=inputs_truncated,
|
||||
status=WorkflowNodeExecutionStatus.SUCCEEDED
|
||||
if event.error is None
|
||||
else WorkflowNodeExecutionStatus.FAILED,
|
||||
error=None,
|
||||
elapsed_time=(naive_utc_now() - event.start_at).total_seconds(),
|
||||
total_tokens=(lambda x: x if isinstance(x, int) else 0)(event.metadata.get("total_tokens", 0)),
|
||||
execution_metadata=event.metadata,
|
||||
finished_at=int(time.time()),
|
||||
steps=event.steps,
|
||||
),
|
||||
)
|
||||
|
||||
def workflow_loop_start_to_stream_response(
|
||||
self, *, task_id: str, workflow_execution_id: str, event: QueueLoopStartEvent
|
||||
) -> LoopNodeStartStreamResponse:
|
||||
new_inputs, truncated = self._truncator.truncate_variable_mapping(event.inputs or {})
|
||||
return LoopNodeStartStreamResponse(
|
||||
task_id=task_id,
|
||||
workflow_run_id=workflow_execution_id,
|
||||
data=LoopNodeStartStreamResponse.Data(
|
||||
id=event.node_id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type.value,
|
||||
title=event.node_title,
|
||||
created_at=int(time.time()),
|
||||
extras={},
|
||||
inputs=new_inputs,
|
||||
inputs_truncated=truncated,
|
||||
metadata=event.metadata or {},
|
||||
),
|
||||
)
|
||||
|
||||
def workflow_loop_next_to_stream_response(
|
||||
self,
|
||||
*,
|
||||
task_id: str,
|
||||
workflow_execution_id: str,
|
||||
event: QueueLoopNextEvent,
|
||||
) -> LoopNodeNextStreamResponse:
|
||||
return LoopNodeNextStreamResponse(
|
||||
task_id=task_id,
|
||||
workflow_run_id=workflow_execution_id,
|
||||
data=LoopNodeNextStreamResponse.Data(
|
||||
id=event.node_id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type.value,
|
||||
title=event.node_title,
|
||||
index=event.index,
|
||||
# The `pre_loop_output` field is not utilized by the frontend.
|
||||
# Previously, it was assigned the value of `event.output`.
|
||||
pre_loop_output={},
|
||||
created_at=int(time.time()),
|
||||
extras={},
|
||||
),
|
||||
)
|
||||
|
||||
def workflow_loop_completed_to_stream_response(
|
||||
self,
|
||||
*,
|
||||
task_id: str,
|
||||
workflow_execution_id: str,
|
||||
event: QueueLoopCompletedEvent,
|
||||
) -> LoopNodeCompletedStreamResponse:
|
||||
json_converter = WorkflowRuntimeTypeConverter()
|
||||
new_inputs, inputs_truncated = self._truncator.truncate_variable_mapping(event.inputs or {})
|
||||
new_outputs, outputs_truncated = self._truncator.truncate_variable_mapping(
|
||||
json_converter.to_json_encodable(event.outputs) or {}
|
||||
)
|
||||
return LoopNodeCompletedStreamResponse(
|
||||
task_id=task_id,
|
||||
workflow_run_id=workflow_execution_id,
|
||||
data=LoopNodeCompletedStreamResponse.Data(
|
||||
id=event.node_id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type.value,
|
||||
title=event.node_title,
|
||||
outputs=new_outputs,
|
||||
outputs_truncated=outputs_truncated,
|
||||
created_at=int(time.time()),
|
||||
extras={},
|
||||
inputs=new_inputs,
|
||||
inputs_truncated=inputs_truncated,
|
||||
status=WorkflowNodeExecutionStatus.SUCCEEDED
|
||||
if event.error is None
|
||||
else WorkflowNodeExecutionStatus.FAILED,
|
||||
error=None,
|
||||
elapsed_time=(naive_utc_now() - event.start_at).total_seconds(),
|
||||
total_tokens=(lambda x: x if isinstance(x, int) else 0)(event.metadata.get("total_tokens", 0)),
|
||||
execution_metadata=event.metadata,
|
||||
finished_at=int(time.time()),
|
||||
steps=event.steps,
|
||||
),
|
||||
)
|
||||
|
||||
def fetch_files_from_node_outputs(self, outputs_dict: Mapping[str, Any] | None) -> Sequence[Mapping[str, Any]]:
|
||||
"""
|
||||
Fetch files from node outputs
|
||||
:param outputs_dict: node outputs dict
|
||||
:return:
|
||||
"""
|
||||
if not outputs_dict:
|
||||
return []
|
||||
|
||||
files = [self._fetch_files_from_variable_value(output_value) for output_value in outputs_dict.values()]
|
||||
# Remove None
|
||||
files = [file for file in files if file]
|
||||
# Flatten list
|
||||
# Flatten the list of sequences into a single list of mappings
|
||||
flattened_files = [file for sublist in files if sublist for file in sublist]
|
||||
|
||||
# Convert to tuple to match Sequence type
|
||||
return tuple(flattened_files)
|
||||
|
||||
@classmethod
|
||||
def _fetch_files_from_variable_value(cls, value: Union[dict, list, Segment]) -> Sequence[Mapping[str, Any]]:
|
||||
"""
|
||||
Fetch files from variable value
|
||||
:param value: variable value
|
||||
:return:
|
||||
"""
|
||||
if not value:
|
||||
return []
|
||||
|
||||
files: list[Mapping[str, Any]] = []
|
||||
if isinstance(value, FileSegment):
|
||||
files.append(value.value.to_dict())
|
||||
elif isinstance(value, ArrayFileSegment):
|
||||
files.extend([i.to_dict() for i in value.value])
|
||||
elif isinstance(value, File):
|
||||
files.append(value.to_dict())
|
||||
elif isinstance(value, list):
|
||||
for item in value:
|
||||
file = cls._get_file_var_from_value(item)
|
||||
if file:
|
||||
files.append(file)
|
||||
elif isinstance(
|
||||
value,
|
||||
dict,
|
||||
):
|
||||
file = cls._get_file_var_from_value(value)
|
||||
if file:
|
||||
files.append(file)
|
||||
|
||||
return files
|
||||
|
||||
@classmethod
|
||||
def _get_file_var_from_value(cls, value: Union[dict, list]) -> Mapping[str, Any] | None:
|
||||
"""
|
||||
Get file var from value
|
||||
:param value: variable value
|
||||
:return:
|
||||
"""
|
||||
if not value:
|
||||
return None
|
||||
|
||||
if isinstance(value, dict) and value.get("dify_model_identity") == FILE_MODEL_IDENTITY:
|
||||
return value
|
||||
elif isinstance(value, File):
|
||||
return value.to_dict()
|
||||
|
||||
return None
|
||||
|
||||
def handle_agent_log(self, task_id: str, event: QueueAgentLogEvent) -> AgentLogStreamResponse:
|
||||
"""
|
||||
Handle agent log
|
||||
:param task_id: task id
|
||||
:param event: agent log event
|
||||
:return:
|
||||
"""
|
||||
return AgentLogStreamResponse(
|
||||
task_id=task_id,
|
||||
data=AgentLogStreamResponse.Data(
|
||||
node_execution_id=event.node_execution_id,
|
||||
id=event.id,
|
||||
parent_id=event.parent_id,
|
||||
label=event.label,
|
||||
error=event.error,
|
||||
status=event.status,
|
||||
data=event.data,
|
||||
metadata=event.metadata,
|
||||
node_id=event.node_id,
|
||||
),
|
||||
)
|
||||
0
dify/api/core/app/apps/completion/__init__.py
Normal file
0
dify/api/core/app/apps/completion/__init__.py
Normal file
119
dify/api/core/app/apps/completion/app_config_manager.py
Normal file
119
dify/api/core/app/apps/completion/app_config_manager.py
Normal file
@@ -0,0 +1,119 @@
|
||||
from core.app.app_config.base_app_config_manager import BaseAppConfigManager
|
||||
from core.app.app_config.common.sensitive_word_avoidance.manager import SensitiveWordAvoidanceConfigManager
|
||||
from core.app.app_config.easy_ui_based_app.dataset.manager import DatasetConfigManager
|
||||
from core.app.app_config.easy_ui_based_app.model_config.manager import ModelConfigManager
|
||||
from core.app.app_config.easy_ui_based_app.prompt_template.manager import PromptTemplateConfigManager
|
||||
from core.app.app_config.easy_ui_based_app.variables.manager import BasicVariablesConfigManager
|
||||
from core.app.app_config.entities import EasyUIBasedAppConfig, EasyUIBasedAppModelConfigFrom
|
||||
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
|
||||
from core.app.app_config.features.more_like_this.manager import MoreLikeThisConfigManager
|
||||
from core.app.app_config.features.text_to_speech.manager import TextToSpeechConfigManager
|
||||
from models.model import App, AppMode, AppModelConfig
|
||||
|
||||
|
||||
class CompletionAppConfig(EasyUIBasedAppConfig):
|
||||
"""
|
||||
Completion App Config Entity.
|
||||
"""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class CompletionAppConfigManager(BaseAppConfigManager):
|
||||
@classmethod
|
||||
def get_app_config(
|
||||
cls, app_model: App, app_model_config: AppModelConfig, override_config_dict: dict | None = None
|
||||
) -> CompletionAppConfig:
|
||||
"""
|
||||
Convert app model config to completion app config
|
||||
:param app_model: app model
|
||||
:param app_model_config: app model config
|
||||
:param override_config_dict: app model config dict
|
||||
:return:
|
||||
"""
|
||||
if override_config_dict:
|
||||
config_from = EasyUIBasedAppModelConfigFrom.ARGS
|
||||
else:
|
||||
config_from = EasyUIBasedAppModelConfigFrom.APP_LATEST_CONFIG
|
||||
|
||||
if config_from != EasyUIBasedAppModelConfigFrom.ARGS:
|
||||
app_model_config_dict = app_model_config.to_dict()
|
||||
config_dict = app_model_config_dict.copy()
|
||||
else:
|
||||
config_dict = override_config_dict or {}
|
||||
|
||||
app_mode = AppMode.value_of(app_model.mode)
|
||||
app_config = CompletionAppConfig(
|
||||
tenant_id=app_model.tenant_id,
|
||||
app_id=app_model.id,
|
||||
app_mode=app_mode,
|
||||
app_model_config_from=config_from,
|
||||
app_model_config_id=app_model_config.id,
|
||||
app_model_config_dict=config_dict,
|
||||
model=ModelConfigManager.convert(config=config_dict),
|
||||
prompt_template=PromptTemplateConfigManager.convert(config=config_dict),
|
||||
sensitive_word_avoidance=SensitiveWordAvoidanceConfigManager.convert(config=config_dict),
|
||||
dataset=DatasetConfigManager.convert(config=config_dict),
|
||||
additional_features=cls.convert_features(config_dict, app_mode),
|
||||
)
|
||||
|
||||
app_config.variables, app_config.external_data_variables = BasicVariablesConfigManager.convert(
|
||||
config=config_dict
|
||||
)
|
||||
|
||||
return app_config
|
||||
|
||||
@classmethod
|
||||
def config_validate(cls, tenant_id: str, config: dict):
|
||||
"""
|
||||
Validate for completion app model config
|
||||
|
||||
:param tenant_id: tenant id
|
||||
:param config: app model config args
|
||||
"""
|
||||
app_mode = AppMode.COMPLETION
|
||||
|
||||
related_config_keys = []
|
||||
|
||||
# model
|
||||
config, current_related_config_keys = ModelConfigManager.validate_and_set_defaults(tenant_id, config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# user_input_form
|
||||
config, current_related_config_keys = BasicVariablesConfigManager.validate_and_set_defaults(tenant_id, config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# file upload validation
|
||||
config, current_related_config_keys = FileUploadConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# prompt
|
||||
config, current_related_config_keys = PromptTemplateConfigManager.validate_and_set_defaults(app_mode, config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# dataset_query_variable
|
||||
config, current_related_config_keys = DatasetConfigManager.validate_and_set_defaults(
|
||||
tenant_id, app_mode, config
|
||||
)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# text_to_speech
|
||||
config, current_related_config_keys = TextToSpeechConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# more_like_this
|
||||
config, current_related_config_keys = MoreLikeThisConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# moderation validation
|
||||
config, current_related_config_keys = SensitiveWordAvoidanceConfigManager.validate_and_set_defaults(
|
||||
tenant_id, config
|
||||
)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
related_config_keys = list(set(related_config_keys))
|
||||
|
||||
# Filter out extra parameters
|
||||
filtered_config = {key: config.get(key) for key in related_config_keys}
|
||||
|
||||
return filtered_config
|
||||
350
dify/api/core/app/apps/completion/app_generator.py
Normal file
350
dify/api/core/app/apps/completion/app_generator.py
Normal file
@@ -0,0 +1,350 @@
|
||||
import logging
|
||||
import threading
|
||||
import uuid
|
||||
from collections.abc import Generator, Mapping
|
||||
from typing import Any, Literal, Union, overload
|
||||
|
||||
from flask import Flask, copy_current_request_context, current_app
|
||||
from pydantic import ValidationError
|
||||
from sqlalchemy import select
|
||||
|
||||
from configs import dify_config
|
||||
from core.app.app_config.easy_ui_based_app.model_config.converter import ModelConfigConverter
|
||||
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
from core.app.apps.completion.app_config_manager import CompletionAppConfigManager
|
||||
from core.app.apps.completion.app_runner import CompletionAppRunner
|
||||
from core.app.apps.completion.generate_response_converter import CompletionAppGenerateResponseConverter
|
||||
from core.app.apps.exc import GenerateTaskStoppedError
|
||||
from core.app.apps.message_based_app_generator import MessageBasedAppGenerator
|
||||
from core.app.apps.message_based_app_queue_manager import MessageBasedAppQueueManager
|
||||
from core.app.entities.app_invoke_entities import CompletionAppGenerateEntity, InvokeFrom
|
||||
from core.model_runtime.errors.invoke import InvokeAuthorizationError
|
||||
from core.ops.ops_trace_manager import TraceQueueManager
|
||||
from extensions.ext_database import db
|
||||
from factories import file_factory
|
||||
from models import Account, App, EndUser, Message
|
||||
from services.errors.app import MoreLikeThisDisabledError
|
||||
from services.errors.message import MessageNotExistsError
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class CompletionAppGenerator(MessageBasedAppGenerator):
|
||||
@overload
|
||||
def generate(
|
||||
self,
|
||||
app_model: App,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: Literal[True],
|
||||
) -> Generator[str | Mapping[str, Any], None, None]: ...
|
||||
|
||||
@overload
|
||||
def generate(
|
||||
self,
|
||||
app_model: App,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: Literal[False],
|
||||
) -> Mapping[str, Any]: ...
|
||||
|
||||
@overload
|
||||
def generate(
|
||||
self,
|
||||
app_model: App,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: bool = False,
|
||||
) -> Union[Mapping[str, Any], Generator[str | Mapping[str, Any], None, None]]: ...
|
||||
|
||||
def generate(
|
||||
self,
|
||||
app_model: App,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: bool = True,
|
||||
) -> Union[Mapping[str, Any], Generator[str | Mapping[str, Any], None, None]]:
|
||||
"""
|
||||
Generate App response.
|
||||
|
||||
:param app_model: App
|
||||
:param user: account or end user
|
||||
:param args: request args
|
||||
:param invoke_from: invoke from source
|
||||
:param streaming: is stream
|
||||
"""
|
||||
query = args["query"]
|
||||
if not isinstance(query, str):
|
||||
raise ValueError("query must be a string")
|
||||
|
||||
query = query.replace("\x00", "")
|
||||
inputs = args["inputs"]
|
||||
|
||||
# get conversation
|
||||
conversation = None
|
||||
|
||||
# get app model config
|
||||
app_model_config = self._get_app_model_config(app_model=app_model, conversation=conversation)
|
||||
|
||||
# validate override model config
|
||||
override_model_config_dict = None
|
||||
if args.get("model_config"):
|
||||
if invoke_from != InvokeFrom.DEBUGGER:
|
||||
raise ValueError("Only in App debug mode can override model config")
|
||||
|
||||
# validate config
|
||||
override_model_config_dict = CompletionAppConfigManager.config_validate(
|
||||
tenant_id=app_model.tenant_id, config=args.get("model_config", {})
|
||||
)
|
||||
|
||||
# parse files
|
||||
# TODO(QuantumGhost): Move file parsing logic to the API controller layer
|
||||
# for better separation of concerns.
|
||||
#
|
||||
# For implementation reference, see the `_parse_file` function and
|
||||
# `DraftWorkflowNodeRunApi` class which handle this properly.
|
||||
files = args["files"] if args.get("files") else []
|
||||
file_extra_config = FileUploadConfigManager.convert(override_model_config_dict or app_model_config.to_dict())
|
||||
if file_extra_config:
|
||||
file_objs = file_factory.build_from_mappings(
|
||||
mappings=files,
|
||||
tenant_id=app_model.tenant_id,
|
||||
config=file_extra_config,
|
||||
)
|
||||
else:
|
||||
file_objs = []
|
||||
|
||||
# convert to app config
|
||||
app_config = CompletionAppConfigManager.get_app_config(
|
||||
app_model=app_model, app_model_config=app_model_config, override_config_dict=override_model_config_dict
|
||||
)
|
||||
|
||||
# get tracing instance
|
||||
trace_manager = TraceQueueManager(
|
||||
app_id=app_model.id, user_id=user.id if isinstance(user, Account) else user.session_id
|
||||
)
|
||||
|
||||
# init application generate entity
|
||||
application_generate_entity = CompletionAppGenerateEntity(
|
||||
task_id=str(uuid.uuid4()),
|
||||
app_config=app_config,
|
||||
model_conf=ModelConfigConverter.convert(app_config),
|
||||
file_upload_config=file_extra_config,
|
||||
inputs=self._prepare_user_inputs(
|
||||
user_inputs=inputs, variables=app_config.variables, tenant_id=app_model.tenant_id
|
||||
),
|
||||
query=query,
|
||||
files=list(file_objs),
|
||||
user_id=user.id,
|
||||
stream=streaming,
|
||||
invoke_from=invoke_from,
|
||||
extras={},
|
||||
trace_manager=trace_manager,
|
||||
)
|
||||
|
||||
# init generate records
|
||||
(conversation, message) = self._init_generate_records(application_generate_entity)
|
||||
|
||||
# init queue manager
|
||||
queue_manager = MessageBasedAppQueueManager(
|
||||
task_id=application_generate_entity.task_id,
|
||||
user_id=application_generate_entity.user_id,
|
||||
invoke_from=application_generate_entity.invoke_from,
|
||||
conversation_id=conversation.id,
|
||||
app_mode=conversation.mode,
|
||||
message_id=message.id,
|
||||
)
|
||||
|
||||
# new thread with request context
|
||||
@copy_current_request_context
|
||||
def worker_with_context():
|
||||
return self._generate_worker(
|
||||
flask_app=current_app._get_current_object(), # type: ignore
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
message_id=message.id,
|
||||
)
|
||||
|
||||
worker_thread = threading.Thread(target=worker_with_context)
|
||||
|
||||
worker_thread.start()
|
||||
|
||||
# return response or stream generator
|
||||
response = self._handle_response(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
conversation=conversation,
|
||||
message=message,
|
||||
user=user,
|
||||
stream=streaming,
|
||||
)
|
||||
|
||||
return CompletionAppGenerateResponseConverter.convert(response=response, invoke_from=invoke_from)
|
||||
|
||||
def _generate_worker(
|
||||
self,
|
||||
flask_app: Flask,
|
||||
application_generate_entity: CompletionAppGenerateEntity,
|
||||
queue_manager: AppQueueManager,
|
||||
message_id: str,
|
||||
):
|
||||
"""
|
||||
Generate worker in a new thread.
|
||||
:param flask_app: Flask app
|
||||
:param application_generate_entity: application generate entity
|
||||
:param queue_manager: queue manager
|
||||
:param message_id: message ID
|
||||
:return:
|
||||
"""
|
||||
with flask_app.app_context():
|
||||
try:
|
||||
# get message
|
||||
message = self._get_message(message_id)
|
||||
|
||||
# chatbot app
|
||||
runner = CompletionAppRunner()
|
||||
runner.run(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
message=message,
|
||||
)
|
||||
except GenerateTaskStoppedError:
|
||||
pass
|
||||
except InvokeAuthorizationError:
|
||||
queue_manager.publish_error(
|
||||
InvokeAuthorizationError("Incorrect API key provided"), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
except ValidationError as e:
|
||||
logger.exception("Validation Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
except ValueError as e:
|
||||
if dify_config.DEBUG:
|
||||
logger.exception("Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
except Exception as e:
|
||||
logger.exception("Unknown Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
finally:
|
||||
db.session.close()
|
||||
|
||||
def generate_more_like_this(
|
||||
self,
|
||||
app_model: App,
|
||||
message_id: str,
|
||||
user: Union[Account, EndUser],
|
||||
invoke_from: InvokeFrom,
|
||||
stream: bool = True,
|
||||
) -> Union[Mapping, Generator[Mapping | str, None, None]]:
|
||||
"""
|
||||
Generate App response.
|
||||
|
||||
:param app_model: App
|
||||
:param message_id: message ID
|
||||
:param user: account or end user
|
||||
:param invoke_from: invoke from source
|
||||
:param stream: is stream
|
||||
"""
|
||||
stmt = select(Message).where(
|
||||
Message.id == message_id,
|
||||
Message.app_id == app_model.id,
|
||||
Message.from_source == ("api" if isinstance(user, EndUser) else "console"),
|
||||
Message.from_end_user_id == (user.id if isinstance(user, EndUser) else None),
|
||||
Message.from_account_id == (user.id if isinstance(user, Account) else None),
|
||||
)
|
||||
message = db.session.scalar(stmt)
|
||||
|
||||
if not message:
|
||||
raise MessageNotExistsError()
|
||||
|
||||
current_app_model_config = app_model.app_model_config
|
||||
if not current_app_model_config:
|
||||
raise MoreLikeThisDisabledError()
|
||||
|
||||
more_like_this = current_app_model_config.more_like_this_dict
|
||||
|
||||
if not current_app_model_config.more_like_this or more_like_this.get("enabled", False) is False:
|
||||
raise MoreLikeThisDisabledError()
|
||||
|
||||
app_model_config = message.app_model_config
|
||||
if not app_model_config:
|
||||
raise ValueError("Message app_model_config is None")
|
||||
override_model_config_dict = app_model_config.to_dict()
|
||||
model_dict = override_model_config_dict["model"]
|
||||
completion_params = model_dict.get("completion_params")
|
||||
completion_params["temperature"] = 0.9
|
||||
model_dict["completion_params"] = completion_params
|
||||
override_model_config_dict["model"] = model_dict
|
||||
|
||||
# parse files
|
||||
file_extra_config = FileUploadConfigManager.convert(override_model_config_dict)
|
||||
if file_extra_config:
|
||||
file_objs = file_factory.build_from_mappings(
|
||||
mappings=message.message_files,
|
||||
tenant_id=app_model.tenant_id,
|
||||
config=file_extra_config,
|
||||
)
|
||||
else:
|
||||
file_objs = []
|
||||
|
||||
# convert to app config
|
||||
app_config = CompletionAppConfigManager.get_app_config(
|
||||
app_model=app_model, app_model_config=app_model_config, override_config_dict=override_model_config_dict
|
||||
)
|
||||
|
||||
# init application generate entity
|
||||
application_generate_entity = CompletionAppGenerateEntity(
|
||||
task_id=str(uuid.uuid4()),
|
||||
app_config=app_config,
|
||||
model_conf=ModelConfigConverter.convert(app_config),
|
||||
inputs=message.inputs,
|
||||
query=message.query,
|
||||
files=list(file_objs),
|
||||
user_id=user.id,
|
||||
stream=stream,
|
||||
invoke_from=invoke_from,
|
||||
extras={},
|
||||
)
|
||||
|
||||
# init generate records
|
||||
(conversation, message) = self._init_generate_records(application_generate_entity)
|
||||
|
||||
# init queue manager
|
||||
queue_manager = MessageBasedAppQueueManager(
|
||||
task_id=application_generate_entity.task_id,
|
||||
user_id=application_generate_entity.user_id,
|
||||
invoke_from=application_generate_entity.invoke_from,
|
||||
conversation_id=conversation.id,
|
||||
app_mode=conversation.mode,
|
||||
message_id=message.id,
|
||||
)
|
||||
|
||||
# new thread with request context
|
||||
@copy_current_request_context
|
||||
def worker_with_context():
|
||||
return self._generate_worker(
|
||||
flask_app=current_app._get_current_object(), # type: ignore
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
message_id=message.id,
|
||||
)
|
||||
|
||||
worker_thread = threading.Thread(target=worker_with_context)
|
||||
|
||||
worker_thread.start()
|
||||
|
||||
# return response or stream generator
|
||||
response = self._handle_response(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
conversation=conversation,
|
||||
message=message,
|
||||
user=user,
|
||||
stream=stream,
|
||||
)
|
||||
|
||||
return CompletionAppGenerateResponseConverter.convert(response=response, invoke_from=invoke_from)
|
||||
181
dify/api/core/app/apps/completion/app_runner.py
Normal file
181
dify/api/core/app/apps/completion/app_runner.py
Normal file
@@ -0,0 +1,181 @@
|
||||
import logging
|
||||
from typing import cast
|
||||
|
||||
from sqlalchemy import select
|
||||
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager
|
||||
from core.app.apps.base_app_runner import AppRunner
|
||||
from core.app.apps.completion.app_config_manager import CompletionAppConfig
|
||||
from core.app.entities.app_invoke_entities import (
|
||||
CompletionAppGenerateEntity,
|
||||
)
|
||||
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.message_entities import ImagePromptMessageContent
|
||||
from core.moderation.base import ModerationError
|
||||
from core.rag.retrieval.dataset_retrieval import DatasetRetrieval
|
||||
from extensions.ext_database import db
|
||||
from models.model import App, Message
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class CompletionAppRunner(AppRunner):
|
||||
"""
|
||||
Completion Application Runner
|
||||
"""
|
||||
|
||||
def run(
|
||||
self, application_generate_entity: CompletionAppGenerateEntity, queue_manager: AppQueueManager, message: Message
|
||||
):
|
||||
"""
|
||||
Run application
|
||||
:param application_generate_entity: application generate entity
|
||||
:param queue_manager: application queue manager
|
||||
:param message: message
|
||||
:return:
|
||||
"""
|
||||
app_config = application_generate_entity.app_config
|
||||
app_config = cast(CompletionAppConfig, app_config)
|
||||
stmt = select(App).where(App.id == app_config.app_id)
|
||||
app_record = db.session.scalar(stmt)
|
||||
if not app_record:
|
||||
raise ValueError("App not found")
|
||||
|
||||
inputs = application_generate_entity.inputs
|
||||
query = application_generate_entity.query
|
||||
files = application_generate_entity.files
|
||||
|
||||
image_detail_config = (
|
||||
application_generate_entity.file_upload_config.image_config.detail
|
||||
if (
|
||||
application_generate_entity.file_upload_config
|
||||
and application_generate_entity.file_upload_config.image_config
|
||||
)
|
||||
else None
|
||||
)
|
||||
image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
|
||||
|
||||
# organize all inputs and template to prompt messages
|
||||
# Include: prompt template, inputs, query(optional), files(optional)
|
||||
prompt_messages, stop = self.organize_prompt_messages(
|
||||
app_record=app_record,
|
||||
model_config=application_generate_entity.model_conf,
|
||||
prompt_template_entity=app_config.prompt_template,
|
||||
inputs=inputs,
|
||||
files=files,
|
||||
query=query,
|
||||
image_detail_config=image_detail_config,
|
||||
)
|
||||
|
||||
# moderation
|
||||
try:
|
||||
# process sensitive_word_avoidance
|
||||
_, inputs, query = self.moderation_for_inputs(
|
||||
app_id=app_record.id,
|
||||
tenant_id=app_config.tenant_id,
|
||||
app_generate_entity=application_generate_entity,
|
||||
inputs=inputs,
|
||||
query=query or "",
|
||||
message_id=message.id,
|
||||
)
|
||||
except ModerationError as e:
|
||||
self.direct_output(
|
||||
queue_manager=queue_manager,
|
||||
app_generate_entity=application_generate_entity,
|
||||
prompt_messages=prompt_messages,
|
||||
text=str(e),
|
||||
stream=application_generate_entity.stream,
|
||||
)
|
||||
return
|
||||
|
||||
# fill in variable inputs from external data tools if exists
|
||||
external_data_tools = app_config.external_data_variables
|
||||
if external_data_tools:
|
||||
inputs = self.fill_in_inputs_from_external_data_tools(
|
||||
tenant_id=app_record.tenant_id,
|
||||
app_id=app_record.id,
|
||||
external_data_tools=external_data_tools,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
)
|
||||
|
||||
# get context from datasets
|
||||
context = None
|
||||
if app_config.dataset and app_config.dataset.dataset_ids:
|
||||
hit_callback = DatasetIndexToolCallbackHandler(
|
||||
queue_manager,
|
||||
app_record.id,
|
||||
message.id,
|
||||
application_generate_entity.user_id,
|
||||
application_generate_entity.invoke_from,
|
||||
)
|
||||
|
||||
dataset_config = app_config.dataset
|
||||
if dataset_config and dataset_config.retrieve_config.query_variable:
|
||||
query = inputs.get(dataset_config.retrieve_config.query_variable, "")
|
||||
|
||||
dataset_retrieval = DatasetRetrieval(application_generate_entity)
|
||||
context = dataset_retrieval.retrieve(
|
||||
app_id=app_record.id,
|
||||
user_id=application_generate_entity.user_id,
|
||||
tenant_id=app_record.tenant_id,
|
||||
model_config=application_generate_entity.model_conf,
|
||||
config=dataset_config,
|
||||
query=query or "",
|
||||
invoke_from=application_generate_entity.invoke_from,
|
||||
show_retrieve_source=app_config.additional_features.show_retrieve_source
|
||||
if app_config.additional_features
|
||||
else False,
|
||||
hit_callback=hit_callback,
|
||||
message_id=message.id,
|
||||
inputs=inputs,
|
||||
)
|
||||
|
||||
# reorganize all inputs and template to prompt messages
|
||||
# Include: prompt template, inputs, query(optional), files(optional)
|
||||
# memory(optional), external data, dataset context(optional)
|
||||
prompt_messages, stop = self.organize_prompt_messages(
|
||||
app_record=app_record,
|
||||
model_config=application_generate_entity.model_conf,
|
||||
prompt_template_entity=app_config.prompt_template,
|
||||
inputs=inputs,
|
||||
files=files,
|
||||
query=query,
|
||||
context=context,
|
||||
image_detail_config=image_detail_config,
|
||||
)
|
||||
|
||||
# check hosting moderation
|
||||
hosting_moderation_result = self.check_hosting_moderation(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
prompt_messages=prompt_messages,
|
||||
)
|
||||
|
||||
if hosting_moderation_result:
|
||||
return
|
||||
|
||||
# Re-calculate the max tokens if sum(prompt_token + max_tokens) over model token limit
|
||||
self.recalc_llm_max_tokens(model_config=application_generate_entity.model_conf, prompt_messages=prompt_messages)
|
||||
|
||||
# Invoke model
|
||||
model_instance = ModelInstance(
|
||||
provider_model_bundle=application_generate_entity.model_conf.provider_model_bundle,
|
||||
model=application_generate_entity.model_conf.model,
|
||||
)
|
||||
|
||||
db.session.close()
|
||||
|
||||
invoke_result = model_instance.invoke_llm(
|
||||
prompt_messages=prompt_messages,
|
||||
model_parameters=application_generate_entity.model_conf.parameters,
|
||||
stop=stop,
|
||||
stream=application_generate_entity.stream,
|
||||
user=application_generate_entity.user_id,
|
||||
)
|
||||
|
||||
# handle invoke result
|
||||
self._handle_invoke_result(
|
||||
invoke_result=invoke_result, queue_manager=queue_manager, stream=application_generate_entity.stream
|
||||
)
|
||||
121
dify/api/core/app/apps/completion/generate_response_converter.py
Normal file
121
dify/api/core/app/apps/completion/generate_response_converter.py
Normal file
@@ -0,0 +1,121 @@
|
||||
from collections.abc import Generator
|
||||
from typing import cast
|
||||
|
||||
from core.app.apps.base_app_generate_response_converter import AppGenerateResponseConverter
|
||||
from core.app.entities.task_entities import (
|
||||
AppStreamResponse,
|
||||
CompletionAppBlockingResponse,
|
||||
CompletionAppStreamResponse,
|
||||
ErrorStreamResponse,
|
||||
MessageEndStreamResponse,
|
||||
PingStreamResponse,
|
||||
)
|
||||
|
||||
|
||||
class CompletionAppGenerateResponseConverter(AppGenerateResponseConverter):
|
||||
_blocking_response_type = CompletionAppBlockingResponse
|
||||
|
||||
@classmethod
|
||||
def convert_blocking_full_response(cls, blocking_response: CompletionAppBlockingResponse): # type: ignore[override]
|
||||
"""
|
||||
Convert blocking full response.
|
||||
:param blocking_response: blocking response
|
||||
:return:
|
||||
"""
|
||||
response = {
|
||||
"event": "message",
|
||||
"task_id": blocking_response.task_id,
|
||||
"id": blocking_response.data.id,
|
||||
"message_id": blocking_response.data.message_id,
|
||||
"mode": blocking_response.data.mode,
|
||||
"answer": blocking_response.data.answer,
|
||||
"metadata": blocking_response.data.metadata,
|
||||
"created_at": blocking_response.data.created_at,
|
||||
}
|
||||
|
||||
return response
|
||||
|
||||
@classmethod
|
||||
def convert_blocking_simple_response(cls, blocking_response: CompletionAppBlockingResponse): # type: ignore[override]
|
||||
"""
|
||||
Convert blocking simple response.
|
||||
:param blocking_response: blocking response
|
||||
:return:
|
||||
"""
|
||||
response = cls.convert_blocking_full_response(blocking_response)
|
||||
|
||||
metadata = response.get("metadata", {})
|
||||
if isinstance(metadata, dict):
|
||||
response["metadata"] = cls._get_simple_metadata(metadata)
|
||||
else:
|
||||
response["metadata"] = {}
|
||||
|
||||
return response
|
||||
|
||||
@classmethod
|
||||
def convert_stream_full_response(
|
||||
cls, stream_response: Generator[AppStreamResponse, None, None]
|
||||
) -> Generator[dict | str, None, None]:
|
||||
"""
|
||||
Convert stream full response.
|
||||
:param stream_response: stream response
|
||||
:return:
|
||||
"""
|
||||
for chunk in stream_response:
|
||||
chunk = cast(CompletionAppStreamResponse, chunk)
|
||||
sub_stream_response = chunk.stream_response
|
||||
|
||||
if isinstance(sub_stream_response, PingStreamResponse):
|
||||
yield "ping"
|
||||
continue
|
||||
|
||||
response_chunk = {
|
||||
"event": sub_stream_response.event.value,
|
||||
"message_id": chunk.message_id,
|
||||
"created_at": chunk.created_at,
|
||||
}
|
||||
|
||||
if isinstance(sub_stream_response, ErrorStreamResponse):
|
||||
data = cls._error_to_stream_response(sub_stream_response.err)
|
||||
response_chunk.update(data)
|
||||
else:
|
||||
response_chunk.update(sub_stream_response.model_dump(mode="json"))
|
||||
yield response_chunk
|
||||
|
||||
@classmethod
|
||||
def convert_stream_simple_response(
|
||||
cls, stream_response: Generator[AppStreamResponse, None, None]
|
||||
) -> Generator[dict | str, None, None]:
|
||||
"""
|
||||
Convert stream simple response.
|
||||
:param stream_response: stream response
|
||||
:return:
|
||||
"""
|
||||
for chunk in stream_response:
|
||||
chunk = cast(CompletionAppStreamResponse, chunk)
|
||||
sub_stream_response = chunk.stream_response
|
||||
|
||||
if isinstance(sub_stream_response, PingStreamResponse):
|
||||
yield "ping"
|
||||
continue
|
||||
|
||||
response_chunk = {
|
||||
"event": sub_stream_response.event.value,
|
||||
"message_id": chunk.message_id,
|
||||
"created_at": chunk.created_at,
|
||||
}
|
||||
|
||||
if isinstance(sub_stream_response, MessageEndStreamResponse):
|
||||
sub_stream_response_dict = sub_stream_response.model_dump(mode="json")
|
||||
metadata = sub_stream_response_dict.get("metadata", {})
|
||||
if not isinstance(metadata, dict):
|
||||
metadata = {}
|
||||
sub_stream_response_dict["metadata"] = cls._get_simple_metadata(metadata)
|
||||
response_chunk.update(sub_stream_response_dict)
|
||||
elif isinstance(sub_stream_response, ErrorStreamResponse):
|
||||
data = cls._error_to_stream_response(sub_stream_response.err)
|
||||
response_chunk.update(data)
|
||||
else:
|
||||
response_chunk.update(sub_stream_response.model_dump(mode="json"))
|
||||
|
||||
yield response_chunk
|
||||
2
dify/api/core/app/apps/exc.py
Normal file
2
dify/api/core/app/apps/exc.py
Normal file
@@ -0,0 +1,2 @@
|
||||
class GenerateTaskStoppedError(Exception):
|
||||
pass
|
||||
279
dify/api/core/app/apps/message_based_app_generator.py
Normal file
279
dify/api/core/app/apps/message_based_app_generator.py
Normal file
@@ -0,0 +1,279 @@
|
||||
import json
|
||||
import logging
|
||||
from collections.abc import Generator
|
||||
from typing import Union, cast
|
||||
|
||||
from sqlalchemy import select
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from core.app.app_config.entities import EasyUIBasedAppConfig, EasyUIBasedAppModelConfigFrom
|
||||
from core.app.apps.base_app_generator import BaseAppGenerator
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager
|
||||
from core.app.apps.exc import GenerateTaskStoppedError
|
||||
from core.app.entities.app_invoke_entities import (
|
||||
AdvancedChatAppGenerateEntity,
|
||||
AgentChatAppGenerateEntity,
|
||||
AppGenerateEntity,
|
||||
ChatAppGenerateEntity,
|
||||
CompletionAppGenerateEntity,
|
||||
InvokeFrom,
|
||||
)
|
||||
from core.app.entities.task_entities import (
|
||||
ChatbotAppBlockingResponse,
|
||||
ChatbotAppStreamResponse,
|
||||
CompletionAppBlockingResponse,
|
||||
CompletionAppStreamResponse,
|
||||
)
|
||||
from core.app.task_pipeline.easy_ui_based_generate_task_pipeline import EasyUIBasedGenerateTaskPipeline
|
||||
from core.prompt.utils.prompt_template_parser import PromptTemplateParser
|
||||
from extensions.ext_database import db
|
||||
from libs.datetime_utils import naive_utc_now
|
||||
from models import Account
|
||||
from models.enums import CreatorUserRole
|
||||
from models.model import App, AppMode, AppModelConfig, Conversation, EndUser, Message, MessageFile
|
||||
from services.errors.app_model_config import AppModelConfigBrokenError
|
||||
from services.errors.conversation import ConversationNotExistsError
|
||||
from services.errors.message import MessageNotExistsError
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class MessageBasedAppGenerator(BaseAppGenerator):
|
||||
def _handle_response(
|
||||
self,
|
||||
application_generate_entity: Union[
|
||||
ChatAppGenerateEntity,
|
||||
CompletionAppGenerateEntity,
|
||||
AgentChatAppGenerateEntity,
|
||||
],
|
||||
queue_manager: AppQueueManager,
|
||||
conversation: Conversation,
|
||||
message: Message,
|
||||
user: Union[Account, EndUser],
|
||||
stream: bool = False,
|
||||
) -> Union[
|
||||
ChatbotAppBlockingResponse,
|
||||
CompletionAppBlockingResponse,
|
||||
Generator[Union[ChatbotAppStreamResponse, CompletionAppStreamResponse], None, None],
|
||||
]:
|
||||
"""
|
||||
Handle response.
|
||||
:param application_generate_entity: application generate entity
|
||||
:param queue_manager: queue manager
|
||||
:param conversation: conversation
|
||||
:param message: message
|
||||
:param user: user
|
||||
:param stream: is stream
|
||||
:return:
|
||||
"""
|
||||
# init generate task pipeline
|
||||
generate_task_pipeline = EasyUIBasedGenerateTaskPipeline(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
conversation=conversation,
|
||||
message=message,
|
||||
stream=stream,
|
||||
)
|
||||
|
||||
try:
|
||||
return generate_task_pipeline.process()
|
||||
except ValueError as e:
|
||||
if len(e.args) > 0 and e.args[0] == "I/O operation on closed file.": # ignore this error
|
||||
raise GenerateTaskStoppedError()
|
||||
else:
|
||||
logger.exception("Failed to handle response, conversation_id: %s", conversation.id)
|
||||
raise e
|
||||
|
||||
def _get_app_model_config(self, app_model: App, conversation: Conversation | None = None) -> AppModelConfig:
|
||||
if conversation:
|
||||
stmt = select(AppModelConfig).where(
|
||||
AppModelConfig.id == conversation.app_model_config_id, AppModelConfig.app_id == app_model.id
|
||||
)
|
||||
app_model_config = db.session.scalar(stmt)
|
||||
|
||||
if not app_model_config:
|
||||
raise AppModelConfigBrokenError()
|
||||
else:
|
||||
if app_model.app_model_config_id is None:
|
||||
raise AppModelConfigBrokenError()
|
||||
|
||||
app_model_config = app_model.app_model_config
|
||||
|
||||
if not app_model_config:
|
||||
raise AppModelConfigBrokenError()
|
||||
|
||||
return app_model_config
|
||||
|
||||
def _init_generate_records(
|
||||
self,
|
||||
application_generate_entity: Union[
|
||||
ChatAppGenerateEntity,
|
||||
CompletionAppGenerateEntity,
|
||||
AgentChatAppGenerateEntity,
|
||||
AdvancedChatAppGenerateEntity,
|
||||
],
|
||||
conversation: Conversation | None = None,
|
||||
) -> tuple[Conversation, Message]:
|
||||
"""
|
||||
Initialize generate records
|
||||
:param application_generate_entity: application generate entity
|
||||
:conversation conversation
|
||||
:return:
|
||||
"""
|
||||
app_config: EasyUIBasedAppConfig = cast(EasyUIBasedAppConfig, application_generate_entity.app_config)
|
||||
|
||||
# get from source
|
||||
end_user_id = None
|
||||
account_id = None
|
||||
if application_generate_entity.invoke_from in {InvokeFrom.WEB_APP, InvokeFrom.SERVICE_API}:
|
||||
from_source = "api"
|
||||
end_user_id = application_generate_entity.user_id
|
||||
else:
|
||||
from_source = "console"
|
||||
account_id = application_generate_entity.user_id
|
||||
|
||||
if isinstance(application_generate_entity, AdvancedChatAppGenerateEntity):
|
||||
app_model_config_id = None
|
||||
override_model_configs = None
|
||||
model_provider = None
|
||||
model_id = None
|
||||
else:
|
||||
app_model_config_id = app_config.app_model_config_id
|
||||
model_provider = application_generate_entity.model_conf.provider
|
||||
model_id = application_generate_entity.model_conf.model
|
||||
override_model_configs = None
|
||||
if app_config.app_model_config_from == EasyUIBasedAppModelConfigFrom.ARGS and app_config.app_mode in {
|
||||
AppMode.AGENT_CHAT,
|
||||
AppMode.CHAT,
|
||||
AppMode.COMPLETION,
|
||||
}:
|
||||
override_model_configs = app_config.app_model_config_dict
|
||||
|
||||
# get conversation introduction
|
||||
introduction = self._get_conversation_introduction(application_generate_entity)
|
||||
|
||||
# get conversation name
|
||||
query = application_generate_entity.query or "New conversation"
|
||||
conversation_name = (query[:20] + "…") if len(query) > 20 else query
|
||||
|
||||
if not conversation:
|
||||
conversation = Conversation(
|
||||
app_id=app_config.app_id,
|
||||
app_model_config_id=app_model_config_id,
|
||||
model_provider=model_provider,
|
||||
model_id=model_id,
|
||||
override_model_configs=json.dumps(override_model_configs) if override_model_configs else None,
|
||||
mode=app_config.app_mode.value,
|
||||
name=conversation_name,
|
||||
inputs=application_generate_entity.inputs,
|
||||
introduction=introduction,
|
||||
system_instruction="",
|
||||
system_instruction_tokens=0,
|
||||
status="normal",
|
||||
invoke_from=application_generate_entity.invoke_from.value,
|
||||
from_source=from_source,
|
||||
from_end_user_id=end_user_id,
|
||||
from_account_id=account_id,
|
||||
)
|
||||
|
||||
db.session.add(conversation)
|
||||
db.session.commit()
|
||||
db.session.refresh(conversation)
|
||||
else:
|
||||
conversation.updated_at = naive_utc_now()
|
||||
db.session.commit()
|
||||
|
||||
message = Message(
|
||||
app_id=app_config.app_id,
|
||||
model_provider=model_provider,
|
||||
model_id=model_id,
|
||||
override_model_configs=json.dumps(override_model_configs) if override_model_configs else None,
|
||||
conversation_id=conversation.id,
|
||||
inputs=application_generate_entity.inputs,
|
||||
query=application_generate_entity.query,
|
||||
message="",
|
||||
message_tokens=0,
|
||||
message_unit_price=0,
|
||||
message_price_unit=0,
|
||||
answer="",
|
||||
answer_tokens=0,
|
||||
answer_unit_price=0,
|
||||
answer_price_unit=0,
|
||||
parent_message_id=getattr(application_generate_entity, "parent_message_id", None),
|
||||
provider_response_latency=0,
|
||||
total_price=0,
|
||||
currency="USD",
|
||||
invoke_from=application_generate_entity.invoke_from.value,
|
||||
from_source=from_source,
|
||||
from_end_user_id=end_user_id,
|
||||
from_account_id=account_id,
|
||||
app_mode=app_config.app_mode,
|
||||
)
|
||||
|
||||
db.session.add(message)
|
||||
db.session.commit()
|
||||
db.session.refresh(message)
|
||||
|
||||
for file in application_generate_entity.files:
|
||||
message_file = MessageFile(
|
||||
message_id=message.id,
|
||||
type=file.type,
|
||||
transfer_method=file.transfer_method,
|
||||
belongs_to="user",
|
||||
url=file.remote_url,
|
||||
upload_file_id=file.related_id,
|
||||
created_by_role=(CreatorUserRole.ACCOUNT if account_id else CreatorUserRole.END_USER),
|
||||
created_by=account_id or end_user_id or "",
|
||||
)
|
||||
db.session.add(message_file)
|
||||
db.session.commit()
|
||||
|
||||
return conversation, message
|
||||
|
||||
def _get_conversation_introduction(self, application_generate_entity: AppGenerateEntity) -> str:
|
||||
"""
|
||||
Get conversation introduction
|
||||
:param application_generate_entity: application generate entity
|
||||
:return: conversation introduction
|
||||
"""
|
||||
app_config = application_generate_entity.app_config
|
||||
introduction = app_config.additional_features.opening_statement
|
||||
|
||||
if introduction:
|
||||
try:
|
||||
inputs = application_generate_entity.inputs
|
||||
prompt_template = PromptTemplateParser(template=introduction)
|
||||
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
|
||||
introduction = prompt_template.format(prompt_inputs)
|
||||
except KeyError:
|
||||
pass
|
||||
|
||||
return introduction or ""
|
||||
|
||||
def _get_conversation(self, conversation_id: str) -> Conversation:
|
||||
"""
|
||||
Get conversation by conversation id
|
||||
:param conversation_id: conversation id
|
||||
:return: conversation
|
||||
"""
|
||||
with Session(db.engine, expire_on_commit=False) as session:
|
||||
conversation = session.scalar(select(Conversation).where(Conversation.id == conversation_id))
|
||||
|
||||
if not conversation:
|
||||
raise ConversationNotExistsError("Conversation not exists")
|
||||
|
||||
return conversation
|
||||
|
||||
def _get_message(self, message_id: str) -> Message:
|
||||
"""
|
||||
Get message by message id
|
||||
:param message_id: message id
|
||||
:return: message
|
||||
"""
|
||||
with Session(db.engine, expire_on_commit=False) as session:
|
||||
message = session.scalar(select(Message).where(Message.id == message_id))
|
||||
|
||||
if message is None:
|
||||
raise MessageNotExistsError("Message not exists")
|
||||
|
||||
return message
|
||||
47
dify/api/core/app/apps/message_based_app_queue_manager.py
Normal file
47
dify/api/core/app/apps/message_based_app_queue_manager.py
Normal file
@@ -0,0 +1,47 @@
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
from core.app.apps.exc import GenerateTaskStoppedError
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom
|
||||
from core.app.entities.queue_entities import (
|
||||
AppQueueEvent,
|
||||
MessageQueueMessage,
|
||||
QueueAdvancedChatMessageEndEvent,
|
||||
QueueErrorEvent,
|
||||
QueueMessageEndEvent,
|
||||
QueueStopEvent,
|
||||
)
|
||||
|
||||
|
||||
class MessageBasedAppQueueManager(AppQueueManager):
|
||||
def __init__(
|
||||
self, task_id: str, user_id: str, invoke_from: InvokeFrom, conversation_id: str, app_mode: str, message_id: str
|
||||
):
|
||||
super().__init__(task_id, user_id, invoke_from)
|
||||
|
||||
self._conversation_id = str(conversation_id)
|
||||
self._app_mode = app_mode
|
||||
self._message_id = str(message_id)
|
||||
|
||||
def _publish(self, event: AppQueueEvent, pub_from: PublishFrom):
|
||||
"""
|
||||
Publish event to queue
|
||||
:param event:
|
||||
:param pub_from:
|
||||
:return:
|
||||
"""
|
||||
message = MessageQueueMessage(
|
||||
task_id=self._task_id,
|
||||
message_id=self._message_id,
|
||||
conversation_id=self._conversation_id,
|
||||
app_mode=self._app_mode,
|
||||
event=event,
|
||||
)
|
||||
|
||||
self._q.put(message)
|
||||
|
||||
if isinstance(
|
||||
event, QueueStopEvent | QueueErrorEvent | QueueMessageEndEvent | QueueAdvancedChatMessageEndEvent
|
||||
):
|
||||
self.stop_listen()
|
||||
|
||||
if pub_from == PublishFrom.APPLICATION_MANAGER and self._is_stopped():
|
||||
raise GenerateTaskStoppedError()
|
||||
0
dify/api/core/app/apps/pipeline/__init__.py
Normal file
0
dify/api/core/app/apps/pipeline/__init__.py
Normal file
@@ -0,0 +1,95 @@
|
||||
from collections.abc import Generator
|
||||
from typing import cast
|
||||
|
||||
from core.app.apps.base_app_generate_response_converter import AppGenerateResponseConverter
|
||||
from core.app.entities.task_entities import (
|
||||
AppStreamResponse,
|
||||
ErrorStreamResponse,
|
||||
NodeFinishStreamResponse,
|
||||
NodeStartStreamResponse,
|
||||
PingStreamResponse,
|
||||
WorkflowAppBlockingResponse,
|
||||
WorkflowAppStreamResponse,
|
||||
)
|
||||
|
||||
|
||||
class WorkflowAppGenerateResponseConverter(AppGenerateResponseConverter):
|
||||
_blocking_response_type = WorkflowAppBlockingResponse
|
||||
|
||||
@classmethod
|
||||
def convert_blocking_full_response(cls, blocking_response: WorkflowAppBlockingResponse) -> dict: # type: ignore[override]
|
||||
"""
|
||||
Convert blocking full response.
|
||||
:param blocking_response: blocking response
|
||||
:return:
|
||||
"""
|
||||
return dict(blocking_response.model_dump())
|
||||
|
||||
@classmethod
|
||||
def convert_blocking_simple_response(cls, blocking_response: WorkflowAppBlockingResponse) -> dict: # type: ignore[override]
|
||||
"""
|
||||
Convert blocking simple response.
|
||||
:param blocking_response: blocking response
|
||||
:return:
|
||||
"""
|
||||
return cls.convert_blocking_full_response(blocking_response)
|
||||
|
||||
@classmethod
|
||||
def convert_stream_full_response(
|
||||
cls, stream_response: Generator[AppStreamResponse, None, None]
|
||||
) -> Generator[dict | str, None, None]:
|
||||
"""
|
||||
Convert stream full response.
|
||||
:param stream_response: stream response
|
||||
:return:
|
||||
"""
|
||||
for chunk in stream_response:
|
||||
chunk = cast(WorkflowAppStreamResponse, chunk)
|
||||
sub_stream_response = chunk.stream_response
|
||||
|
||||
if isinstance(sub_stream_response, PingStreamResponse):
|
||||
yield "ping"
|
||||
continue
|
||||
|
||||
response_chunk = {
|
||||
"event": sub_stream_response.event.value,
|
||||
"workflow_run_id": chunk.workflow_run_id,
|
||||
}
|
||||
|
||||
if isinstance(sub_stream_response, ErrorStreamResponse):
|
||||
data = cls._error_to_stream_response(sub_stream_response.err)
|
||||
response_chunk.update(cast(dict, data))
|
||||
else:
|
||||
response_chunk.update(sub_stream_response.model_dump())
|
||||
yield response_chunk
|
||||
|
||||
@classmethod
|
||||
def convert_stream_simple_response(
|
||||
cls, stream_response: Generator[AppStreamResponse, None, None]
|
||||
) -> Generator[dict | str, None, None]:
|
||||
"""
|
||||
Convert stream simple response.
|
||||
:param stream_response: stream response
|
||||
:return:
|
||||
"""
|
||||
for chunk in stream_response:
|
||||
chunk = cast(WorkflowAppStreamResponse, chunk)
|
||||
sub_stream_response = chunk.stream_response
|
||||
|
||||
if isinstance(sub_stream_response, PingStreamResponse):
|
||||
yield "ping"
|
||||
continue
|
||||
|
||||
response_chunk = {
|
||||
"event": sub_stream_response.event.value,
|
||||
"workflow_run_id": chunk.workflow_run_id,
|
||||
}
|
||||
|
||||
if isinstance(sub_stream_response, ErrorStreamResponse):
|
||||
data = cls._error_to_stream_response(sub_stream_response.err)
|
||||
response_chunk.update(cast(dict, data))
|
||||
elif isinstance(sub_stream_response, NodeStartStreamResponse | NodeFinishStreamResponse):
|
||||
response_chunk.update(cast(dict, sub_stream_response.to_ignore_detail_dict()))
|
||||
else:
|
||||
response_chunk.update(sub_stream_response.model_dump())
|
||||
yield response_chunk
|
||||
66
dify/api/core/app/apps/pipeline/pipeline_config_manager.py
Normal file
66
dify/api/core/app/apps/pipeline/pipeline_config_manager.py
Normal file
@@ -0,0 +1,66 @@
|
||||
from core.app.app_config.base_app_config_manager import BaseAppConfigManager
|
||||
from core.app.app_config.common.sensitive_word_avoidance.manager import SensitiveWordAvoidanceConfigManager
|
||||
from core.app.app_config.entities import RagPipelineVariableEntity, WorkflowUIBasedAppConfig
|
||||
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
|
||||
from core.app.app_config.features.text_to_speech.manager import TextToSpeechConfigManager
|
||||
from core.app.app_config.workflow_ui_based_app.variables.manager import WorkflowVariablesConfigManager
|
||||
from models.dataset import Pipeline
|
||||
from models.model import AppMode
|
||||
from models.workflow import Workflow
|
||||
|
||||
|
||||
class PipelineConfig(WorkflowUIBasedAppConfig):
|
||||
"""
|
||||
Pipeline Config Entity.
|
||||
"""
|
||||
|
||||
rag_pipeline_variables: list[RagPipelineVariableEntity] = []
|
||||
pass
|
||||
|
||||
|
||||
class PipelineConfigManager(BaseAppConfigManager):
|
||||
@classmethod
|
||||
def get_pipeline_config(cls, pipeline: Pipeline, workflow: Workflow, start_node_id: str) -> PipelineConfig:
|
||||
pipeline_config = PipelineConfig(
|
||||
tenant_id=pipeline.tenant_id,
|
||||
app_id=pipeline.id,
|
||||
app_mode=AppMode.RAG_PIPELINE,
|
||||
workflow_id=workflow.id,
|
||||
rag_pipeline_variables=WorkflowVariablesConfigManager.convert_rag_pipeline_variable(
|
||||
workflow=workflow, start_node_id=start_node_id
|
||||
),
|
||||
)
|
||||
|
||||
return pipeline_config
|
||||
|
||||
@classmethod
|
||||
def config_validate(cls, tenant_id: str, config: dict, only_structure_validate: bool = False) -> dict:
|
||||
"""
|
||||
Validate for pipeline config
|
||||
|
||||
:param tenant_id: tenant id
|
||||
:param config: app model config args
|
||||
:param only_structure_validate: only validate the structure of the config
|
||||
"""
|
||||
related_config_keys = []
|
||||
|
||||
# file upload validation
|
||||
config, current_related_config_keys = FileUploadConfigManager.validate_and_set_defaults(config=config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# text_to_speech
|
||||
config, current_related_config_keys = TextToSpeechConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# moderation validation
|
||||
config, current_related_config_keys = SensitiveWordAvoidanceConfigManager.validate_and_set_defaults(
|
||||
tenant_id=tenant_id, config=config, only_structure_validate=only_structure_validate
|
||||
)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
related_config_keys = list(set(related_config_keys))
|
||||
|
||||
# Filter out extra parameters
|
||||
filtered_config = {key: config.get(key) for key in related_config_keys}
|
||||
|
||||
return filtered_config
|
||||
824
dify/api/core/app/apps/pipeline/pipeline_generator.py
Normal file
824
dify/api/core/app/apps/pipeline/pipeline_generator.py
Normal file
@@ -0,0 +1,824 @@
|
||||
import contextvars
|
||||
import datetime
|
||||
import json
|
||||
import logging
|
||||
import secrets
|
||||
import threading
|
||||
import time
|
||||
import uuid
|
||||
from collections.abc import Generator, Mapping
|
||||
from typing import Any, Literal, Union, cast, overload
|
||||
|
||||
from flask import Flask, current_app
|
||||
from pydantic import ValidationError
|
||||
from sqlalchemy import select
|
||||
from sqlalchemy.orm import Session, sessionmaker
|
||||
|
||||
import contexts
|
||||
from configs import dify_config
|
||||
from core.app.apps.base_app_generator import BaseAppGenerator
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
from core.app.apps.exc import GenerateTaskStoppedError
|
||||
from core.app.apps.pipeline.pipeline_config_manager import PipelineConfigManager
|
||||
from core.app.apps.pipeline.pipeline_queue_manager import PipelineQueueManager
|
||||
from core.app.apps.pipeline.pipeline_runner import PipelineRunner
|
||||
from core.app.apps.workflow.generate_response_converter import WorkflowAppGenerateResponseConverter
|
||||
from core.app.apps.workflow.generate_task_pipeline import WorkflowAppGenerateTaskPipeline
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom, RagPipelineGenerateEntity
|
||||
from core.app.entities.rag_pipeline_invoke_entities import RagPipelineInvokeEntity
|
||||
from core.app.entities.task_entities import WorkflowAppBlockingResponse, WorkflowAppStreamResponse
|
||||
from core.datasource.entities.datasource_entities import (
|
||||
DatasourceProviderType,
|
||||
OnlineDriveBrowseFilesRequest,
|
||||
)
|
||||
from core.datasource.online_drive.online_drive_plugin import OnlineDriveDatasourcePlugin
|
||||
from core.entities.knowledge_entities import PipelineDataset, PipelineDocument
|
||||
from core.model_runtime.errors.invoke import InvokeAuthorizationError
|
||||
from core.rag.index_processor.constant.built_in_field import BuiltInField
|
||||
from core.repositories.factory import DifyCoreRepositoryFactory
|
||||
from core.workflow.repositories.draft_variable_repository import DraftVariableSaverFactory
|
||||
from core.workflow.repositories.workflow_execution_repository import WorkflowExecutionRepository
|
||||
from core.workflow.repositories.workflow_node_execution_repository import WorkflowNodeExecutionRepository
|
||||
from core.workflow.variable_loader import DUMMY_VARIABLE_LOADER, VariableLoader
|
||||
from extensions.ext_database import db
|
||||
from libs.flask_utils import preserve_flask_contexts
|
||||
from models import Account, EndUser, Workflow, WorkflowNodeExecutionTriggeredFrom
|
||||
from models.dataset import Document, DocumentPipelineExecutionLog, Pipeline
|
||||
from models.enums import WorkflowRunTriggeredFrom
|
||||
from models.model import AppMode
|
||||
from services.datasource_provider_service import DatasourceProviderService
|
||||
from services.rag_pipeline.rag_pipeline_task_proxy import RagPipelineTaskProxy
|
||||
from services.workflow_draft_variable_service import DraftVarLoader, WorkflowDraftVariableService
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class PipelineGenerator(BaseAppGenerator):
|
||||
@overload
|
||||
def generate(
|
||||
self,
|
||||
*,
|
||||
pipeline: Pipeline,
|
||||
workflow: Workflow,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: Literal[True],
|
||||
call_depth: int,
|
||||
workflow_thread_pool_id: str | None,
|
||||
is_retry: bool = False,
|
||||
) -> Generator[Mapping | str, None, None]: ...
|
||||
|
||||
@overload
|
||||
def generate(
|
||||
self,
|
||||
*,
|
||||
pipeline: Pipeline,
|
||||
workflow: Workflow,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: Literal[False],
|
||||
call_depth: int,
|
||||
workflow_thread_pool_id: str | None,
|
||||
is_retry: bool = False,
|
||||
) -> Mapping[str, Any]: ...
|
||||
|
||||
@overload
|
||||
def generate(
|
||||
self,
|
||||
*,
|
||||
pipeline: Pipeline,
|
||||
workflow: Workflow,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: bool,
|
||||
call_depth: int,
|
||||
workflow_thread_pool_id: str | None,
|
||||
is_retry: bool = False,
|
||||
) -> Union[Mapping[str, Any], Generator[Mapping | str, None, None]]: ...
|
||||
|
||||
def generate(
|
||||
self,
|
||||
*,
|
||||
pipeline: Pipeline,
|
||||
workflow: Workflow,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: bool = True,
|
||||
call_depth: int = 0,
|
||||
workflow_thread_pool_id: str | None = None,
|
||||
is_retry: bool = False,
|
||||
) -> Union[Mapping[str, Any], Generator[Mapping | str, None, None], None]:
|
||||
# Add null check for dataset
|
||||
|
||||
with Session(db.engine, expire_on_commit=False) as session:
|
||||
dataset = pipeline.retrieve_dataset(session)
|
||||
if not dataset:
|
||||
raise ValueError("Pipeline dataset is required")
|
||||
inputs: Mapping[str, Any] = args["inputs"]
|
||||
start_node_id: str = args["start_node_id"]
|
||||
datasource_type: str = args["datasource_type"]
|
||||
datasource_info_list: list[Mapping[str, Any]] = self._format_datasource_info_list(
|
||||
datasource_type, args["datasource_info_list"], pipeline, workflow, start_node_id, user
|
||||
)
|
||||
batch = time.strftime("%Y%m%d%H%M%S") + str(secrets.randbelow(900000) + 100000)
|
||||
# convert to app config
|
||||
pipeline_config = PipelineConfigManager.get_pipeline_config(
|
||||
pipeline=pipeline, workflow=workflow, start_node_id=start_node_id
|
||||
)
|
||||
documents: list[Document] = []
|
||||
if invoke_from == InvokeFrom.PUBLISHED and not is_retry and not args.get("original_document_id"):
|
||||
from services.dataset_service import DocumentService
|
||||
|
||||
for datasource_info in datasource_info_list:
|
||||
position = DocumentService.get_documents_position(dataset.id)
|
||||
document = self._build_document(
|
||||
tenant_id=pipeline.tenant_id,
|
||||
dataset_id=dataset.id,
|
||||
built_in_field_enabled=dataset.built_in_field_enabled,
|
||||
datasource_type=datasource_type,
|
||||
datasource_info=datasource_info,
|
||||
created_from="rag-pipeline",
|
||||
position=position,
|
||||
account=user,
|
||||
batch=batch,
|
||||
document_form=dataset.chunk_structure,
|
||||
)
|
||||
db.session.add(document)
|
||||
documents.append(document)
|
||||
db.session.commit()
|
||||
|
||||
# run in child thread
|
||||
rag_pipeline_invoke_entities = []
|
||||
for i, datasource_info in enumerate(datasource_info_list):
|
||||
workflow_run_id = str(uuid.uuid4())
|
||||
document_id = args.get("original_document_id") or None
|
||||
if invoke_from == InvokeFrom.PUBLISHED and not is_retry:
|
||||
document_id = document_id or documents[i].id
|
||||
document_pipeline_execution_log = DocumentPipelineExecutionLog(
|
||||
document_id=document_id,
|
||||
datasource_type=datasource_type,
|
||||
datasource_info=json.dumps(datasource_info),
|
||||
datasource_node_id=start_node_id,
|
||||
input_data=dict(inputs),
|
||||
pipeline_id=pipeline.id,
|
||||
created_by=user.id,
|
||||
)
|
||||
db.session.add(document_pipeline_execution_log)
|
||||
db.session.commit()
|
||||
application_generate_entity = RagPipelineGenerateEntity(
|
||||
task_id=str(uuid.uuid4()),
|
||||
app_config=pipeline_config,
|
||||
pipeline_config=pipeline_config,
|
||||
datasource_type=datasource_type,
|
||||
datasource_info=datasource_info,
|
||||
dataset_id=dataset.id,
|
||||
original_document_id=args.get("original_document_id"),
|
||||
start_node_id=start_node_id,
|
||||
batch=batch,
|
||||
document_id=document_id,
|
||||
inputs=self._prepare_user_inputs(
|
||||
user_inputs=inputs,
|
||||
variables=pipeline_config.rag_pipeline_variables,
|
||||
tenant_id=pipeline.tenant_id,
|
||||
strict_type_validation=True if invoke_from == InvokeFrom.SERVICE_API else False,
|
||||
),
|
||||
files=[],
|
||||
user_id=user.id,
|
||||
stream=streaming,
|
||||
invoke_from=invoke_from,
|
||||
call_depth=call_depth,
|
||||
workflow_execution_id=workflow_run_id,
|
||||
)
|
||||
|
||||
contexts.plugin_tool_providers.set({})
|
||||
contexts.plugin_tool_providers_lock.set(threading.Lock())
|
||||
if invoke_from == InvokeFrom.DEBUGGER:
|
||||
workflow_triggered_from = WorkflowRunTriggeredFrom.RAG_PIPELINE_DEBUGGING
|
||||
else:
|
||||
workflow_triggered_from = WorkflowRunTriggeredFrom.RAG_PIPELINE_RUN
|
||||
# Create workflow node execution repository
|
||||
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
|
||||
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
|
||||
session_factory=session_factory,
|
||||
user=user,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
triggered_from=workflow_triggered_from,
|
||||
)
|
||||
|
||||
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
|
||||
session_factory=session_factory,
|
||||
user=user,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
triggered_from=WorkflowNodeExecutionTriggeredFrom.RAG_PIPELINE_RUN,
|
||||
)
|
||||
if invoke_from == InvokeFrom.DEBUGGER or is_retry:
|
||||
return self._generate(
|
||||
flask_app=current_app._get_current_object(), # type: ignore
|
||||
context=contextvars.copy_context(),
|
||||
pipeline=pipeline,
|
||||
workflow_id=workflow.id,
|
||||
user=user,
|
||||
application_generate_entity=application_generate_entity,
|
||||
invoke_from=invoke_from,
|
||||
workflow_execution_repository=workflow_execution_repository,
|
||||
workflow_node_execution_repository=workflow_node_execution_repository,
|
||||
streaming=streaming,
|
||||
workflow_thread_pool_id=workflow_thread_pool_id,
|
||||
)
|
||||
else:
|
||||
rag_pipeline_invoke_entities.append(
|
||||
RagPipelineInvokeEntity(
|
||||
pipeline_id=pipeline.id,
|
||||
user_id=user.id,
|
||||
tenant_id=pipeline.tenant_id,
|
||||
workflow_id=workflow.id,
|
||||
streaming=streaming,
|
||||
workflow_execution_id=workflow_run_id,
|
||||
workflow_thread_pool_id=workflow_thread_pool_id,
|
||||
application_generate_entity=application_generate_entity.model_dump(),
|
||||
)
|
||||
)
|
||||
|
||||
if rag_pipeline_invoke_entities:
|
||||
RagPipelineTaskProxy(dataset.tenant_id, user.id, rag_pipeline_invoke_entities).delay()
|
||||
# return batch, dataset, documents
|
||||
return {
|
||||
"batch": batch,
|
||||
"dataset": PipelineDataset(
|
||||
id=dataset.id,
|
||||
name=dataset.name,
|
||||
description=dataset.description,
|
||||
chunk_structure=dataset.chunk_structure,
|
||||
).model_dump(),
|
||||
"documents": [
|
||||
PipelineDocument(
|
||||
id=document.id,
|
||||
position=document.position,
|
||||
data_source_type=document.data_source_type,
|
||||
data_source_info=json.loads(document.data_source_info) if document.data_source_info else None,
|
||||
name=document.name,
|
||||
indexing_status=document.indexing_status,
|
||||
error=document.error,
|
||||
enabled=document.enabled,
|
||||
).model_dump()
|
||||
for document in documents
|
||||
],
|
||||
}
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
*,
|
||||
flask_app: Flask,
|
||||
context: contextvars.Context,
|
||||
pipeline: Pipeline,
|
||||
workflow_id: str,
|
||||
user: Union[Account, EndUser],
|
||||
application_generate_entity: RagPipelineGenerateEntity,
|
||||
invoke_from: InvokeFrom,
|
||||
workflow_execution_repository: WorkflowExecutionRepository,
|
||||
workflow_node_execution_repository: WorkflowNodeExecutionRepository,
|
||||
streaming: bool = True,
|
||||
variable_loader: VariableLoader = DUMMY_VARIABLE_LOADER,
|
||||
workflow_thread_pool_id: str | None = None,
|
||||
) -> Union[Mapping[str, Any], Generator[str | Mapping[str, Any], None, None]]:
|
||||
"""
|
||||
Generate App response.
|
||||
|
||||
:param pipeline: Pipeline
|
||||
:param workflow: Workflow
|
||||
:param user: account or end user
|
||||
:param application_generate_entity: application generate entity
|
||||
:param invoke_from: invoke from source
|
||||
:param workflow_execution_repository: repository for workflow execution
|
||||
:param workflow_node_execution_repository: repository for workflow node execution
|
||||
:param streaming: is stream
|
||||
:param workflow_thread_pool_id: workflow thread pool id
|
||||
"""
|
||||
with preserve_flask_contexts(flask_app, context_vars=context):
|
||||
# init queue manager
|
||||
workflow = db.session.query(Workflow).where(Workflow.id == workflow_id).first()
|
||||
if not workflow:
|
||||
raise ValueError(f"Workflow not found: {workflow_id}")
|
||||
queue_manager = PipelineQueueManager(
|
||||
task_id=application_generate_entity.task_id,
|
||||
user_id=application_generate_entity.user_id,
|
||||
invoke_from=application_generate_entity.invoke_from,
|
||||
app_mode=AppMode.RAG_PIPELINE,
|
||||
)
|
||||
context = contextvars.copy_context()
|
||||
|
||||
# new thread
|
||||
worker_thread = threading.Thread(
|
||||
target=self._generate_worker,
|
||||
kwargs={
|
||||
"flask_app": current_app._get_current_object(), # type: ignore
|
||||
"context": context,
|
||||
"queue_manager": queue_manager,
|
||||
"application_generate_entity": application_generate_entity,
|
||||
"workflow_thread_pool_id": workflow_thread_pool_id,
|
||||
"variable_loader": variable_loader,
|
||||
"workflow_execution_repository": workflow_execution_repository,
|
||||
"workflow_node_execution_repository": workflow_node_execution_repository,
|
||||
},
|
||||
)
|
||||
|
||||
worker_thread.start()
|
||||
|
||||
draft_var_saver_factory = self._get_draft_var_saver_factory(
|
||||
invoke_from,
|
||||
user,
|
||||
)
|
||||
# return response or stream generator
|
||||
response = self._handle_response(
|
||||
application_generate_entity=application_generate_entity,
|
||||
workflow=workflow,
|
||||
queue_manager=queue_manager,
|
||||
user=user,
|
||||
stream=streaming,
|
||||
draft_var_saver_factory=draft_var_saver_factory,
|
||||
)
|
||||
|
||||
return WorkflowAppGenerateResponseConverter.convert(response=response, invoke_from=invoke_from)
|
||||
|
||||
def single_iteration_generate(
|
||||
self,
|
||||
pipeline: Pipeline,
|
||||
workflow: Workflow,
|
||||
node_id: str,
|
||||
user: Account | EndUser,
|
||||
args: Mapping[str, Any],
|
||||
streaming: bool = True,
|
||||
) -> Mapping[str, Any] | Generator[str | Mapping[str, Any], None, None]:
|
||||
"""
|
||||
Generate App response.
|
||||
|
||||
:param app_model: App
|
||||
:param workflow: Workflow
|
||||
:param node_id: the node id
|
||||
:param user: account or end user
|
||||
:param args: request args
|
||||
:param streaming: is streamed
|
||||
"""
|
||||
if not node_id:
|
||||
raise ValueError("node_id is required")
|
||||
|
||||
if args.get("inputs") is None:
|
||||
raise ValueError("inputs is required")
|
||||
|
||||
# convert to app config
|
||||
pipeline_config = PipelineConfigManager.get_pipeline_config(
|
||||
pipeline=pipeline, workflow=workflow, start_node_id=args.get("start_node_id", "shared")
|
||||
)
|
||||
|
||||
with Session(db.engine) as session:
|
||||
dataset = pipeline.retrieve_dataset(session)
|
||||
if not dataset:
|
||||
raise ValueError("Pipeline dataset is required")
|
||||
|
||||
# init application generate entity - use RagPipelineGenerateEntity instead
|
||||
application_generate_entity = RagPipelineGenerateEntity(
|
||||
task_id=str(uuid.uuid4()),
|
||||
app_config=pipeline_config,
|
||||
pipeline_config=pipeline_config,
|
||||
datasource_type=args.get("datasource_type", ""),
|
||||
datasource_info=args.get("datasource_info", {}),
|
||||
dataset_id=dataset.id,
|
||||
batch=args.get("batch", ""),
|
||||
document_id=args.get("document_id"),
|
||||
inputs={},
|
||||
files=[],
|
||||
user_id=user.id,
|
||||
stream=streaming,
|
||||
invoke_from=InvokeFrom.DEBUGGER,
|
||||
call_depth=0,
|
||||
workflow_execution_id=str(uuid.uuid4()),
|
||||
single_iteration_run=RagPipelineGenerateEntity.SingleIterationRunEntity(
|
||||
node_id=node_id, inputs=args["inputs"]
|
||||
),
|
||||
)
|
||||
contexts.plugin_tool_providers.set({})
|
||||
contexts.plugin_tool_providers_lock.set(threading.Lock())
|
||||
# Create workflow node execution repository
|
||||
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
|
||||
|
||||
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
|
||||
session_factory=session_factory,
|
||||
user=user,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
triggered_from=WorkflowRunTriggeredFrom.RAG_PIPELINE_DEBUGGING,
|
||||
)
|
||||
|
||||
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
|
||||
session_factory=session_factory,
|
||||
user=user,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
triggered_from=WorkflowNodeExecutionTriggeredFrom.SINGLE_STEP,
|
||||
)
|
||||
draft_var_srv = WorkflowDraftVariableService(db.session())
|
||||
draft_var_srv.prefill_conversation_variable_default_values(workflow)
|
||||
var_loader = DraftVarLoader(
|
||||
engine=db.engine,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
tenant_id=application_generate_entity.app_config.tenant_id,
|
||||
)
|
||||
|
||||
return self._generate(
|
||||
flask_app=current_app._get_current_object(), # type: ignore
|
||||
pipeline=pipeline,
|
||||
workflow_id=workflow.id,
|
||||
user=user,
|
||||
invoke_from=InvokeFrom.DEBUGGER,
|
||||
application_generate_entity=application_generate_entity,
|
||||
workflow_execution_repository=workflow_execution_repository,
|
||||
workflow_node_execution_repository=workflow_node_execution_repository,
|
||||
streaming=streaming,
|
||||
variable_loader=var_loader,
|
||||
context=contextvars.copy_context(),
|
||||
)
|
||||
|
||||
def single_loop_generate(
|
||||
self,
|
||||
pipeline: Pipeline,
|
||||
workflow: Workflow,
|
||||
node_id: str,
|
||||
user: Account | EndUser,
|
||||
args: Mapping[str, Any],
|
||||
streaming: bool = True,
|
||||
) -> Mapping[str, Any] | Generator[str | Mapping[str, Any], None, None]:
|
||||
"""
|
||||
Generate App response.
|
||||
|
||||
:param app_model: App
|
||||
:param workflow: Workflow
|
||||
:param node_id: the node id
|
||||
:param user: account or end user
|
||||
:param args: request args
|
||||
:param streaming: is streamed
|
||||
"""
|
||||
if not node_id:
|
||||
raise ValueError("node_id is required")
|
||||
|
||||
if args.get("inputs") is None:
|
||||
raise ValueError("inputs is required")
|
||||
|
||||
with Session(db.engine) as session:
|
||||
dataset = pipeline.retrieve_dataset(session)
|
||||
if not dataset:
|
||||
raise ValueError("Pipeline dataset is required")
|
||||
|
||||
# convert to app config
|
||||
pipeline_config = PipelineConfigManager.get_pipeline_config(
|
||||
pipeline=pipeline, workflow=workflow, start_node_id=args.get("start_node_id", "shared")
|
||||
)
|
||||
|
||||
# init application generate entity
|
||||
application_generate_entity = RagPipelineGenerateEntity(
|
||||
task_id=str(uuid.uuid4()),
|
||||
app_config=pipeline_config,
|
||||
pipeline_config=pipeline_config,
|
||||
datasource_type=args.get("datasource_type", ""),
|
||||
datasource_info=args.get("datasource_info", {}),
|
||||
batch=args.get("batch", ""),
|
||||
document_id=args.get("document_id"),
|
||||
dataset_id=dataset.id,
|
||||
inputs={},
|
||||
files=[],
|
||||
user_id=user.id,
|
||||
stream=streaming,
|
||||
invoke_from=InvokeFrom.DEBUGGER,
|
||||
extras={"auto_generate_conversation_name": False},
|
||||
single_loop_run=RagPipelineGenerateEntity.SingleLoopRunEntity(node_id=node_id, inputs=args["inputs"]),
|
||||
workflow_execution_id=str(uuid.uuid4()),
|
||||
)
|
||||
contexts.plugin_tool_providers.set({})
|
||||
contexts.plugin_tool_providers_lock.set(threading.Lock())
|
||||
|
||||
# Create workflow node execution repository
|
||||
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
|
||||
|
||||
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
|
||||
session_factory=session_factory,
|
||||
user=user,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
triggered_from=WorkflowRunTriggeredFrom.RAG_PIPELINE_DEBUGGING,
|
||||
)
|
||||
|
||||
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
|
||||
session_factory=session_factory,
|
||||
user=user,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
triggered_from=WorkflowNodeExecutionTriggeredFrom.SINGLE_STEP,
|
||||
)
|
||||
draft_var_srv = WorkflowDraftVariableService(db.session())
|
||||
draft_var_srv.prefill_conversation_variable_default_values(workflow)
|
||||
var_loader = DraftVarLoader(
|
||||
engine=db.engine,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
tenant_id=application_generate_entity.app_config.tenant_id,
|
||||
)
|
||||
|
||||
return self._generate(
|
||||
flask_app=current_app._get_current_object(), # type: ignore
|
||||
pipeline=pipeline,
|
||||
workflow_id=workflow.id,
|
||||
user=user,
|
||||
invoke_from=InvokeFrom.DEBUGGER,
|
||||
application_generate_entity=application_generate_entity,
|
||||
workflow_execution_repository=workflow_execution_repository,
|
||||
workflow_node_execution_repository=workflow_node_execution_repository,
|
||||
streaming=streaming,
|
||||
variable_loader=var_loader,
|
||||
context=contextvars.copy_context(),
|
||||
)
|
||||
|
||||
def _generate_worker(
|
||||
self,
|
||||
flask_app: Flask,
|
||||
application_generate_entity: RagPipelineGenerateEntity,
|
||||
queue_manager: AppQueueManager,
|
||||
context: contextvars.Context,
|
||||
variable_loader: VariableLoader,
|
||||
workflow_execution_repository: WorkflowExecutionRepository,
|
||||
workflow_node_execution_repository: WorkflowNodeExecutionRepository,
|
||||
workflow_thread_pool_id: str | None = None,
|
||||
) -> None:
|
||||
"""
|
||||
Generate worker in a new thread.
|
||||
:param flask_app: Flask app
|
||||
:param application_generate_entity: application generate entity
|
||||
:param queue_manager: queue manager
|
||||
:param workflow_thread_pool_id: workflow thread pool id
|
||||
:return:
|
||||
"""
|
||||
|
||||
with preserve_flask_contexts(flask_app, context_vars=context):
|
||||
try:
|
||||
with Session(db.engine, expire_on_commit=False) as session:
|
||||
workflow = session.scalar(
|
||||
select(Workflow).where(
|
||||
Workflow.tenant_id == application_generate_entity.app_config.tenant_id,
|
||||
Workflow.app_id == application_generate_entity.app_config.app_id,
|
||||
Workflow.id == application_generate_entity.app_config.workflow_id,
|
||||
)
|
||||
)
|
||||
if workflow is None:
|
||||
raise ValueError("Workflow not found")
|
||||
|
||||
# Determine system_user_id based on invocation source
|
||||
is_external_api_call = application_generate_entity.invoke_from in {
|
||||
InvokeFrom.WEB_APP,
|
||||
InvokeFrom.SERVICE_API,
|
||||
}
|
||||
|
||||
if is_external_api_call:
|
||||
# For external API calls, use end user's session ID
|
||||
end_user = session.scalar(
|
||||
select(EndUser).where(EndUser.id == application_generate_entity.user_id)
|
||||
)
|
||||
system_user_id = end_user.session_id if end_user else ""
|
||||
else:
|
||||
# For internal calls, use the original user ID
|
||||
system_user_id = application_generate_entity.user_id
|
||||
# workflow app
|
||||
runner = PipelineRunner(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
workflow_thread_pool_id=workflow_thread_pool_id,
|
||||
variable_loader=variable_loader,
|
||||
workflow=workflow,
|
||||
system_user_id=system_user_id,
|
||||
workflow_execution_repository=workflow_execution_repository,
|
||||
workflow_node_execution_repository=workflow_node_execution_repository,
|
||||
)
|
||||
|
||||
runner.run()
|
||||
except GenerateTaskStoppedError:
|
||||
pass
|
||||
except InvokeAuthorizationError:
|
||||
queue_manager.publish_error(
|
||||
InvokeAuthorizationError("Incorrect API key provided"), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
except ValidationError as e:
|
||||
logger.exception("Validation Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
except ValueError as e:
|
||||
if dify_config.DEBUG:
|
||||
logger.exception("Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
except Exception as e:
|
||||
logger.exception("Unknown Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
finally:
|
||||
db.session.close()
|
||||
|
||||
def _handle_response(
|
||||
self,
|
||||
application_generate_entity: RagPipelineGenerateEntity,
|
||||
workflow: Workflow,
|
||||
queue_manager: AppQueueManager,
|
||||
user: Union[Account, EndUser],
|
||||
draft_var_saver_factory: DraftVariableSaverFactory,
|
||||
stream: bool = False,
|
||||
) -> Union[WorkflowAppBlockingResponse, Generator[WorkflowAppStreamResponse, None, None]]:
|
||||
"""
|
||||
Handle response.
|
||||
:param application_generate_entity: application generate entity
|
||||
:param workflow: workflow
|
||||
:param queue_manager: queue manager
|
||||
:param user: account or end user
|
||||
:param stream: is stream
|
||||
:return:
|
||||
"""
|
||||
# init generate task pipeline
|
||||
generate_task_pipeline = WorkflowAppGenerateTaskPipeline(
|
||||
application_generate_entity=application_generate_entity,
|
||||
workflow=workflow,
|
||||
queue_manager=queue_manager,
|
||||
user=user,
|
||||
stream=stream,
|
||||
draft_var_saver_factory=draft_var_saver_factory,
|
||||
)
|
||||
|
||||
try:
|
||||
return generate_task_pipeline.process()
|
||||
except ValueError as e:
|
||||
if len(e.args) > 0 and e.args[0] == "I/O operation on closed file.": # ignore this error
|
||||
raise GenerateTaskStoppedError()
|
||||
else:
|
||||
logger.exception(
|
||||
"Fails to process generate task pipeline, task_id: %r",
|
||||
application_generate_entity.task_id,
|
||||
)
|
||||
raise e
|
||||
|
||||
def _build_document(
|
||||
self,
|
||||
tenant_id: str,
|
||||
dataset_id: str,
|
||||
built_in_field_enabled: bool,
|
||||
datasource_type: str,
|
||||
datasource_info: Mapping[str, Any],
|
||||
created_from: str,
|
||||
position: int,
|
||||
account: Union[Account, EndUser],
|
||||
batch: str,
|
||||
document_form: str,
|
||||
):
|
||||
if datasource_type == "local_file":
|
||||
name = datasource_info.get("name", "untitled")
|
||||
elif datasource_type == "online_document":
|
||||
name = datasource_info.get("page", {}).get("page_name", "untitled")
|
||||
elif datasource_type == "website_crawl":
|
||||
name = datasource_info.get("title", "untitled")
|
||||
elif datasource_type == "online_drive":
|
||||
name = datasource_info.get("name", "untitled")
|
||||
else:
|
||||
raise ValueError(f"Unsupported datasource type: {datasource_type}")
|
||||
|
||||
document = Document(
|
||||
tenant_id=tenant_id,
|
||||
dataset_id=dataset_id,
|
||||
position=position,
|
||||
data_source_type=datasource_type,
|
||||
data_source_info=json.dumps(datasource_info),
|
||||
batch=batch,
|
||||
name=name,
|
||||
created_from=created_from,
|
||||
created_by=account.id,
|
||||
doc_form=document_form,
|
||||
)
|
||||
doc_metadata = {}
|
||||
if built_in_field_enabled:
|
||||
doc_metadata = {
|
||||
BuiltInField.document_name: name,
|
||||
BuiltInField.uploader: account.name,
|
||||
BuiltInField.upload_date: datetime.datetime.now(datetime.UTC).strftime("%Y-%m-%d %H:%M:%S"),
|
||||
BuiltInField.last_update_date: datetime.datetime.now(datetime.UTC).strftime("%Y-%m-%d %H:%M:%S"),
|
||||
BuiltInField.source: datasource_type,
|
||||
}
|
||||
if doc_metadata:
|
||||
document.doc_metadata = doc_metadata
|
||||
return document
|
||||
|
||||
def _format_datasource_info_list(
|
||||
self,
|
||||
datasource_type: str,
|
||||
datasource_info_list: list[Mapping[str, Any]],
|
||||
pipeline: Pipeline,
|
||||
workflow: Workflow,
|
||||
start_node_id: str,
|
||||
user: Union[Account, EndUser],
|
||||
) -> list[Mapping[str, Any]]:
|
||||
"""
|
||||
Format datasource info list.
|
||||
"""
|
||||
if datasource_type == "online_drive":
|
||||
all_files: list[Mapping[str, Any]] = []
|
||||
datasource_node_data = None
|
||||
datasource_nodes = workflow.graph_dict.get("nodes", [])
|
||||
for datasource_node in datasource_nodes:
|
||||
if datasource_node.get("id") == start_node_id:
|
||||
datasource_node_data = datasource_node.get("data", {})
|
||||
break
|
||||
if not datasource_node_data:
|
||||
raise ValueError("Datasource node data not found")
|
||||
|
||||
from core.datasource.datasource_manager import DatasourceManager
|
||||
|
||||
datasource_runtime = DatasourceManager.get_datasource_runtime(
|
||||
provider_id=f"{datasource_node_data.get('plugin_id')}/{datasource_node_data.get('provider_name')}",
|
||||
datasource_name=datasource_node_data.get("datasource_name"),
|
||||
tenant_id=pipeline.tenant_id,
|
||||
datasource_type=DatasourceProviderType(datasource_type),
|
||||
)
|
||||
datasource_provider_service = DatasourceProviderService()
|
||||
credentials = datasource_provider_service.get_datasource_credentials(
|
||||
tenant_id=pipeline.tenant_id,
|
||||
provider=datasource_node_data.get("provider_name"),
|
||||
plugin_id=datasource_node_data.get("plugin_id"),
|
||||
credential_id=datasource_node_data.get("credential_id"),
|
||||
)
|
||||
if credentials:
|
||||
datasource_runtime.runtime.credentials = credentials
|
||||
datasource_runtime = cast(OnlineDriveDatasourcePlugin, datasource_runtime)
|
||||
|
||||
for datasource_info in datasource_info_list:
|
||||
if datasource_info.get("id") and datasource_info.get("type") == "folder":
|
||||
# get all files in the folder
|
||||
self._get_files_in_folder(
|
||||
datasource_runtime,
|
||||
datasource_info.get("id", ""),
|
||||
datasource_info.get("bucket", None),
|
||||
user.id,
|
||||
all_files,
|
||||
datasource_info,
|
||||
None,
|
||||
)
|
||||
else:
|
||||
all_files.append(
|
||||
{
|
||||
"id": datasource_info.get("id", ""),
|
||||
"name": datasource_info.get("name", "untitled"),
|
||||
"bucket": datasource_info.get("bucket", None),
|
||||
}
|
||||
)
|
||||
return all_files
|
||||
else:
|
||||
return datasource_info_list
|
||||
|
||||
def _get_files_in_folder(
|
||||
self,
|
||||
datasource_runtime: OnlineDriveDatasourcePlugin,
|
||||
prefix: str,
|
||||
bucket: str | None,
|
||||
user_id: str,
|
||||
all_files: list,
|
||||
datasource_info: Mapping[str, Any],
|
||||
next_page_parameters: dict | None = None,
|
||||
):
|
||||
"""
|
||||
Get files in a folder.
|
||||
"""
|
||||
result_generator = datasource_runtime.online_drive_browse_files(
|
||||
user_id=user_id,
|
||||
request=OnlineDriveBrowseFilesRequest(
|
||||
bucket=bucket,
|
||||
prefix=prefix,
|
||||
max_keys=20,
|
||||
next_page_parameters=next_page_parameters,
|
||||
),
|
||||
provider_type=datasource_runtime.datasource_provider_type(),
|
||||
)
|
||||
is_truncated = False
|
||||
for result in result_generator:
|
||||
for files in result.result:
|
||||
for file in files.files:
|
||||
if file.type == "folder":
|
||||
self._get_files_in_folder(
|
||||
datasource_runtime,
|
||||
file.id,
|
||||
bucket,
|
||||
user_id,
|
||||
all_files,
|
||||
datasource_info,
|
||||
None,
|
||||
)
|
||||
else:
|
||||
all_files.append(
|
||||
{
|
||||
"id": file.id,
|
||||
"name": file.name,
|
||||
"bucket": bucket,
|
||||
}
|
||||
)
|
||||
is_truncated = files.is_truncated
|
||||
next_page_parameters = files.next_page_parameters
|
||||
|
||||
if is_truncated:
|
||||
self._get_files_in_folder(
|
||||
datasource_runtime, prefix, bucket, user_id, all_files, datasource_info, next_page_parameters
|
||||
)
|
||||
45
dify/api/core/app/apps/pipeline/pipeline_queue_manager.py
Normal file
45
dify/api/core/app/apps/pipeline/pipeline_queue_manager.py
Normal file
@@ -0,0 +1,45 @@
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
from core.app.apps.exc import GenerateTaskStoppedError
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom
|
||||
from core.app.entities.queue_entities import (
|
||||
AppQueueEvent,
|
||||
QueueErrorEvent,
|
||||
QueueMessageEndEvent,
|
||||
QueueStopEvent,
|
||||
QueueWorkflowFailedEvent,
|
||||
QueueWorkflowPartialSuccessEvent,
|
||||
QueueWorkflowSucceededEvent,
|
||||
WorkflowQueueMessage,
|
||||
)
|
||||
|
||||
|
||||
class PipelineQueueManager(AppQueueManager):
|
||||
def __init__(self, task_id: str, user_id: str, invoke_from: InvokeFrom, app_mode: str) -> None:
|
||||
super().__init__(task_id, user_id, invoke_from)
|
||||
|
||||
self._app_mode = app_mode
|
||||
|
||||
def _publish(self, event: AppQueueEvent, pub_from: PublishFrom) -> None:
|
||||
"""
|
||||
Publish event to queue
|
||||
:param event:
|
||||
:param pub_from:
|
||||
:return:
|
||||
"""
|
||||
message = WorkflowQueueMessage(task_id=self._task_id, app_mode=self._app_mode, event=event)
|
||||
|
||||
self._q.put(message)
|
||||
|
||||
if isinstance(
|
||||
event,
|
||||
QueueStopEvent
|
||||
| QueueErrorEvent
|
||||
| QueueMessageEndEvent
|
||||
| QueueWorkflowSucceededEvent
|
||||
| QueueWorkflowFailedEvent
|
||||
| QueueWorkflowPartialSuccessEvent,
|
||||
):
|
||||
self.stop_listen()
|
||||
|
||||
if pub_from == PublishFrom.APPLICATION_MANAGER and self._is_stopped():
|
||||
raise GenerateTaskStoppedError()
|
||||
287
dify/api/core/app/apps/pipeline/pipeline_runner.py
Normal file
287
dify/api/core/app/apps/pipeline/pipeline_runner.py
Normal file
@@ -0,0 +1,287 @@
|
||||
import logging
|
||||
import time
|
||||
from typing import cast
|
||||
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager
|
||||
from core.app.apps.pipeline.pipeline_config_manager import PipelineConfig
|
||||
from core.app.apps.workflow_app_runner import WorkflowBasedAppRunner
|
||||
from core.app.entities.app_invoke_entities import (
|
||||
InvokeFrom,
|
||||
RagPipelineGenerateEntity,
|
||||
)
|
||||
from core.variables.variables import RAGPipelineVariable, RAGPipelineVariableInput
|
||||
from core.workflow.entities.graph_init_params import GraphInitParams
|
||||
from core.workflow.enums import WorkflowType
|
||||
from core.workflow.graph import Graph
|
||||
from core.workflow.graph_engine.layers.persistence import PersistenceWorkflowInfo, WorkflowPersistenceLayer
|
||||
from core.workflow.graph_events import GraphEngineEvent, GraphRunFailedEvent
|
||||
from core.workflow.nodes.node_factory import DifyNodeFactory
|
||||
from core.workflow.repositories.workflow_execution_repository import WorkflowExecutionRepository
|
||||
from core.workflow.repositories.workflow_node_execution_repository import WorkflowNodeExecutionRepository
|
||||
from core.workflow.runtime import GraphRuntimeState, VariablePool
|
||||
from core.workflow.system_variable import SystemVariable
|
||||
from core.workflow.variable_loader import VariableLoader
|
||||
from core.workflow.workflow_entry import WorkflowEntry
|
||||
from extensions.ext_database import db
|
||||
from models.dataset import Document, Pipeline
|
||||
from models.enums import UserFrom
|
||||
from models.model import EndUser
|
||||
from models.workflow import Workflow
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class PipelineRunner(WorkflowBasedAppRunner):
|
||||
"""
|
||||
Pipeline Application Runner
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
application_generate_entity: RagPipelineGenerateEntity,
|
||||
queue_manager: AppQueueManager,
|
||||
variable_loader: VariableLoader,
|
||||
workflow: Workflow,
|
||||
system_user_id: str,
|
||||
workflow_execution_repository: WorkflowExecutionRepository,
|
||||
workflow_node_execution_repository: WorkflowNodeExecutionRepository,
|
||||
workflow_thread_pool_id: str | None = None,
|
||||
) -> None:
|
||||
"""
|
||||
:param application_generate_entity: application generate entity
|
||||
:param queue_manager: application queue manager
|
||||
:param workflow_thread_pool_id: workflow thread pool id
|
||||
"""
|
||||
super().__init__(
|
||||
queue_manager=queue_manager,
|
||||
variable_loader=variable_loader,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
)
|
||||
self.application_generate_entity = application_generate_entity
|
||||
self.workflow_thread_pool_id = workflow_thread_pool_id
|
||||
self._workflow = workflow
|
||||
self._sys_user_id = system_user_id
|
||||
self._workflow_execution_repository = workflow_execution_repository
|
||||
self._workflow_node_execution_repository = workflow_node_execution_repository
|
||||
|
||||
def _get_app_id(self) -> str:
|
||||
return self.application_generate_entity.app_config.app_id
|
||||
|
||||
def run(self) -> None:
|
||||
"""
|
||||
Run application
|
||||
"""
|
||||
app_config = self.application_generate_entity.app_config
|
||||
app_config = cast(PipelineConfig, app_config)
|
||||
|
||||
user_id = None
|
||||
if self.application_generate_entity.invoke_from in {InvokeFrom.WEB_APP, InvokeFrom.SERVICE_API}:
|
||||
end_user = db.session.query(EndUser).where(EndUser.id == self.application_generate_entity.user_id).first()
|
||||
if end_user:
|
||||
user_id = end_user.session_id
|
||||
else:
|
||||
user_id = self.application_generate_entity.user_id
|
||||
|
||||
pipeline = db.session.query(Pipeline).where(Pipeline.id == app_config.app_id).first()
|
||||
if not pipeline:
|
||||
raise ValueError("Pipeline not found")
|
||||
|
||||
workflow = self.get_workflow(pipeline=pipeline, workflow_id=app_config.workflow_id)
|
||||
if not workflow:
|
||||
raise ValueError("Workflow not initialized")
|
||||
|
||||
db.session.close()
|
||||
|
||||
# if only single iteration run is requested
|
||||
if self.application_generate_entity.single_iteration_run or self.application_generate_entity.single_loop_run:
|
||||
# Handle single iteration or single loop run
|
||||
graph, variable_pool, graph_runtime_state = self._prepare_single_node_execution(
|
||||
workflow=workflow,
|
||||
single_iteration_run=self.application_generate_entity.single_iteration_run,
|
||||
single_loop_run=self.application_generate_entity.single_loop_run,
|
||||
)
|
||||
else:
|
||||
inputs = self.application_generate_entity.inputs
|
||||
files = self.application_generate_entity.files
|
||||
|
||||
# Create a variable pool.
|
||||
system_inputs = SystemVariable(
|
||||
files=files,
|
||||
user_id=user_id,
|
||||
app_id=app_config.app_id,
|
||||
workflow_id=app_config.workflow_id,
|
||||
workflow_execution_id=self.application_generate_entity.workflow_execution_id,
|
||||
document_id=self.application_generate_entity.document_id,
|
||||
original_document_id=self.application_generate_entity.original_document_id,
|
||||
batch=self.application_generate_entity.batch,
|
||||
dataset_id=self.application_generate_entity.dataset_id,
|
||||
datasource_type=self.application_generate_entity.datasource_type,
|
||||
datasource_info=self.application_generate_entity.datasource_info,
|
||||
invoke_from=self.application_generate_entity.invoke_from.value,
|
||||
)
|
||||
|
||||
rag_pipeline_variables = []
|
||||
if workflow.rag_pipeline_variables:
|
||||
for v in workflow.rag_pipeline_variables:
|
||||
rag_pipeline_variable = RAGPipelineVariable.model_validate(v)
|
||||
if (
|
||||
rag_pipeline_variable.belong_to_node_id
|
||||
in (self.application_generate_entity.start_node_id, "shared")
|
||||
) and rag_pipeline_variable.variable in inputs:
|
||||
rag_pipeline_variables.append(
|
||||
RAGPipelineVariableInput(
|
||||
variable=rag_pipeline_variable,
|
||||
value=inputs[rag_pipeline_variable.variable],
|
||||
)
|
||||
)
|
||||
|
||||
variable_pool = VariablePool(
|
||||
system_variables=system_inputs,
|
||||
user_inputs=inputs,
|
||||
environment_variables=workflow.environment_variables,
|
||||
conversation_variables=[],
|
||||
rag_pipeline_variables=rag_pipeline_variables,
|
||||
)
|
||||
graph_runtime_state = GraphRuntimeState(variable_pool=variable_pool, start_at=time.perf_counter())
|
||||
|
||||
# init graph
|
||||
graph = self._init_rag_pipeline_graph(
|
||||
graph_runtime_state=graph_runtime_state,
|
||||
start_node_id=self.application_generate_entity.start_node_id,
|
||||
workflow=workflow,
|
||||
)
|
||||
|
||||
# RUN WORKFLOW
|
||||
workflow_entry = WorkflowEntry(
|
||||
tenant_id=workflow.tenant_id,
|
||||
app_id=workflow.app_id,
|
||||
workflow_id=workflow.id,
|
||||
graph=graph,
|
||||
graph_config=workflow.graph_dict,
|
||||
user_id=self.application_generate_entity.user_id,
|
||||
user_from=(
|
||||
UserFrom.ACCOUNT
|
||||
if self.application_generate_entity.invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER}
|
||||
else UserFrom.END_USER
|
||||
),
|
||||
invoke_from=self.application_generate_entity.invoke_from,
|
||||
call_depth=self.application_generate_entity.call_depth,
|
||||
graph_runtime_state=graph_runtime_state,
|
||||
variable_pool=variable_pool,
|
||||
)
|
||||
|
||||
self._queue_manager.graph_runtime_state = graph_runtime_state
|
||||
|
||||
persistence_layer = WorkflowPersistenceLayer(
|
||||
application_generate_entity=self.application_generate_entity,
|
||||
workflow_info=PersistenceWorkflowInfo(
|
||||
workflow_id=workflow.id,
|
||||
workflow_type=WorkflowType(workflow.type),
|
||||
version=workflow.version,
|
||||
graph_data=workflow.graph_dict,
|
||||
),
|
||||
workflow_execution_repository=self._workflow_execution_repository,
|
||||
workflow_node_execution_repository=self._workflow_node_execution_repository,
|
||||
trace_manager=self.application_generate_entity.trace_manager,
|
||||
)
|
||||
|
||||
workflow_entry.graph_engine.layer(persistence_layer)
|
||||
|
||||
generator = workflow_entry.run()
|
||||
|
||||
for event in generator:
|
||||
self._update_document_status(
|
||||
event, self.application_generate_entity.document_id, self.application_generate_entity.dataset_id
|
||||
)
|
||||
self._handle_event(workflow_entry, event)
|
||||
|
||||
def get_workflow(self, pipeline: Pipeline, workflow_id: str) -> Workflow | None:
|
||||
"""
|
||||
Get workflow
|
||||
"""
|
||||
# fetch workflow by workflow_id
|
||||
workflow = (
|
||||
db.session.query(Workflow)
|
||||
.where(Workflow.tenant_id == pipeline.tenant_id, Workflow.app_id == pipeline.id, Workflow.id == workflow_id)
|
||||
.first()
|
||||
)
|
||||
|
||||
# return workflow
|
||||
return workflow
|
||||
|
||||
def _init_rag_pipeline_graph(
|
||||
self, workflow: Workflow, graph_runtime_state: GraphRuntimeState, start_node_id: str | None = None
|
||||
) -> Graph:
|
||||
"""
|
||||
Init pipeline graph
|
||||
"""
|
||||
graph_config = workflow.graph_dict
|
||||
if "nodes" not in graph_config or "edges" not in graph_config:
|
||||
raise ValueError("nodes or edges not found in workflow graph")
|
||||
|
||||
if not isinstance(graph_config.get("nodes"), list):
|
||||
raise ValueError("nodes in workflow graph must be a list")
|
||||
|
||||
if not isinstance(graph_config.get("edges"), list):
|
||||
raise ValueError("edges in workflow graph must be a list")
|
||||
# nodes = graph_config.get("nodes", [])
|
||||
# edges = graph_config.get("edges", [])
|
||||
# real_run_nodes = []
|
||||
# real_edges = []
|
||||
# exclude_node_ids = []
|
||||
# for node in nodes:
|
||||
# node_id = node.get("id")
|
||||
# node_type = node.get("data", {}).get("type", "")
|
||||
# if node_type == "datasource":
|
||||
# if start_node_id != node_id:
|
||||
# exclude_node_ids.append(node_id)
|
||||
# continue
|
||||
# real_run_nodes.append(node)
|
||||
|
||||
# for edge in edges:
|
||||
# if edge.get("source") in exclude_node_ids:
|
||||
# continue
|
||||
# real_edges.append(edge)
|
||||
# graph_config = dict(graph_config)
|
||||
# graph_config["nodes"] = real_run_nodes
|
||||
# graph_config["edges"] = real_edges
|
||||
# init graph
|
||||
# Create required parameters for Graph.init
|
||||
graph_init_params = GraphInitParams(
|
||||
tenant_id=workflow.tenant_id,
|
||||
app_id=self._app_id,
|
||||
workflow_id=workflow.id,
|
||||
graph_config=graph_config,
|
||||
user_id=self.application_generate_entity.user_id,
|
||||
user_from=UserFrom.ACCOUNT,
|
||||
invoke_from=InvokeFrom.SERVICE_API,
|
||||
call_depth=0,
|
||||
)
|
||||
|
||||
node_factory = DifyNodeFactory(
|
||||
graph_init_params=graph_init_params,
|
||||
graph_runtime_state=graph_runtime_state,
|
||||
)
|
||||
graph = Graph.init(graph_config=graph_config, node_factory=node_factory, root_node_id=start_node_id)
|
||||
|
||||
if not graph:
|
||||
raise ValueError("graph not found in workflow")
|
||||
|
||||
return graph
|
||||
|
||||
def _update_document_status(self, event: GraphEngineEvent, document_id: str | None, dataset_id: str | None) -> None:
|
||||
"""
|
||||
Update document status
|
||||
"""
|
||||
if isinstance(event, GraphRunFailedEvent):
|
||||
if document_id and dataset_id:
|
||||
document = (
|
||||
db.session.query(Document)
|
||||
.where(Document.id == document_id, Document.dataset_id == dataset_id)
|
||||
.first()
|
||||
)
|
||||
if document:
|
||||
document.indexing_status = "error"
|
||||
document.error = event.error or "Unknown error"
|
||||
db.session.add(document)
|
||||
db.session.commit()
|
||||
0
dify/api/core/app/apps/workflow/__init__.py
Normal file
0
dify/api/core/app/apps/workflow/__init__.py
Normal file
67
dify/api/core/app/apps/workflow/app_config_manager.py
Normal file
67
dify/api/core/app/apps/workflow/app_config_manager.py
Normal file
@@ -0,0 +1,67 @@
|
||||
from core.app.app_config.base_app_config_manager import BaseAppConfigManager
|
||||
from core.app.app_config.common.sensitive_word_avoidance.manager import SensitiveWordAvoidanceConfigManager
|
||||
from core.app.app_config.entities import WorkflowUIBasedAppConfig
|
||||
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
|
||||
from core.app.app_config.features.text_to_speech.manager import TextToSpeechConfigManager
|
||||
from core.app.app_config.workflow_ui_based_app.variables.manager import WorkflowVariablesConfigManager
|
||||
from models.model import App, AppMode
|
||||
from models.workflow import Workflow
|
||||
|
||||
|
||||
class WorkflowAppConfig(WorkflowUIBasedAppConfig):
|
||||
"""
|
||||
Workflow App Config Entity.
|
||||
"""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class WorkflowAppConfigManager(BaseAppConfigManager):
|
||||
@classmethod
|
||||
def get_app_config(cls, app_model: App, workflow: Workflow) -> WorkflowAppConfig:
|
||||
features_dict = workflow.features_dict
|
||||
|
||||
app_mode = AppMode.value_of(app_model.mode)
|
||||
app_config = WorkflowAppConfig(
|
||||
tenant_id=app_model.tenant_id,
|
||||
app_id=app_model.id,
|
||||
app_mode=app_mode,
|
||||
workflow_id=workflow.id,
|
||||
sensitive_word_avoidance=SensitiveWordAvoidanceConfigManager.convert(config=features_dict),
|
||||
variables=WorkflowVariablesConfigManager.convert(workflow=workflow),
|
||||
additional_features=cls.convert_features(features_dict, app_mode),
|
||||
)
|
||||
|
||||
return app_config
|
||||
|
||||
@classmethod
|
||||
def config_validate(cls, tenant_id: str, config: dict, only_structure_validate: bool = False):
|
||||
"""
|
||||
Validate for workflow app model config
|
||||
|
||||
:param tenant_id: tenant id
|
||||
:param config: app model config args
|
||||
:param only_structure_validate: only validate the structure of the config
|
||||
"""
|
||||
related_config_keys = []
|
||||
|
||||
# file upload validation
|
||||
config, current_related_config_keys = FileUploadConfigManager.validate_and_set_defaults(config=config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# text_to_speech
|
||||
config, current_related_config_keys = TextToSpeechConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# moderation validation
|
||||
config, current_related_config_keys = SensitiveWordAvoidanceConfigManager.validate_and_set_defaults(
|
||||
tenant_id=tenant_id, config=config, only_structure_validate=only_structure_validate
|
||||
)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
related_config_keys = list(set(related_config_keys))
|
||||
|
||||
# Filter out extra parameters
|
||||
filtered_config = {key: config.get(key) for key in related_config_keys}
|
||||
|
||||
return filtered_config
|
||||
574
dify/api/core/app/apps/workflow/app_generator.py
Normal file
574
dify/api/core/app/apps/workflow/app_generator.py
Normal file
@@ -0,0 +1,574 @@
|
||||
import contextvars
|
||||
import logging
|
||||
import threading
|
||||
import uuid
|
||||
from collections.abc import Generator, Mapping, Sequence
|
||||
from typing import Any, Literal, Union, overload
|
||||
|
||||
from flask import Flask, current_app
|
||||
from pydantic import ValidationError
|
||||
from sqlalchemy import select
|
||||
from sqlalchemy.orm import Session, sessionmaker
|
||||
|
||||
import contexts
|
||||
from configs import dify_config
|
||||
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
|
||||
from core.app.apps.base_app_generator import BaseAppGenerator
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
from core.app.apps.exc import GenerateTaskStoppedError
|
||||
from core.app.apps.workflow.app_config_manager import WorkflowAppConfigManager
|
||||
from core.app.apps.workflow.app_queue_manager import WorkflowAppQueueManager
|
||||
from core.app.apps.workflow.app_runner import WorkflowAppRunner
|
||||
from core.app.apps.workflow.generate_response_converter import WorkflowAppGenerateResponseConverter
|
||||
from core.app.apps.workflow.generate_task_pipeline import WorkflowAppGenerateTaskPipeline
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom, WorkflowAppGenerateEntity
|
||||
from core.app.entities.task_entities import WorkflowAppBlockingResponse, WorkflowAppStreamResponse
|
||||
from core.helper.trace_id_helper import extract_external_trace_id_from_args
|
||||
from core.model_runtime.errors.invoke import InvokeAuthorizationError
|
||||
from core.ops.ops_trace_manager import TraceQueueManager
|
||||
from core.repositories import DifyCoreRepositoryFactory
|
||||
from core.workflow.graph_engine.layers.base import GraphEngineLayer
|
||||
from core.workflow.repositories.draft_variable_repository import DraftVariableSaverFactory
|
||||
from core.workflow.repositories.workflow_execution_repository import WorkflowExecutionRepository
|
||||
from core.workflow.repositories.workflow_node_execution_repository import WorkflowNodeExecutionRepository
|
||||
from core.workflow.variable_loader import DUMMY_VARIABLE_LOADER, VariableLoader
|
||||
from extensions.ext_database import db
|
||||
from factories import file_factory
|
||||
from libs.flask_utils import preserve_flask_contexts
|
||||
from models import Account, App, EndUser, Workflow, WorkflowNodeExecutionTriggeredFrom
|
||||
from models.enums import WorkflowRunTriggeredFrom
|
||||
from services.workflow_draft_variable_service import DraftVarLoader, WorkflowDraftVariableService
|
||||
|
||||
SKIP_PREPARE_USER_INPUTS_KEY = "_skip_prepare_user_inputs"
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class WorkflowAppGenerator(BaseAppGenerator):
|
||||
@staticmethod
|
||||
def _should_prepare_user_inputs(args: Mapping[str, Any]) -> bool:
|
||||
return not bool(args.get(SKIP_PREPARE_USER_INPUTS_KEY))
|
||||
|
||||
@overload
|
||||
def generate(
|
||||
self,
|
||||
*,
|
||||
app_model: App,
|
||||
workflow: Workflow,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: Literal[True],
|
||||
call_depth: int,
|
||||
triggered_from: WorkflowRunTriggeredFrom | None = None,
|
||||
root_node_id: str | None = None,
|
||||
graph_engine_layers: Sequence[GraphEngineLayer] = (),
|
||||
) -> Generator[Mapping[str, Any] | str, None, None]: ...
|
||||
|
||||
@overload
|
||||
def generate(
|
||||
self,
|
||||
*,
|
||||
app_model: App,
|
||||
workflow: Workflow,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: Literal[False],
|
||||
call_depth: int,
|
||||
triggered_from: WorkflowRunTriggeredFrom | None = None,
|
||||
root_node_id: str | None = None,
|
||||
graph_engine_layers: Sequence[GraphEngineLayer] = (),
|
||||
) -> Mapping[str, Any]: ...
|
||||
|
||||
@overload
|
||||
def generate(
|
||||
self,
|
||||
*,
|
||||
app_model: App,
|
||||
workflow: Workflow,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: bool,
|
||||
call_depth: int,
|
||||
triggered_from: WorkflowRunTriggeredFrom | None = None,
|
||||
root_node_id: str | None = None,
|
||||
graph_engine_layers: Sequence[GraphEngineLayer] = (),
|
||||
) -> Union[Mapping[str, Any], Generator[Mapping[str, Any] | str, None, None]]: ...
|
||||
|
||||
def generate(
|
||||
self,
|
||||
*,
|
||||
app_model: App,
|
||||
workflow: Workflow,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: bool = True,
|
||||
call_depth: int = 0,
|
||||
triggered_from: WorkflowRunTriggeredFrom | None = None,
|
||||
root_node_id: str | None = None,
|
||||
graph_engine_layers: Sequence[GraphEngineLayer] = (),
|
||||
) -> Union[Mapping[str, Any], Generator[Mapping[str, Any] | str, None, None]]:
|
||||
files: Sequence[Mapping[str, Any]] = args.get("files") or []
|
||||
|
||||
# parse files
|
||||
# TODO(QuantumGhost): Move file parsing logic to the API controller layer
|
||||
# for better separation of concerns.
|
||||
#
|
||||
# For implementation reference, see the `_parse_file` function and
|
||||
# `DraftWorkflowNodeRunApi` class which handle this properly.
|
||||
file_extra_config = FileUploadConfigManager.convert(workflow.features_dict, is_vision=False)
|
||||
system_files = file_factory.build_from_mappings(
|
||||
mappings=files,
|
||||
tenant_id=app_model.tenant_id,
|
||||
config=file_extra_config,
|
||||
strict_type_validation=True if invoke_from == InvokeFrom.SERVICE_API else False,
|
||||
)
|
||||
|
||||
# convert to app config
|
||||
app_config = WorkflowAppConfigManager.get_app_config(
|
||||
app_model=app_model,
|
||||
workflow=workflow,
|
||||
)
|
||||
|
||||
# get tracing instance
|
||||
trace_manager = TraceQueueManager(
|
||||
app_id=app_model.id,
|
||||
user_id=user.id if isinstance(user, Account) else user.session_id,
|
||||
)
|
||||
|
||||
inputs: Mapping[str, Any] = args["inputs"]
|
||||
|
||||
extras = {
|
||||
**extract_external_trace_id_from_args(args),
|
||||
}
|
||||
workflow_run_id = str(uuid.uuid4())
|
||||
# FIXME (Yeuoly): we need to remove the SKIP_PREPARE_USER_INPUTS_KEY from the args
|
||||
# trigger shouldn't prepare user inputs
|
||||
if self._should_prepare_user_inputs(args):
|
||||
inputs = self._prepare_user_inputs(
|
||||
user_inputs=inputs,
|
||||
variables=app_config.variables,
|
||||
tenant_id=app_model.tenant_id,
|
||||
strict_type_validation=True if invoke_from == InvokeFrom.SERVICE_API else False,
|
||||
)
|
||||
# init application generate entity
|
||||
application_generate_entity = WorkflowAppGenerateEntity(
|
||||
task_id=str(uuid.uuid4()),
|
||||
app_config=app_config,
|
||||
file_upload_config=file_extra_config,
|
||||
inputs=inputs,
|
||||
files=list(system_files),
|
||||
user_id=user.id,
|
||||
stream=streaming,
|
||||
invoke_from=invoke_from,
|
||||
call_depth=call_depth,
|
||||
trace_manager=trace_manager,
|
||||
workflow_execution_id=workflow_run_id,
|
||||
extras=extras,
|
||||
)
|
||||
|
||||
contexts.plugin_tool_providers.set({})
|
||||
contexts.plugin_tool_providers_lock.set(threading.Lock())
|
||||
|
||||
# Create repositories
|
||||
#
|
||||
# Create session factory
|
||||
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
|
||||
# Create workflow execution(aka workflow run) repository
|
||||
if triggered_from is not None:
|
||||
# Use explicitly provided triggered_from (for async triggers)
|
||||
workflow_triggered_from = triggered_from
|
||||
elif invoke_from == InvokeFrom.DEBUGGER:
|
||||
workflow_triggered_from = WorkflowRunTriggeredFrom.DEBUGGING
|
||||
else:
|
||||
workflow_triggered_from = WorkflowRunTriggeredFrom.APP_RUN
|
||||
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
|
||||
session_factory=session_factory,
|
||||
user=user,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
triggered_from=workflow_triggered_from,
|
||||
)
|
||||
# Create workflow node execution repository
|
||||
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
|
||||
session_factory=session_factory,
|
||||
user=user,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
triggered_from=WorkflowNodeExecutionTriggeredFrom.WORKFLOW_RUN,
|
||||
)
|
||||
|
||||
return self._generate(
|
||||
app_model=app_model,
|
||||
workflow=workflow,
|
||||
user=user,
|
||||
application_generate_entity=application_generate_entity,
|
||||
invoke_from=invoke_from,
|
||||
workflow_execution_repository=workflow_execution_repository,
|
||||
workflow_node_execution_repository=workflow_node_execution_repository,
|
||||
streaming=streaming,
|
||||
root_node_id=root_node_id,
|
||||
graph_engine_layers=graph_engine_layers,
|
||||
)
|
||||
|
||||
def resume(self, *, workflow_run_id: str) -> None:
|
||||
"""
|
||||
@TBD
|
||||
"""
|
||||
pass
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
*,
|
||||
app_model: App,
|
||||
workflow: Workflow,
|
||||
user: Union[Account, EndUser],
|
||||
application_generate_entity: WorkflowAppGenerateEntity,
|
||||
invoke_from: InvokeFrom,
|
||||
workflow_execution_repository: WorkflowExecutionRepository,
|
||||
workflow_node_execution_repository: WorkflowNodeExecutionRepository,
|
||||
streaming: bool = True,
|
||||
variable_loader: VariableLoader = DUMMY_VARIABLE_LOADER,
|
||||
root_node_id: str | None = None,
|
||||
graph_engine_layers: Sequence[GraphEngineLayer] = (),
|
||||
) -> Union[Mapping[str, Any], Generator[str | Mapping[str, Any], None, None]]:
|
||||
"""
|
||||
Generate App response.
|
||||
|
||||
:param app_model: App
|
||||
:param workflow: Workflow
|
||||
:param user: account or end user
|
||||
:param application_generate_entity: application generate entity
|
||||
:param invoke_from: invoke from source
|
||||
:param workflow_execution_repository: repository for workflow execution
|
||||
:param workflow_node_execution_repository: repository for workflow node execution
|
||||
:param streaming: is stream
|
||||
"""
|
||||
# init queue manager
|
||||
queue_manager = WorkflowAppQueueManager(
|
||||
task_id=application_generate_entity.task_id,
|
||||
user_id=application_generate_entity.user_id,
|
||||
invoke_from=application_generate_entity.invoke_from,
|
||||
app_mode=app_model.mode,
|
||||
)
|
||||
|
||||
# new thread with request context and contextvars
|
||||
context = contextvars.copy_context()
|
||||
|
||||
# release database connection, because the following new thread operations may take a long time
|
||||
db.session.close()
|
||||
|
||||
worker_thread = threading.Thread(
|
||||
target=self._generate_worker,
|
||||
kwargs={
|
||||
"flask_app": current_app._get_current_object(), # type: ignore
|
||||
"application_generate_entity": application_generate_entity,
|
||||
"queue_manager": queue_manager,
|
||||
"context": context,
|
||||
"variable_loader": variable_loader,
|
||||
"root_node_id": root_node_id,
|
||||
"workflow_execution_repository": workflow_execution_repository,
|
||||
"workflow_node_execution_repository": workflow_node_execution_repository,
|
||||
"graph_engine_layers": graph_engine_layers,
|
||||
},
|
||||
)
|
||||
|
||||
worker_thread.start()
|
||||
|
||||
draft_var_saver_factory = self._get_draft_var_saver_factory(invoke_from, user)
|
||||
|
||||
# return response or stream generator
|
||||
response = self._handle_response(
|
||||
application_generate_entity=application_generate_entity,
|
||||
workflow=workflow,
|
||||
queue_manager=queue_manager,
|
||||
user=user,
|
||||
draft_var_saver_factory=draft_var_saver_factory,
|
||||
stream=streaming,
|
||||
)
|
||||
|
||||
return WorkflowAppGenerateResponseConverter.convert(response=response, invoke_from=invoke_from)
|
||||
|
||||
def single_iteration_generate(
|
||||
self,
|
||||
app_model: App,
|
||||
workflow: Workflow,
|
||||
node_id: str,
|
||||
user: Account | EndUser,
|
||||
args: Mapping[str, Any],
|
||||
streaming: bool = True,
|
||||
) -> Mapping[str, Any] | Generator[str | Mapping[str, Any], None, None]:
|
||||
"""
|
||||
Generate App response.
|
||||
|
||||
:param app_model: App
|
||||
:param workflow: Workflow
|
||||
:param node_id: the node id
|
||||
:param user: account or end user
|
||||
:param args: request args
|
||||
:param streaming: is streamed
|
||||
"""
|
||||
if not node_id:
|
||||
raise ValueError("node_id is required")
|
||||
|
||||
if args.get("inputs") is None:
|
||||
raise ValueError("inputs is required")
|
||||
|
||||
# convert to app config
|
||||
app_config = WorkflowAppConfigManager.get_app_config(app_model=app_model, workflow=workflow)
|
||||
|
||||
# init application generate entity
|
||||
application_generate_entity = WorkflowAppGenerateEntity(
|
||||
task_id=str(uuid.uuid4()),
|
||||
app_config=app_config,
|
||||
inputs={},
|
||||
files=[],
|
||||
user_id=user.id,
|
||||
stream=streaming,
|
||||
invoke_from=InvokeFrom.DEBUGGER,
|
||||
extras={"auto_generate_conversation_name": False},
|
||||
single_iteration_run=WorkflowAppGenerateEntity.SingleIterationRunEntity(
|
||||
node_id=node_id, inputs=args["inputs"]
|
||||
),
|
||||
workflow_execution_id=str(uuid.uuid4()),
|
||||
)
|
||||
contexts.plugin_tool_providers.set({})
|
||||
contexts.plugin_tool_providers_lock.set(threading.Lock())
|
||||
|
||||
# Create repositories
|
||||
#
|
||||
# Create session factory
|
||||
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
|
||||
# Create workflow execution(aka workflow run) repository
|
||||
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
|
||||
session_factory=session_factory,
|
||||
user=user,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
triggered_from=WorkflowRunTriggeredFrom.DEBUGGING,
|
||||
)
|
||||
# Create workflow node execution repository
|
||||
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
|
||||
session_factory=session_factory,
|
||||
user=user,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
triggered_from=WorkflowNodeExecutionTriggeredFrom.SINGLE_STEP,
|
||||
)
|
||||
draft_var_srv = WorkflowDraftVariableService(db.session())
|
||||
draft_var_srv.prefill_conversation_variable_default_values(workflow)
|
||||
var_loader = DraftVarLoader(
|
||||
engine=db.engine,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
tenant_id=application_generate_entity.app_config.tenant_id,
|
||||
)
|
||||
|
||||
return self._generate(
|
||||
app_model=app_model,
|
||||
workflow=workflow,
|
||||
user=user,
|
||||
invoke_from=InvokeFrom.DEBUGGER,
|
||||
application_generate_entity=application_generate_entity,
|
||||
workflow_execution_repository=workflow_execution_repository,
|
||||
workflow_node_execution_repository=workflow_node_execution_repository,
|
||||
streaming=streaming,
|
||||
variable_loader=var_loader,
|
||||
)
|
||||
|
||||
def single_loop_generate(
|
||||
self,
|
||||
app_model: App,
|
||||
workflow: Workflow,
|
||||
node_id: str,
|
||||
user: Account | EndUser,
|
||||
args: Mapping[str, Any],
|
||||
streaming: bool = True,
|
||||
) -> Mapping[str, Any] | Generator[str | Mapping[str, Any], None, None]:
|
||||
"""
|
||||
Generate App response.
|
||||
|
||||
:param app_model: App
|
||||
:param workflow: Workflow
|
||||
:param node_id: the node id
|
||||
:param user: account or end user
|
||||
:param args: request args
|
||||
:param streaming: is streamed
|
||||
"""
|
||||
if not node_id:
|
||||
raise ValueError("node_id is required")
|
||||
|
||||
if args.get("inputs") is None:
|
||||
raise ValueError("inputs is required")
|
||||
|
||||
# convert to app config
|
||||
app_config = WorkflowAppConfigManager.get_app_config(app_model=app_model, workflow=workflow)
|
||||
|
||||
# init application generate entity
|
||||
application_generate_entity = WorkflowAppGenerateEntity(
|
||||
task_id=str(uuid.uuid4()),
|
||||
app_config=app_config,
|
||||
inputs={},
|
||||
files=[],
|
||||
user_id=user.id,
|
||||
stream=streaming,
|
||||
invoke_from=InvokeFrom.DEBUGGER,
|
||||
extras={"auto_generate_conversation_name": False},
|
||||
single_loop_run=WorkflowAppGenerateEntity.SingleLoopRunEntity(node_id=node_id, inputs=args["inputs"]),
|
||||
workflow_execution_id=str(uuid.uuid4()),
|
||||
)
|
||||
contexts.plugin_tool_providers.set({})
|
||||
contexts.plugin_tool_providers_lock.set(threading.Lock())
|
||||
|
||||
# Create repositories
|
||||
#
|
||||
# Create session factory
|
||||
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
|
||||
# Create workflow execution(aka workflow run) repository
|
||||
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
|
||||
session_factory=session_factory,
|
||||
user=user,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
triggered_from=WorkflowRunTriggeredFrom.DEBUGGING,
|
||||
)
|
||||
# Create workflow node execution repository
|
||||
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
|
||||
session_factory=session_factory,
|
||||
user=user,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
triggered_from=WorkflowNodeExecutionTriggeredFrom.SINGLE_STEP,
|
||||
)
|
||||
draft_var_srv = WorkflowDraftVariableService(db.session())
|
||||
draft_var_srv.prefill_conversation_variable_default_values(workflow)
|
||||
var_loader = DraftVarLoader(
|
||||
engine=db.engine,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
tenant_id=application_generate_entity.app_config.tenant_id,
|
||||
)
|
||||
return self._generate(
|
||||
app_model=app_model,
|
||||
workflow=workflow,
|
||||
user=user,
|
||||
invoke_from=InvokeFrom.DEBUGGER,
|
||||
application_generate_entity=application_generate_entity,
|
||||
workflow_execution_repository=workflow_execution_repository,
|
||||
workflow_node_execution_repository=workflow_node_execution_repository,
|
||||
streaming=streaming,
|
||||
variable_loader=var_loader,
|
||||
)
|
||||
|
||||
def _generate_worker(
|
||||
self,
|
||||
flask_app: Flask,
|
||||
application_generate_entity: WorkflowAppGenerateEntity,
|
||||
queue_manager: AppQueueManager,
|
||||
context: contextvars.Context,
|
||||
variable_loader: VariableLoader,
|
||||
workflow_execution_repository: WorkflowExecutionRepository,
|
||||
workflow_node_execution_repository: WorkflowNodeExecutionRepository,
|
||||
root_node_id: str | None = None,
|
||||
graph_engine_layers: Sequence[GraphEngineLayer] = (),
|
||||
) -> None:
|
||||
"""
|
||||
Generate worker in a new thread.
|
||||
:param flask_app: Flask app
|
||||
:param application_generate_entity: application generate entity
|
||||
:param queue_manager: queue manager
|
||||
:param workflow_thread_pool_id: workflow thread pool id
|
||||
:return:
|
||||
"""
|
||||
with preserve_flask_contexts(flask_app, context_vars=context):
|
||||
with Session(db.engine, expire_on_commit=False) as session:
|
||||
workflow = session.scalar(
|
||||
select(Workflow).where(
|
||||
Workflow.tenant_id == application_generate_entity.app_config.tenant_id,
|
||||
Workflow.app_id == application_generate_entity.app_config.app_id,
|
||||
Workflow.id == application_generate_entity.app_config.workflow_id,
|
||||
)
|
||||
)
|
||||
if workflow is None:
|
||||
raise ValueError("Workflow not found")
|
||||
|
||||
# Determine system_user_id based on invocation source
|
||||
is_external_api_call = application_generate_entity.invoke_from in {
|
||||
InvokeFrom.WEB_APP,
|
||||
InvokeFrom.SERVICE_API,
|
||||
}
|
||||
|
||||
if is_external_api_call:
|
||||
# For external API calls, use end user's session ID
|
||||
end_user = session.scalar(select(EndUser).where(EndUser.id == application_generate_entity.user_id))
|
||||
system_user_id = end_user.session_id if end_user else ""
|
||||
else:
|
||||
# For internal calls, use the original user ID
|
||||
system_user_id = application_generate_entity.user_id
|
||||
|
||||
runner = WorkflowAppRunner(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
variable_loader=variable_loader,
|
||||
workflow=workflow,
|
||||
system_user_id=system_user_id,
|
||||
workflow_execution_repository=workflow_execution_repository,
|
||||
workflow_node_execution_repository=workflow_node_execution_repository,
|
||||
root_node_id=root_node_id,
|
||||
graph_engine_layers=graph_engine_layers,
|
||||
)
|
||||
|
||||
try:
|
||||
runner.run()
|
||||
except GenerateTaskStoppedError as e:
|
||||
logger.warning("Task stopped: %s", str(e))
|
||||
pass
|
||||
except InvokeAuthorizationError:
|
||||
queue_manager.publish_error(
|
||||
InvokeAuthorizationError("Incorrect API key provided"), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
except ValidationError as e:
|
||||
logger.exception("Validation Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
except ValueError as e:
|
||||
if dify_config.DEBUG:
|
||||
logger.exception("Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
except Exception as e:
|
||||
logger.exception("Unknown Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
|
||||
def _handle_response(
|
||||
self,
|
||||
application_generate_entity: WorkflowAppGenerateEntity,
|
||||
workflow: Workflow,
|
||||
queue_manager: AppQueueManager,
|
||||
user: Union[Account, EndUser],
|
||||
draft_var_saver_factory: DraftVariableSaverFactory,
|
||||
stream: bool = False,
|
||||
) -> Union[WorkflowAppBlockingResponse, Generator[WorkflowAppStreamResponse, None, None]]:
|
||||
"""
|
||||
Handle response.
|
||||
:param application_generate_entity: application generate entity
|
||||
:param workflow: workflow
|
||||
:param queue_manager: queue manager
|
||||
:param user: account or end user
|
||||
:param stream: is stream
|
||||
:param workflow_node_execution_repository: optional repository for workflow node execution
|
||||
:return:
|
||||
"""
|
||||
# init generate task pipeline
|
||||
generate_task_pipeline = WorkflowAppGenerateTaskPipeline(
|
||||
application_generate_entity=application_generate_entity,
|
||||
workflow=workflow,
|
||||
queue_manager=queue_manager,
|
||||
user=user,
|
||||
draft_var_saver_factory=draft_var_saver_factory,
|
||||
stream=stream,
|
||||
)
|
||||
|
||||
try:
|
||||
return generate_task_pipeline.process()
|
||||
except ValueError as e:
|
||||
if len(e.args) > 0 and e.args[0] == "I/O operation on closed file.": # ignore this error
|
||||
raise GenerateTaskStoppedError()
|
||||
else:
|
||||
logger.exception(
|
||||
"Fails to process generate task pipeline, task_id: %s", application_generate_entity.task_id
|
||||
)
|
||||
raise e
|
||||
45
dify/api/core/app/apps/workflow/app_queue_manager.py
Normal file
45
dify/api/core/app/apps/workflow/app_queue_manager.py
Normal file
@@ -0,0 +1,45 @@
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
from core.app.apps.exc import GenerateTaskStoppedError
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom
|
||||
from core.app.entities.queue_entities import (
|
||||
AppQueueEvent,
|
||||
QueueErrorEvent,
|
||||
QueueMessageEndEvent,
|
||||
QueueStopEvent,
|
||||
QueueWorkflowFailedEvent,
|
||||
QueueWorkflowPartialSuccessEvent,
|
||||
QueueWorkflowSucceededEvent,
|
||||
WorkflowQueueMessage,
|
||||
)
|
||||
|
||||
|
||||
class WorkflowAppQueueManager(AppQueueManager):
|
||||
def __init__(self, task_id: str, user_id: str, invoke_from: InvokeFrom, app_mode: str):
|
||||
super().__init__(task_id, user_id, invoke_from)
|
||||
|
||||
self._app_mode = app_mode
|
||||
|
||||
def _publish(self, event: AppQueueEvent, pub_from: PublishFrom):
|
||||
"""
|
||||
Publish event to queue
|
||||
:param event:
|
||||
:param pub_from:
|
||||
:return:
|
||||
"""
|
||||
message = WorkflowQueueMessage(task_id=self._task_id, app_mode=self._app_mode, event=event)
|
||||
|
||||
self._q.put(message)
|
||||
|
||||
if isinstance(
|
||||
event,
|
||||
QueueStopEvent
|
||||
| QueueErrorEvent
|
||||
| QueueMessageEndEvent
|
||||
| QueueWorkflowSucceededEvent
|
||||
| QueueWorkflowFailedEvent
|
||||
| QueueWorkflowPartialSuccessEvent,
|
||||
):
|
||||
self.stop_listen()
|
||||
|
||||
if pub_from == PublishFrom.APPLICATION_MANAGER and self._is_stopped():
|
||||
raise GenerateTaskStoppedError()
|
||||
153
dify/api/core/app/apps/workflow/app_runner.py
Normal file
153
dify/api/core/app/apps/workflow/app_runner.py
Normal file
@@ -0,0 +1,153 @@
|
||||
import logging
|
||||
import time
|
||||
from collections.abc import Sequence
|
||||
from typing import cast
|
||||
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager
|
||||
from core.app.apps.workflow.app_config_manager import WorkflowAppConfig
|
||||
from core.app.apps.workflow_app_runner import WorkflowBasedAppRunner
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom, WorkflowAppGenerateEntity
|
||||
from core.workflow.enums import WorkflowType
|
||||
from core.workflow.graph_engine.command_channels.redis_channel import RedisChannel
|
||||
from core.workflow.graph_engine.layers.base import GraphEngineLayer
|
||||
from core.workflow.graph_engine.layers.persistence import PersistenceWorkflowInfo, WorkflowPersistenceLayer
|
||||
from core.workflow.repositories.workflow_execution_repository import WorkflowExecutionRepository
|
||||
from core.workflow.repositories.workflow_node_execution_repository import WorkflowNodeExecutionRepository
|
||||
from core.workflow.runtime import GraphRuntimeState, VariablePool
|
||||
from core.workflow.system_variable import SystemVariable
|
||||
from core.workflow.variable_loader import VariableLoader
|
||||
from core.workflow.workflow_entry import WorkflowEntry
|
||||
from extensions.ext_redis import redis_client
|
||||
from libs.datetime_utils import naive_utc_now
|
||||
from models.enums import UserFrom
|
||||
from models.workflow import Workflow
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class WorkflowAppRunner(WorkflowBasedAppRunner):
|
||||
"""
|
||||
Workflow Application Runner
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
application_generate_entity: WorkflowAppGenerateEntity,
|
||||
queue_manager: AppQueueManager,
|
||||
variable_loader: VariableLoader,
|
||||
workflow: Workflow,
|
||||
system_user_id: str,
|
||||
root_node_id: str | None = None,
|
||||
workflow_execution_repository: WorkflowExecutionRepository,
|
||||
workflow_node_execution_repository: WorkflowNodeExecutionRepository,
|
||||
graph_engine_layers: Sequence[GraphEngineLayer] = (),
|
||||
):
|
||||
super().__init__(
|
||||
queue_manager=queue_manager,
|
||||
variable_loader=variable_loader,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
graph_engine_layers=graph_engine_layers,
|
||||
)
|
||||
self.application_generate_entity = application_generate_entity
|
||||
self._workflow = workflow
|
||||
self._sys_user_id = system_user_id
|
||||
self._root_node_id = root_node_id
|
||||
self._workflow_execution_repository = workflow_execution_repository
|
||||
self._workflow_node_execution_repository = workflow_node_execution_repository
|
||||
|
||||
def run(self):
|
||||
"""
|
||||
Run application
|
||||
"""
|
||||
app_config = self.application_generate_entity.app_config
|
||||
app_config = cast(WorkflowAppConfig, app_config)
|
||||
|
||||
system_inputs = SystemVariable(
|
||||
files=self.application_generate_entity.files,
|
||||
user_id=self._sys_user_id,
|
||||
app_id=app_config.app_id,
|
||||
timestamp=int(naive_utc_now().timestamp()),
|
||||
workflow_id=app_config.workflow_id,
|
||||
workflow_execution_id=self.application_generate_entity.workflow_execution_id,
|
||||
)
|
||||
|
||||
# if only single iteration or single loop run is requested
|
||||
if self.application_generate_entity.single_iteration_run or self.application_generate_entity.single_loop_run:
|
||||
graph, variable_pool, graph_runtime_state = self._prepare_single_node_execution(
|
||||
workflow=self._workflow,
|
||||
single_iteration_run=self.application_generate_entity.single_iteration_run,
|
||||
single_loop_run=self.application_generate_entity.single_loop_run,
|
||||
)
|
||||
else:
|
||||
inputs = self.application_generate_entity.inputs
|
||||
|
||||
# Create a variable pool.
|
||||
|
||||
variable_pool = VariablePool(
|
||||
system_variables=system_inputs,
|
||||
user_inputs=inputs,
|
||||
environment_variables=self._workflow.environment_variables,
|
||||
conversation_variables=[],
|
||||
)
|
||||
|
||||
graph_runtime_state = GraphRuntimeState(variable_pool=variable_pool, start_at=time.perf_counter())
|
||||
|
||||
# init graph
|
||||
graph = self._init_graph(
|
||||
graph_config=self._workflow.graph_dict,
|
||||
graph_runtime_state=graph_runtime_state,
|
||||
workflow_id=self._workflow.id,
|
||||
tenant_id=self._workflow.tenant_id,
|
||||
user_id=self.application_generate_entity.user_id,
|
||||
root_node_id=self._root_node_id,
|
||||
)
|
||||
|
||||
# RUN WORKFLOW
|
||||
# Create Redis command channel for this workflow execution
|
||||
task_id = self.application_generate_entity.task_id
|
||||
channel_key = f"workflow:{task_id}:commands"
|
||||
command_channel = RedisChannel(redis_client, channel_key)
|
||||
|
||||
self._queue_manager.graph_runtime_state = graph_runtime_state
|
||||
|
||||
workflow_entry = WorkflowEntry(
|
||||
tenant_id=self._workflow.tenant_id,
|
||||
app_id=self._workflow.app_id,
|
||||
workflow_id=self._workflow.id,
|
||||
graph=graph,
|
||||
graph_config=self._workflow.graph_dict,
|
||||
user_id=self.application_generate_entity.user_id,
|
||||
user_from=(
|
||||
UserFrom.ACCOUNT
|
||||
if self.application_generate_entity.invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER}
|
||||
else UserFrom.END_USER
|
||||
),
|
||||
invoke_from=self.application_generate_entity.invoke_from,
|
||||
call_depth=self.application_generate_entity.call_depth,
|
||||
variable_pool=variable_pool,
|
||||
graph_runtime_state=graph_runtime_state,
|
||||
command_channel=command_channel,
|
||||
)
|
||||
|
||||
persistence_layer = WorkflowPersistenceLayer(
|
||||
application_generate_entity=self.application_generate_entity,
|
||||
workflow_info=PersistenceWorkflowInfo(
|
||||
workflow_id=self._workflow.id,
|
||||
workflow_type=WorkflowType(self._workflow.type),
|
||||
version=self._workflow.version,
|
||||
graph_data=self._workflow.graph_dict,
|
||||
),
|
||||
workflow_execution_repository=self._workflow_execution_repository,
|
||||
workflow_node_execution_repository=self._workflow_node_execution_repository,
|
||||
trace_manager=self.application_generate_entity.trace_manager,
|
||||
)
|
||||
|
||||
workflow_entry.graph_engine.layer(persistence_layer)
|
||||
for layer in self._graph_engine_layers:
|
||||
workflow_entry.graph_engine.layer(layer)
|
||||
|
||||
generator = workflow_entry.run()
|
||||
|
||||
for event in generator:
|
||||
self._handle_event(workflow_entry, event)
|
||||
@@ -0,0 +1,95 @@
|
||||
from collections.abc import Generator
|
||||
from typing import cast
|
||||
|
||||
from core.app.apps.base_app_generate_response_converter import AppGenerateResponseConverter
|
||||
from core.app.entities.task_entities import (
|
||||
AppStreamResponse,
|
||||
ErrorStreamResponse,
|
||||
NodeFinishStreamResponse,
|
||||
NodeStartStreamResponse,
|
||||
PingStreamResponse,
|
||||
WorkflowAppBlockingResponse,
|
||||
WorkflowAppStreamResponse,
|
||||
)
|
||||
|
||||
|
||||
class WorkflowAppGenerateResponseConverter(AppGenerateResponseConverter):
|
||||
_blocking_response_type = WorkflowAppBlockingResponse
|
||||
|
||||
@classmethod
|
||||
def convert_blocking_full_response(cls, blocking_response: WorkflowAppBlockingResponse): # type: ignore[override]
|
||||
"""
|
||||
Convert blocking full response.
|
||||
:param blocking_response: blocking response
|
||||
:return:
|
||||
"""
|
||||
return blocking_response.model_dump()
|
||||
|
||||
@classmethod
|
||||
def convert_blocking_simple_response(cls, blocking_response: WorkflowAppBlockingResponse): # type: ignore[override]
|
||||
"""
|
||||
Convert blocking simple response.
|
||||
:param blocking_response: blocking response
|
||||
:return:
|
||||
"""
|
||||
return cls.convert_blocking_full_response(blocking_response)
|
||||
|
||||
@classmethod
|
||||
def convert_stream_full_response(
|
||||
cls, stream_response: Generator[AppStreamResponse, None, None]
|
||||
) -> Generator[dict | str, None, None]:
|
||||
"""
|
||||
Convert stream full response.
|
||||
:param stream_response: stream response
|
||||
:return:
|
||||
"""
|
||||
for chunk in stream_response:
|
||||
chunk = cast(WorkflowAppStreamResponse, chunk)
|
||||
sub_stream_response = chunk.stream_response
|
||||
|
||||
if isinstance(sub_stream_response, PingStreamResponse):
|
||||
yield "ping"
|
||||
continue
|
||||
|
||||
response_chunk: dict[str, object] = {
|
||||
"event": sub_stream_response.event.value,
|
||||
"workflow_run_id": chunk.workflow_run_id,
|
||||
}
|
||||
|
||||
if isinstance(sub_stream_response, ErrorStreamResponse):
|
||||
data = cls._error_to_stream_response(sub_stream_response.err)
|
||||
response_chunk.update(data)
|
||||
else:
|
||||
response_chunk.update(sub_stream_response.model_dump(mode="json"))
|
||||
yield response_chunk
|
||||
|
||||
@classmethod
|
||||
def convert_stream_simple_response(
|
||||
cls, stream_response: Generator[AppStreamResponse, None, None]
|
||||
) -> Generator[dict | str, None, None]:
|
||||
"""
|
||||
Convert stream simple response.
|
||||
:param stream_response: stream response
|
||||
:return:
|
||||
"""
|
||||
for chunk in stream_response:
|
||||
chunk = cast(WorkflowAppStreamResponse, chunk)
|
||||
sub_stream_response = chunk.stream_response
|
||||
|
||||
if isinstance(sub_stream_response, PingStreamResponse):
|
||||
yield "ping"
|
||||
continue
|
||||
|
||||
response_chunk: dict[str, object] = {
|
||||
"event": sub_stream_response.event.value,
|
||||
"workflow_run_id": chunk.workflow_run_id,
|
||||
}
|
||||
|
||||
if isinstance(sub_stream_response, ErrorStreamResponse):
|
||||
data = cls._error_to_stream_response(sub_stream_response.err)
|
||||
response_chunk.update(data)
|
||||
elif isinstance(sub_stream_response, NodeStartStreamResponse | NodeFinishStreamResponse):
|
||||
response_chunk.update(sub_stream_response.to_ignore_detail_dict())
|
||||
else:
|
||||
response_chunk.update(sub_stream_response.model_dump(mode="json"))
|
||||
yield response_chunk
|
||||
685
dify/api/core/app/apps/workflow/generate_task_pipeline.py
Normal file
685
dify/api/core/app/apps/workflow/generate_task_pipeline.py
Normal file
@@ -0,0 +1,685 @@
|
||||
import logging
|
||||
import time
|
||||
from collections.abc import Callable, Generator
|
||||
from contextlib import contextmanager
|
||||
from typing import Union
|
||||
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from constants.tts_auto_play_timeout import TTS_AUTO_PLAY_TIMEOUT, TTS_AUTO_PLAY_YIELD_CPU_TIME
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager
|
||||
from core.app.apps.common.graph_runtime_state_support import GraphRuntimeStateSupport
|
||||
from core.app.apps.common.workflow_response_converter import WorkflowResponseConverter
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom, WorkflowAppGenerateEntity
|
||||
from core.app.entities.queue_entities import (
|
||||
AppQueueEvent,
|
||||
MessageQueueMessage,
|
||||
QueueAgentLogEvent,
|
||||
QueueErrorEvent,
|
||||
QueueIterationCompletedEvent,
|
||||
QueueIterationNextEvent,
|
||||
QueueIterationStartEvent,
|
||||
QueueLoopCompletedEvent,
|
||||
QueueLoopNextEvent,
|
||||
QueueLoopStartEvent,
|
||||
QueueNodeExceptionEvent,
|
||||
QueueNodeFailedEvent,
|
||||
QueueNodeRetryEvent,
|
||||
QueueNodeStartedEvent,
|
||||
QueueNodeSucceededEvent,
|
||||
QueuePingEvent,
|
||||
QueueStopEvent,
|
||||
QueueTextChunkEvent,
|
||||
QueueWorkflowFailedEvent,
|
||||
QueueWorkflowPartialSuccessEvent,
|
||||
QueueWorkflowStartedEvent,
|
||||
QueueWorkflowSucceededEvent,
|
||||
WorkflowQueueMessage,
|
||||
)
|
||||
from core.app.entities.task_entities import (
|
||||
ErrorStreamResponse,
|
||||
MessageAudioEndStreamResponse,
|
||||
MessageAudioStreamResponse,
|
||||
PingStreamResponse,
|
||||
StreamResponse,
|
||||
TextChunkStreamResponse,
|
||||
WorkflowAppBlockingResponse,
|
||||
WorkflowAppStreamResponse,
|
||||
WorkflowFinishStreamResponse,
|
||||
WorkflowStartStreamResponse,
|
||||
)
|
||||
from core.app.task_pipeline.based_generate_task_pipeline import BasedGenerateTaskPipeline
|
||||
from core.base.tts import AppGeneratorTTSPublisher, AudioTrunk
|
||||
from core.ops.ops_trace_manager import TraceQueueManager
|
||||
from core.workflow.enums import WorkflowExecutionStatus
|
||||
from core.workflow.repositories.draft_variable_repository import DraftVariableSaverFactory
|
||||
from core.workflow.runtime import GraphRuntimeState
|
||||
from core.workflow.system_variable import SystemVariable
|
||||
from extensions.ext_database import db
|
||||
from models import Account
|
||||
from models.enums import CreatorUserRole
|
||||
from models.model import EndUser
|
||||
from models.workflow import Workflow, WorkflowAppLog, WorkflowAppLogCreatedFrom
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class WorkflowAppGenerateTaskPipeline(GraphRuntimeStateSupport):
|
||||
"""
|
||||
WorkflowAppGenerateTaskPipeline is a class that generate stream output and state management for Application.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
application_generate_entity: WorkflowAppGenerateEntity,
|
||||
workflow: Workflow,
|
||||
queue_manager: AppQueueManager,
|
||||
user: Union[Account, EndUser],
|
||||
stream: bool,
|
||||
draft_var_saver_factory: DraftVariableSaverFactory,
|
||||
):
|
||||
self._base_task_pipeline = BasedGenerateTaskPipeline(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
stream=stream,
|
||||
)
|
||||
|
||||
if isinstance(user, EndUser):
|
||||
self._user_id = user.id
|
||||
user_session_id = user.session_id
|
||||
self._created_by_role = CreatorUserRole.END_USER
|
||||
else:
|
||||
self._user_id = user.id
|
||||
user_session_id = user.id
|
||||
self._created_by_role = CreatorUserRole.ACCOUNT
|
||||
|
||||
self._application_generate_entity = application_generate_entity
|
||||
self._workflow_features_dict = workflow.features_dict
|
||||
self._workflow_execution_id = ""
|
||||
self._invoke_from = queue_manager.invoke_from
|
||||
self._draft_var_saver_factory = draft_var_saver_factory
|
||||
self._workflow = workflow
|
||||
self._workflow_system_variables = SystemVariable(
|
||||
files=application_generate_entity.files,
|
||||
user_id=user_session_id,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
workflow_id=workflow.id,
|
||||
workflow_execution_id=application_generate_entity.workflow_execution_id,
|
||||
)
|
||||
self._workflow_response_converter = WorkflowResponseConverter(
|
||||
application_generate_entity=application_generate_entity,
|
||||
user=user,
|
||||
system_variables=self._workflow_system_variables,
|
||||
)
|
||||
self._graph_runtime_state: GraphRuntimeState | None = self._base_task_pipeline.queue_manager.graph_runtime_state
|
||||
|
||||
def process(self) -> Union[WorkflowAppBlockingResponse, Generator[WorkflowAppStreamResponse, None, None]]:
|
||||
"""
|
||||
Process generate task pipeline.
|
||||
:return:
|
||||
"""
|
||||
generator = self._wrapper_process_stream_response(trace_manager=self._application_generate_entity.trace_manager)
|
||||
if self._base_task_pipeline.stream:
|
||||
return self._to_stream_response(generator)
|
||||
else:
|
||||
return self._to_blocking_response(generator)
|
||||
|
||||
def _to_blocking_response(self, generator: Generator[StreamResponse, None, None]) -> WorkflowAppBlockingResponse:
|
||||
"""
|
||||
To blocking response.
|
||||
:return:
|
||||
"""
|
||||
for stream_response in generator:
|
||||
if isinstance(stream_response, ErrorStreamResponse):
|
||||
raise stream_response.err
|
||||
elif isinstance(stream_response, WorkflowFinishStreamResponse):
|
||||
response = WorkflowAppBlockingResponse(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_run_id=stream_response.data.id,
|
||||
data=WorkflowAppBlockingResponse.Data(
|
||||
id=stream_response.data.id,
|
||||
workflow_id=stream_response.data.workflow_id,
|
||||
status=stream_response.data.status,
|
||||
outputs=stream_response.data.outputs,
|
||||
error=stream_response.data.error,
|
||||
elapsed_time=stream_response.data.elapsed_time,
|
||||
total_tokens=stream_response.data.total_tokens,
|
||||
total_steps=stream_response.data.total_steps,
|
||||
created_at=int(stream_response.data.created_at),
|
||||
finished_at=int(stream_response.data.finished_at),
|
||||
),
|
||||
)
|
||||
|
||||
return response
|
||||
else:
|
||||
continue
|
||||
|
||||
raise ValueError("queue listening stopped unexpectedly.")
|
||||
|
||||
def _to_stream_response(
|
||||
self, generator: Generator[StreamResponse, None, None]
|
||||
) -> Generator[WorkflowAppStreamResponse, None, None]:
|
||||
"""
|
||||
To stream response.
|
||||
:return:
|
||||
"""
|
||||
workflow_run_id = None
|
||||
for stream_response in generator:
|
||||
if isinstance(stream_response, WorkflowStartStreamResponse):
|
||||
workflow_run_id = stream_response.workflow_run_id
|
||||
|
||||
yield WorkflowAppStreamResponse(workflow_run_id=workflow_run_id, stream_response=stream_response)
|
||||
|
||||
def _listen_audio_msg(self, publisher: AppGeneratorTTSPublisher | None, task_id: str):
|
||||
if not publisher:
|
||||
return None
|
||||
audio_msg = publisher.check_and_get_audio()
|
||||
if audio_msg and isinstance(audio_msg, AudioTrunk) and audio_msg.status != "finish":
|
||||
return MessageAudioStreamResponse(audio=audio_msg.audio, task_id=task_id)
|
||||
return None
|
||||
|
||||
def _wrapper_process_stream_response(
|
||||
self, trace_manager: TraceQueueManager | None = None
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
tts_publisher = None
|
||||
task_id = self._application_generate_entity.task_id
|
||||
tenant_id = self._application_generate_entity.app_config.tenant_id
|
||||
features_dict = self._workflow_features_dict
|
||||
|
||||
if (
|
||||
features_dict.get("text_to_speech")
|
||||
and features_dict["text_to_speech"].get("enabled")
|
||||
and features_dict["text_to_speech"].get("autoPlay") == "enabled"
|
||||
):
|
||||
tts_publisher = AppGeneratorTTSPublisher(
|
||||
tenant_id, features_dict["text_to_speech"].get("voice"), features_dict["text_to_speech"].get("language")
|
||||
)
|
||||
|
||||
for response in self._process_stream_response(tts_publisher=tts_publisher, trace_manager=trace_manager):
|
||||
while True:
|
||||
audio_response = self._listen_audio_msg(publisher=tts_publisher, task_id=task_id)
|
||||
if audio_response:
|
||||
yield audio_response
|
||||
else:
|
||||
break
|
||||
yield response
|
||||
|
||||
start_listener_time = time.time()
|
||||
while (time.time() - start_listener_time) < TTS_AUTO_PLAY_TIMEOUT:
|
||||
try:
|
||||
if not tts_publisher:
|
||||
break
|
||||
audio_trunk = tts_publisher.check_and_get_audio()
|
||||
if audio_trunk is None:
|
||||
# release cpu
|
||||
# sleep 20 ms ( 40ms => 1280 byte audio file,20ms => 640 byte audio file)
|
||||
time.sleep(TTS_AUTO_PLAY_YIELD_CPU_TIME)
|
||||
continue
|
||||
if audio_trunk.status == "finish":
|
||||
break
|
||||
else:
|
||||
yield MessageAudioStreamResponse(audio=audio_trunk.audio, task_id=task_id)
|
||||
except Exception:
|
||||
logger.exception("Fails to get audio trunk, task_id: %s", task_id)
|
||||
break
|
||||
if tts_publisher:
|
||||
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
|
||||
|
||||
@contextmanager
|
||||
def _database_session(self):
|
||||
"""Context manager for database sessions."""
|
||||
with Session(db.engine, expire_on_commit=False) as session:
|
||||
try:
|
||||
yield session
|
||||
session.commit()
|
||||
except Exception:
|
||||
session.rollback()
|
||||
raise
|
||||
|
||||
def _ensure_workflow_initialized(self):
|
||||
"""Fluent validation for workflow state."""
|
||||
if not self._workflow_execution_id:
|
||||
raise ValueError("workflow run not initialized.")
|
||||
|
||||
def _handle_ping_event(self, event: QueuePingEvent, **kwargs) -> Generator[PingStreamResponse, None, None]:
|
||||
"""Handle ping events."""
|
||||
yield self._base_task_pipeline.ping_stream_response()
|
||||
|
||||
def _handle_error_event(self, event: QueueErrorEvent, **kwargs) -> Generator[ErrorStreamResponse, None, None]:
|
||||
"""Handle error events."""
|
||||
err = self._base_task_pipeline.handle_error(event=event)
|
||||
yield self._base_task_pipeline.error_to_stream_response(err)
|
||||
|
||||
def _handle_workflow_started_event(
|
||||
self, event: QueueWorkflowStartedEvent, **kwargs
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle workflow started events."""
|
||||
runtime_state = self._resolve_graph_runtime_state()
|
||||
|
||||
run_id = self._extract_workflow_run_id(runtime_state)
|
||||
self._workflow_execution_id = run_id
|
||||
start_resp = self._workflow_response_converter.workflow_start_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_run_id=run_id,
|
||||
workflow_id=self._workflow.id,
|
||||
)
|
||||
yield start_resp
|
||||
|
||||
def _handle_node_retry_event(self, event: QueueNodeRetryEvent, **kwargs) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle node retry events."""
|
||||
self._ensure_workflow_initialized()
|
||||
|
||||
response = self._workflow_response_converter.workflow_node_retry_to_stream_response(
|
||||
event=event,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
)
|
||||
|
||||
if response:
|
||||
yield response
|
||||
|
||||
def _handle_node_started_event(
|
||||
self, event: QueueNodeStartedEvent, **kwargs
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle node started events."""
|
||||
self._ensure_workflow_initialized()
|
||||
|
||||
node_start_response = self._workflow_response_converter.workflow_node_start_to_stream_response(
|
||||
event=event,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
)
|
||||
|
||||
if node_start_response:
|
||||
yield node_start_response
|
||||
|
||||
def _handle_node_succeeded_event(
|
||||
self, event: QueueNodeSucceededEvent, **kwargs
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle node succeeded events."""
|
||||
node_success_response = self._workflow_response_converter.workflow_node_finish_to_stream_response(
|
||||
event=event,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
)
|
||||
|
||||
self._save_output_for_event(event, event.node_execution_id)
|
||||
|
||||
if node_success_response:
|
||||
yield node_success_response
|
||||
|
||||
def _handle_node_failed_events(
|
||||
self,
|
||||
event: Union[QueueNodeFailedEvent, QueueNodeExceptionEvent],
|
||||
**kwargs,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle various node failure events."""
|
||||
node_failed_response = self._workflow_response_converter.workflow_node_finish_to_stream_response(
|
||||
event=event,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
)
|
||||
|
||||
if isinstance(event, QueueNodeExceptionEvent):
|
||||
self._save_output_for_event(event, event.node_execution_id)
|
||||
|
||||
if node_failed_response:
|
||||
yield node_failed_response
|
||||
|
||||
def _handle_iteration_start_event(
|
||||
self, event: QueueIterationStartEvent, **kwargs
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle iteration start events."""
|
||||
self._ensure_workflow_initialized()
|
||||
|
||||
iter_start_resp = self._workflow_response_converter.workflow_iteration_start_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_execution_id=self._workflow_execution_id,
|
||||
event=event,
|
||||
)
|
||||
yield iter_start_resp
|
||||
|
||||
def _handle_iteration_next_event(
|
||||
self, event: QueueIterationNextEvent, **kwargs
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle iteration next events."""
|
||||
self._ensure_workflow_initialized()
|
||||
|
||||
iter_next_resp = self._workflow_response_converter.workflow_iteration_next_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_execution_id=self._workflow_execution_id,
|
||||
event=event,
|
||||
)
|
||||
yield iter_next_resp
|
||||
|
||||
def _handle_iteration_completed_event(
|
||||
self, event: QueueIterationCompletedEvent, **kwargs
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle iteration completed events."""
|
||||
self._ensure_workflow_initialized()
|
||||
|
||||
iter_finish_resp = self._workflow_response_converter.workflow_iteration_completed_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_execution_id=self._workflow_execution_id,
|
||||
event=event,
|
||||
)
|
||||
yield iter_finish_resp
|
||||
|
||||
def _handle_loop_start_event(self, event: QueueLoopStartEvent, **kwargs) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle loop start events."""
|
||||
self._ensure_workflow_initialized()
|
||||
|
||||
loop_start_resp = self._workflow_response_converter.workflow_loop_start_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_execution_id=self._workflow_execution_id,
|
||||
event=event,
|
||||
)
|
||||
yield loop_start_resp
|
||||
|
||||
def _handle_loop_next_event(self, event: QueueLoopNextEvent, **kwargs) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle loop next events."""
|
||||
self._ensure_workflow_initialized()
|
||||
|
||||
loop_next_resp = self._workflow_response_converter.workflow_loop_next_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_execution_id=self._workflow_execution_id,
|
||||
event=event,
|
||||
)
|
||||
yield loop_next_resp
|
||||
|
||||
def _handle_loop_completed_event(
|
||||
self, event: QueueLoopCompletedEvent, **kwargs
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle loop completed events."""
|
||||
self._ensure_workflow_initialized()
|
||||
|
||||
loop_finish_resp = self._workflow_response_converter.workflow_loop_completed_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_execution_id=self._workflow_execution_id,
|
||||
event=event,
|
||||
)
|
||||
yield loop_finish_resp
|
||||
|
||||
def _handle_workflow_succeeded_event(
|
||||
self,
|
||||
event: QueueWorkflowSucceededEvent,
|
||||
*,
|
||||
trace_manager: TraceQueueManager | None = None,
|
||||
**kwargs,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle workflow succeeded events."""
|
||||
_ = trace_manager
|
||||
self._ensure_workflow_initialized()
|
||||
validated_state = self._ensure_graph_runtime_initialized()
|
||||
workflow_finish_resp = self._workflow_response_converter.workflow_finish_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_id=self._workflow.id,
|
||||
status=WorkflowExecutionStatus.SUCCEEDED,
|
||||
graph_runtime_state=validated_state,
|
||||
)
|
||||
|
||||
with self._database_session() as session:
|
||||
self._save_workflow_app_log(session=session, workflow_run_id=self._workflow_execution_id)
|
||||
|
||||
yield workflow_finish_resp
|
||||
|
||||
def _handle_workflow_partial_success_event(
|
||||
self,
|
||||
event: QueueWorkflowPartialSuccessEvent,
|
||||
*,
|
||||
trace_manager: TraceQueueManager | None = None,
|
||||
**kwargs,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle workflow partial success events."""
|
||||
_ = trace_manager
|
||||
self._ensure_workflow_initialized()
|
||||
validated_state = self._ensure_graph_runtime_initialized()
|
||||
workflow_finish_resp = self._workflow_response_converter.workflow_finish_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_id=self._workflow.id,
|
||||
status=WorkflowExecutionStatus.PARTIAL_SUCCEEDED,
|
||||
graph_runtime_state=validated_state,
|
||||
exceptions_count=event.exceptions_count,
|
||||
)
|
||||
|
||||
with self._database_session() as session:
|
||||
self._save_workflow_app_log(session=session, workflow_run_id=self._workflow_execution_id)
|
||||
|
||||
yield workflow_finish_resp
|
||||
|
||||
def _handle_workflow_failed_and_stop_events(
|
||||
self,
|
||||
event: Union[QueueWorkflowFailedEvent, QueueStopEvent],
|
||||
*,
|
||||
trace_manager: TraceQueueManager | None = None,
|
||||
**kwargs,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle workflow failed and stop events."""
|
||||
_ = trace_manager
|
||||
self._ensure_workflow_initialized()
|
||||
validated_state = self._ensure_graph_runtime_initialized()
|
||||
|
||||
if isinstance(event, QueueWorkflowFailedEvent):
|
||||
status = WorkflowExecutionStatus.FAILED
|
||||
error = event.error
|
||||
exceptions_count = event.exceptions_count
|
||||
else:
|
||||
status = WorkflowExecutionStatus.STOPPED
|
||||
error = event.get_stop_reason()
|
||||
exceptions_count = 0
|
||||
workflow_finish_resp = self._workflow_response_converter.workflow_finish_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_id=self._workflow.id,
|
||||
status=status,
|
||||
graph_runtime_state=validated_state,
|
||||
error=error,
|
||||
exceptions_count=exceptions_count,
|
||||
)
|
||||
|
||||
with self._database_session() as session:
|
||||
self._save_workflow_app_log(session=session, workflow_run_id=self._workflow_execution_id)
|
||||
|
||||
yield workflow_finish_resp
|
||||
|
||||
def _handle_text_chunk_event(
|
||||
self,
|
||||
event: QueueTextChunkEvent,
|
||||
*,
|
||||
tts_publisher: AppGeneratorTTSPublisher | None = None,
|
||||
queue_message: Union[WorkflowQueueMessage, MessageQueueMessage] | None = None,
|
||||
**kwargs,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle text chunk events."""
|
||||
delta_text = event.text
|
||||
if delta_text is None:
|
||||
return
|
||||
|
||||
# only publish tts message at text chunk streaming
|
||||
if tts_publisher and queue_message:
|
||||
tts_publisher.publish(queue_message)
|
||||
|
||||
yield self._text_chunk_to_stream_response(delta_text, from_variable_selector=event.from_variable_selector)
|
||||
|
||||
def _handle_agent_log_event(self, event: QueueAgentLogEvent, **kwargs) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle agent log events."""
|
||||
yield self._workflow_response_converter.handle_agent_log(
|
||||
task_id=self._application_generate_entity.task_id, event=event
|
||||
)
|
||||
|
||||
def _get_event_handlers(self) -> dict[type, Callable]:
|
||||
"""Get mapping of event types to their handlers using fluent pattern."""
|
||||
return {
|
||||
# Basic events
|
||||
QueuePingEvent: self._handle_ping_event,
|
||||
QueueErrorEvent: self._handle_error_event,
|
||||
QueueTextChunkEvent: self._handle_text_chunk_event,
|
||||
# Workflow events
|
||||
QueueWorkflowStartedEvent: self._handle_workflow_started_event,
|
||||
QueueWorkflowSucceededEvent: self._handle_workflow_succeeded_event,
|
||||
QueueWorkflowPartialSuccessEvent: self._handle_workflow_partial_success_event,
|
||||
# Node events
|
||||
QueueNodeRetryEvent: self._handle_node_retry_event,
|
||||
QueueNodeStartedEvent: self._handle_node_started_event,
|
||||
QueueNodeSucceededEvent: self._handle_node_succeeded_event,
|
||||
# Iteration events
|
||||
QueueIterationStartEvent: self._handle_iteration_start_event,
|
||||
QueueIterationNextEvent: self._handle_iteration_next_event,
|
||||
QueueIterationCompletedEvent: self._handle_iteration_completed_event,
|
||||
# Loop events
|
||||
QueueLoopStartEvent: self._handle_loop_start_event,
|
||||
QueueLoopNextEvent: self._handle_loop_next_event,
|
||||
QueueLoopCompletedEvent: self._handle_loop_completed_event,
|
||||
# Agent events
|
||||
QueueAgentLogEvent: self._handle_agent_log_event,
|
||||
}
|
||||
|
||||
def _dispatch_event(
|
||||
self,
|
||||
event: AppQueueEvent,
|
||||
*,
|
||||
tts_publisher: AppGeneratorTTSPublisher | None = None,
|
||||
trace_manager: TraceQueueManager | None = None,
|
||||
queue_message: Union[WorkflowQueueMessage, MessageQueueMessage] | None = None,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Dispatch events using elegant pattern matching."""
|
||||
handlers = self._get_event_handlers()
|
||||
event_type = type(event)
|
||||
|
||||
# Direct handler lookup
|
||||
if handler := handlers.get(event_type):
|
||||
yield from handler(
|
||||
event,
|
||||
tts_publisher=tts_publisher,
|
||||
trace_manager=trace_manager,
|
||||
queue_message=queue_message,
|
||||
)
|
||||
return
|
||||
|
||||
# Handle node failure events with isinstance check
|
||||
if isinstance(
|
||||
event,
|
||||
(
|
||||
QueueNodeFailedEvent,
|
||||
QueueNodeExceptionEvent,
|
||||
),
|
||||
):
|
||||
yield from self._handle_node_failed_events(
|
||||
event,
|
||||
tts_publisher=tts_publisher,
|
||||
trace_manager=trace_manager,
|
||||
queue_message=queue_message,
|
||||
)
|
||||
return
|
||||
|
||||
# Handle workflow failed and stop events with isinstance check
|
||||
if isinstance(event, (QueueWorkflowFailedEvent, QueueStopEvent)):
|
||||
yield from self._handle_workflow_failed_and_stop_events(
|
||||
event,
|
||||
tts_publisher=tts_publisher,
|
||||
trace_manager=trace_manager,
|
||||
queue_message=queue_message,
|
||||
)
|
||||
return
|
||||
|
||||
# For unhandled events, we continue (original behavior)
|
||||
return
|
||||
|
||||
def _process_stream_response(
|
||||
self,
|
||||
tts_publisher: AppGeneratorTTSPublisher | None = None,
|
||||
trace_manager: TraceQueueManager | None = None,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""
|
||||
Process stream response using elegant Fluent Python patterns.
|
||||
Maintains exact same functionality as original 44-if-statement version.
|
||||
"""
|
||||
for queue_message in self._base_task_pipeline.queue_manager.listen():
|
||||
event = queue_message.event
|
||||
|
||||
match event:
|
||||
case QueueWorkflowStartedEvent():
|
||||
self._resolve_graph_runtime_state()
|
||||
yield from self._handle_workflow_started_event(event)
|
||||
|
||||
case QueueTextChunkEvent():
|
||||
yield from self._handle_text_chunk_event(
|
||||
event, tts_publisher=tts_publisher, queue_message=queue_message
|
||||
)
|
||||
|
||||
case QueueErrorEvent():
|
||||
yield from self._handle_error_event(event)
|
||||
break
|
||||
|
||||
case QueueWorkflowFailedEvent():
|
||||
yield from self._handle_workflow_failed_and_stop_events(event)
|
||||
break
|
||||
|
||||
case QueueStopEvent():
|
||||
yield from self._handle_workflow_failed_and_stop_events(event)
|
||||
break
|
||||
|
||||
# Handle all other events through elegant dispatch
|
||||
case _:
|
||||
if responses := list(
|
||||
self._dispatch_event(
|
||||
event,
|
||||
tts_publisher=tts_publisher,
|
||||
trace_manager=trace_manager,
|
||||
queue_message=queue_message,
|
||||
)
|
||||
):
|
||||
yield from responses
|
||||
|
||||
if tts_publisher:
|
||||
tts_publisher.publish(None)
|
||||
|
||||
def _save_workflow_app_log(self, *, session: Session, workflow_run_id: str | None):
|
||||
invoke_from = self._application_generate_entity.invoke_from
|
||||
if invoke_from == InvokeFrom.SERVICE_API:
|
||||
created_from = WorkflowAppLogCreatedFrom.SERVICE_API
|
||||
elif invoke_from == InvokeFrom.EXPLORE:
|
||||
created_from = WorkflowAppLogCreatedFrom.INSTALLED_APP
|
||||
elif invoke_from == InvokeFrom.WEB_APP:
|
||||
created_from = WorkflowAppLogCreatedFrom.WEB_APP
|
||||
else:
|
||||
# not save log for debugging
|
||||
return
|
||||
|
||||
if not workflow_run_id:
|
||||
return
|
||||
|
||||
workflow_app_log = WorkflowAppLog(
|
||||
tenant_id=self._application_generate_entity.app_config.tenant_id,
|
||||
app_id=self._application_generate_entity.app_config.app_id,
|
||||
workflow_id=self._workflow.id,
|
||||
workflow_run_id=workflow_run_id,
|
||||
created_from=created_from.value,
|
||||
created_by_role=self._created_by_role,
|
||||
created_by=self._user_id,
|
||||
)
|
||||
|
||||
session.add(workflow_app_log)
|
||||
session.commit()
|
||||
|
||||
def _text_chunk_to_stream_response(
|
||||
self, text: str, from_variable_selector: list[str] | None = None
|
||||
) -> TextChunkStreamResponse:
|
||||
"""
|
||||
Handle completed event.
|
||||
:param text: text
|
||||
:return:
|
||||
"""
|
||||
response = TextChunkStreamResponse(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
data=TextChunkStreamResponse.Data(text=text, from_variable_selector=from_variable_selector),
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
def _save_output_for_event(self, event: QueueNodeSucceededEvent | QueueNodeExceptionEvent, node_execution_id: str):
|
||||
with Session(db.engine) as session, session.begin():
|
||||
saver = self._draft_var_saver_factory(
|
||||
session=session,
|
||||
app_id=self._application_generate_entity.app_config.app_id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type,
|
||||
node_execution_id=node_execution_id,
|
||||
enclosing_node_id=event.in_loop_id or event.in_iteration_id,
|
||||
)
|
||||
saver.save(event.process_data, event.outputs)
|
||||
572
dify/api/core/app/apps/workflow_app_runner.py
Normal file
572
dify/api/core/app/apps/workflow_app_runner.py
Normal file
@@ -0,0 +1,572 @@
|
||||
import time
|
||||
from collections.abc import Mapping, Sequence
|
||||
from typing import Any, cast
|
||||
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom
|
||||
from core.app.entities.queue_entities import (
|
||||
AppQueueEvent,
|
||||
QueueAgentLogEvent,
|
||||
QueueIterationCompletedEvent,
|
||||
QueueIterationNextEvent,
|
||||
QueueIterationStartEvent,
|
||||
QueueLoopCompletedEvent,
|
||||
QueueLoopNextEvent,
|
||||
QueueLoopStartEvent,
|
||||
QueueNodeExceptionEvent,
|
||||
QueueNodeFailedEvent,
|
||||
QueueNodeRetryEvent,
|
||||
QueueNodeStartedEvent,
|
||||
QueueNodeSucceededEvent,
|
||||
QueueRetrieverResourcesEvent,
|
||||
QueueTextChunkEvent,
|
||||
QueueWorkflowFailedEvent,
|
||||
QueueWorkflowPartialSuccessEvent,
|
||||
QueueWorkflowStartedEvent,
|
||||
QueueWorkflowSucceededEvent,
|
||||
)
|
||||
from core.workflow.entities import GraphInitParams
|
||||
from core.workflow.graph import Graph
|
||||
from core.workflow.graph_engine.layers.base import GraphEngineLayer
|
||||
from core.workflow.graph_events import (
|
||||
GraphEngineEvent,
|
||||
GraphRunFailedEvent,
|
||||
GraphRunPartialSucceededEvent,
|
||||
GraphRunStartedEvent,
|
||||
GraphRunSucceededEvent,
|
||||
NodeRunAgentLogEvent,
|
||||
NodeRunExceptionEvent,
|
||||
NodeRunFailedEvent,
|
||||
NodeRunIterationFailedEvent,
|
||||
NodeRunIterationNextEvent,
|
||||
NodeRunIterationStartedEvent,
|
||||
NodeRunIterationSucceededEvent,
|
||||
NodeRunLoopFailedEvent,
|
||||
NodeRunLoopNextEvent,
|
||||
NodeRunLoopStartedEvent,
|
||||
NodeRunLoopSucceededEvent,
|
||||
NodeRunRetrieverResourceEvent,
|
||||
NodeRunRetryEvent,
|
||||
NodeRunStartedEvent,
|
||||
NodeRunStreamChunkEvent,
|
||||
NodeRunSucceededEvent,
|
||||
)
|
||||
from core.workflow.graph_events.graph import GraphRunAbortedEvent
|
||||
from core.workflow.nodes import NodeType
|
||||
from core.workflow.nodes.node_factory import DifyNodeFactory
|
||||
from core.workflow.nodes.node_mapping import NODE_TYPE_CLASSES_MAPPING
|
||||
from core.workflow.runtime import GraphRuntimeState, VariablePool
|
||||
from core.workflow.system_variable import SystemVariable
|
||||
from core.workflow.variable_loader import DUMMY_VARIABLE_LOADER, VariableLoader, load_into_variable_pool
|
||||
from core.workflow.workflow_entry import WorkflowEntry
|
||||
from models.enums import UserFrom
|
||||
from models.workflow import Workflow
|
||||
|
||||
|
||||
class WorkflowBasedAppRunner:
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
queue_manager: AppQueueManager,
|
||||
variable_loader: VariableLoader = DUMMY_VARIABLE_LOADER,
|
||||
app_id: str,
|
||||
graph_engine_layers: Sequence[GraphEngineLayer] = (),
|
||||
):
|
||||
self._queue_manager = queue_manager
|
||||
self._variable_loader = variable_loader
|
||||
self._app_id = app_id
|
||||
self._graph_engine_layers = graph_engine_layers
|
||||
|
||||
def _init_graph(
|
||||
self,
|
||||
graph_config: Mapping[str, Any],
|
||||
graph_runtime_state: GraphRuntimeState,
|
||||
workflow_id: str = "",
|
||||
tenant_id: str = "",
|
||||
user_id: str = "",
|
||||
root_node_id: str | None = None,
|
||||
) -> Graph:
|
||||
"""
|
||||
Init graph
|
||||
"""
|
||||
if "nodes" not in graph_config or "edges" not in graph_config:
|
||||
raise ValueError("nodes or edges not found in workflow graph")
|
||||
|
||||
if not isinstance(graph_config.get("nodes"), list):
|
||||
raise ValueError("nodes in workflow graph must be a list")
|
||||
|
||||
if not isinstance(graph_config.get("edges"), list):
|
||||
raise ValueError("edges in workflow graph must be a list")
|
||||
|
||||
# Create required parameters for Graph.init
|
||||
graph_init_params = GraphInitParams(
|
||||
tenant_id=tenant_id or "",
|
||||
app_id=self._app_id,
|
||||
workflow_id=workflow_id,
|
||||
graph_config=graph_config,
|
||||
user_id=user_id,
|
||||
user_from=UserFrom.ACCOUNT,
|
||||
invoke_from=InvokeFrom.SERVICE_API,
|
||||
call_depth=0,
|
||||
)
|
||||
|
||||
# Use the provided graph_runtime_state for consistent state management
|
||||
|
||||
node_factory = DifyNodeFactory(
|
||||
graph_init_params=graph_init_params,
|
||||
graph_runtime_state=graph_runtime_state,
|
||||
)
|
||||
|
||||
# init graph
|
||||
graph = Graph.init(graph_config=graph_config, node_factory=node_factory, root_node_id=root_node_id)
|
||||
|
||||
if not graph:
|
||||
raise ValueError("graph not found in workflow")
|
||||
|
||||
return graph
|
||||
|
||||
def _prepare_single_node_execution(
|
||||
self,
|
||||
workflow: Workflow,
|
||||
single_iteration_run: Any | None = None,
|
||||
single_loop_run: Any | None = None,
|
||||
) -> tuple[Graph, VariablePool, GraphRuntimeState]:
|
||||
"""
|
||||
Prepare graph, variable pool, and runtime state for single node execution
|
||||
(either single iteration or single loop).
|
||||
|
||||
Args:
|
||||
workflow: The workflow instance
|
||||
single_iteration_run: SingleIterationRunEntity if running single iteration, None otherwise
|
||||
single_loop_run: SingleLoopRunEntity if running single loop, None otherwise
|
||||
|
||||
Returns:
|
||||
A tuple containing (graph, variable_pool, graph_runtime_state)
|
||||
|
||||
Raises:
|
||||
ValueError: If neither single_iteration_run nor single_loop_run is specified
|
||||
"""
|
||||
# Create initial runtime state with variable pool containing environment variables
|
||||
graph_runtime_state = GraphRuntimeState(
|
||||
variable_pool=VariablePool(
|
||||
system_variables=SystemVariable.empty(),
|
||||
user_inputs={},
|
||||
environment_variables=workflow.environment_variables,
|
||||
),
|
||||
start_at=time.time(),
|
||||
)
|
||||
|
||||
# Determine which type of single node execution and get graph/variable_pool
|
||||
if single_iteration_run:
|
||||
graph, variable_pool = self._get_graph_and_variable_pool_of_single_iteration(
|
||||
workflow=workflow,
|
||||
node_id=single_iteration_run.node_id,
|
||||
user_inputs=dict(single_iteration_run.inputs),
|
||||
graph_runtime_state=graph_runtime_state,
|
||||
)
|
||||
elif single_loop_run:
|
||||
graph, variable_pool = self._get_graph_and_variable_pool_of_single_loop(
|
||||
workflow=workflow,
|
||||
node_id=single_loop_run.node_id,
|
||||
user_inputs=dict(single_loop_run.inputs),
|
||||
graph_runtime_state=graph_runtime_state,
|
||||
)
|
||||
else:
|
||||
raise ValueError("Neither single_iteration_run nor single_loop_run is specified")
|
||||
|
||||
# Return the graph, variable_pool, and the same graph_runtime_state used during graph creation
|
||||
# This ensures all nodes in the graph reference the same GraphRuntimeState instance
|
||||
return graph, variable_pool, graph_runtime_state
|
||||
|
||||
def _get_graph_and_variable_pool_for_single_node_run(
|
||||
self,
|
||||
workflow: Workflow,
|
||||
node_id: str,
|
||||
user_inputs: dict[str, Any],
|
||||
graph_runtime_state: GraphRuntimeState,
|
||||
node_type_filter_key: str, # 'iteration_id' or 'loop_id'
|
||||
node_type_label: str = "node", # 'iteration' or 'loop' for error messages
|
||||
) -> tuple[Graph, VariablePool]:
|
||||
"""
|
||||
Get graph and variable pool for single node execution (iteration or loop).
|
||||
|
||||
Args:
|
||||
workflow: The workflow instance
|
||||
node_id: The node ID to execute
|
||||
user_inputs: User inputs for the node
|
||||
graph_runtime_state: The graph runtime state
|
||||
node_type_filter_key: The key to filter nodes ('iteration_id' or 'loop_id')
|
||||
node_type_label: Label for error messages ('iteration' or 'loop')
|
||||
|
||||
Returns:
|
||||
A tuple containing (graph, variable_pool)
|
||||
"""
|
||||
# fetch workflow graph
|
||||
graph_config = workflow.graph_dict
|
||||
if not graph_config:
|
||||
raise ValueError("workflow graph not found")
|
||||
|
||||
graph_config = cast(dict[str, Any], graph_config)
|
||||
|
||||
if "nodes" not in graph_config or "edges" not in graph_config:
|
||||
raise ValueError("nodes or edges not found in workflow graph")
|
||||
|
||||
if not isinstance(graph_config.get("nodes"), list):
|
||||
raise ValueError("nodes in workflow graph must be a list")
|
||||
|
||||
if not isinstance(graph_config.get("edges"), list):
|
||||
raise ValueError("edges in workflow graph must be a list")
|
||||
|
||||
# filter nodes only in the specified node type (iteration or loop)
|
||||
main_node_config = next((n for n in graph_config.get("nodes", []) if n.get("id") == node_id), None)
|
||||
start_node_id = main_node_config.get("data", {}).get("start_node_id") if main_node_config else None
|
||||
node_configs = [
|
||||
node
|
||||
for node in graph_config.get("nodes", [])
|
||||
if node.get("id") == node_id
|
||||
or node.get("data", {}).get(node_type_filter_key, "") == node_id
|
||||
or (start_node_id and node.get("id") == start_node_id)
|
||||
]
|
||||
|
||||
graph_config["nodes"] = node_configs
|
||||
|
||||
node_ids = [node.get("id") for node in node_configs]
|
||||
|
||||
# filter edges only in the specified node type
|
||||
edge_configs = [
|
||||
edge
|
||||
for edge in graph_config.get("edges", [])
|
||||
if (edge.get("source") is None or edge.get("source") in node_ids)
|
||||
and (edge.get("target") is None or edge.get("target") in node_ids)
|
||||
]
|
||||
|
||||
graph_config["edges"] = edge_configs
|
||||
|
||||
# Create required parameters for Graph.init
|
||||
graph_init_params = GraphInitParams(
|
||||
tenant_id=workflow.tenant_id,
|
||||
app_id=self._app_id,
|
||||
workflow_id=workflow.id,
|
||||
graph_config=graph_config,
|
||||
user_id="",
|
||||
user_from=UserFrom.ACCOUNT,
|
||||
invoke_from=InvokeFrom.SERVICE_API,
|
||||
call_depth=0,
|
||||
)
|
||||
|
||||
node_factory = DifyNodeFactory(
|
||||
graph_init_params=graph_init_params,
|
||||
graph_runtime_state=graph_runtime_state,
|
||||
)
|
||||
|
||||
# init graph
|
||||
graph = Graph.init(graph_config=graph_config, node_factory=node_factory, root_node_id=node_id)
|
||||
|
||||
if not graph:
|
||||
raise ValueError("graph not found in workflow")
|
||||
|
||||
# fetch node config from node id
|
||||
target_node_config = None
|
||||
for node in node_configs:
|
||||
if node.get("id") == node_id:
|
||||
target_node_config = node
|
||||
break
|
||||
|
||||
if not target_node_config:
|
||||
raise ValueError(f"{node_type_label} node id not found in workflow graph")
|
||||
|
||||
# Get node class
|
||||
node_type = NodeType(target_node_config.get("data", {}).get("type"))
|
||||
node_version = target_node_config.get("data", {}).get("version", "1")
|
||||
node_cls = NODE_TYPE_CLASSES_MAPPING[node_type][node_version]
|
||||
|
||||
# Use the variable pool from graph_runtime_state instead of creating a new one
|
||||
variable_pool = graph_runtime_state.variable_pool
|
||||
|
||||
try:
|
||||
variable_mapping = node_cls.extract_variable_selector_to_variable_mapping(
|
||||
graph_config=workflow.graph_dict, config=target_node_config
|
||||
)
|
||||
except NotImplementedError:
|
||||
variable_mapping = {}
|
||||
|
||||
load_into_variable_pool(
|
||||
variable_loader=self._variable_loader,
|
||||
variable_pool=variable_pool,
|
||||
variable_mapping=variable_mapping,
|
||||
user_inputs=user_inputs,
|
||||
)
|
||||
|
||||
WorkflowEntry.mapping_user_inputs_to_variable_pool(
|
||||
variable_mapping=variable_mapping,
|
||||
user_inputs=user_inputs,
|
||||
variable_pool=variable_pool,
|
||||
tenant_id=workflow.tenant_id,
|
||||
)
|
||||
|
||||
return graph, variable_pool
|
||||
|
||||
def _get_graph_and_variable_pool_of_single_iteration(
|
||||
self,
|
||||
workflow: Workflow,
|
||||
node_id: str,
|
||||
user_inputs: dict[str, Any],
|
||||
graph_runtime_state: GraphRuntimeState,
|
||||
) -> tuple[Graph, VariablePool]:
|
||||
"""
|
||||
Get variable pool of single iteration
|
||||
"""
|
||||
return self._get_graph_and_variable_pool_for_single_node_run(
|
||||
workflow=workflow,
|
||||
node_id=node_id,
|
||||
user_inputs=user_inputs,
|
||||
graph_runtime_state=graph_runtime_state,
|
||||
node_type_filter_key="iteration_id",
|
||||
node_type_label="iteration",
|
||||
)
|
||||
|
||||
def _get_graph_and_variable_pool_of_single_loop(
|
||||
self,
|
||||
workflow: Workflow,
|
||||
node_id: str,
|
||||
user_inputs: dict[str, Any],
|
||||
graph_runtime_state: GraphRuntimeState,
|
||||
) -> tuple[Graph, VariablePool]:
|
||||
"""
|
||||
Get variable pool of single loop
|
||||
"""
|
||||
return self._get_graph_and_variable_pool_for_single_node_run(
|
||||
workflow=workflow,
|
||||
node_id=node_id,
|
||||
user_inputs=user_inputs,
|
||||
graph_runtime_state=graph_runtime_state,
|
||||
node_type_filter_key="loop_id",
|
||||
node_type_label="loop",
|
||||
)
|
||||
|
||||
def _handle_event(self, workflow_entry: WorkflowEntry, event: GraphEngineEvent):
|
||||
"""
|
||||
Handle event
|
||||
:param workflow_entry: workflow entry
|
||||
:param event: event
|
||||
"""
|
||||
if isinstance(event, GraphRunStartedEvent):
|
||||
self._publish_event(QueueWorkflowStartedEvent())
|
||||
elif isinstance(event, GraphRunSucceededEvent):
|
||||
self._publish_event(QueueWorkflowSucceededEvent(outputs=event.outputs))
|
||||
elif isinstance(event, GraphRunPartialSucceededEvent):
|
||||
self._publish_event(
|
||||
QueueWorkflowPartialSuccessEvent(outputs=event.outputs, exceptions_count=event.exceptions_count)
|
||||
)
|
||||
elif isinstance(event, GraphRunFailedEvent):
|
||||
self._publish_event(QueueWorkflowFailedEvent(error=event.error, exceptions_count=event.exceptions_count))
|
||||
elif isinstance(event, GraphRunAbortedEvent):
|
||||
self._publish_event(QueueWorkflowFailedEvent(error=event.reason or "Unknown error", exceptions_count=0))
|
||||
elif isinstance(event, NodeRunRetryEvent):
|
||||
node_run_result = event.node_run_result
|
||||
inputs = node_run_result.inputs
|
||||
process_data = node_run_result.process_data
|
||||
outputs = node_run_result.outputs
|
||||
execution_metadata = node_run_result.metadata
|
||||
self._publish_event(
|
||||
QueueNodeRetryEvent(
|
||||
node_execution_id=event.id,
|
||||
node_id=event.node_id,
|
||||
node_title=event.node_title,
|
||||
node_type=event.node_type,
|
||||
start_at=event.start_at,
|
||||
in_iteration_id=event.in_iteration_id,
|
||||
in_loop_id=event.in_loop_id,
|
||||
inputs=inputs,
|
||||
process_data=process_data,
|
||||
outputs=outputs,
|
||||
error=event.error,
|
||||
execution_metadata=execution_metadata,
|
||||
retry_index=event.retry_index,
|
||||
provider_type=event.provider_type,
|
||||
provider_id=event.provider_id,
|
||||
)
|
||||
)
|
||||
elif isinstance(event, NodeRunStartedEvent):
|
||||
self._publish_event(
|
||||
QueueNodeStartedEvent(
|
||||
node_execution_id=event.id,
|
||||
node_id=event.node_id,
|
||||
node_title=event.node_title,
|
||||
node_type=event.node_type,
|
||||
start_at=event.start_at,
|
||||
in_iteration_id=event.in_iteration_id,
|
||||
in_loop_id=event.in_loop_id,
|
||||
agent_strategy=event.agent_strategy,
|
||||
provider_type=event.provider_type,
|
||||
provider_id=event.provider_id,
|
||||
)
|
||||
)
|
||||
elif isinstance(event, NodeRunSucceededEvent):
|
||||
node_run_result = event.node_run_result
|
||||
inputs = node_run_result.inputs
|
||||
process_data = node_run_result.process_data
|
||||
outputs = node_run_result.outputs
|
||||
execution_metadata = node_run_result.metadata
|
||||
self._publish_event(
|
||||
QueueNodeSucceededEvent(
|
||||
node_execution_id=event.id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type,
|
||||
start_at=event.start_at,
|
||||
inputs=inputs,
|
||||
process_data=process_data,
|
||||
outputs=outputs,
|
||||
execution_metadata=execution_metadata,
|
||||
in_iteration_id=event.in_iteration_id,
|
||||
in_loop_id=event.in_loop_id,
|
||||
)
|
||||
)
|
||||
elif isinstance(event, NodeRunFailedEvent):
|
||||
self._publish_event(
|
||||
QueueNodeFailedEvent(
|
||||
node_execution_id=event.id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type,
|
||||
start_at=event.start_at,
|
||||
inputs=event.node_run_result.inputs,
|
||||
process_data=event.node_run_result.process_data,
|
||||
outputs=event.node_run_result.outputs,
|
||||
error=event.node_run_result.error or "Unknown error",
|
||||
execution_metadata=event.node_run_result.metadata,
|
||||
in_iteration_id=event.in_iteration_id,
|
||||
in_loop_id=event.in_loop_id,
|
||||
)
|
||||
)
|
||||
elif isinstance(event, NodeRunExceptionEvent):
|
||||
self._publish_event(
|
||||
QueueNodeExceptionEvent(
|
||||
node_execution_id=event.id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type,
|
||||
start_at=event.start_at,
|
||||
inputs=event.node_run_result.inputs,
|
||||
process_data=event.node_run_result.process_data,
|
||||
outputs=event.node_run_result.outputs,
|
||||
error=event.node_run_result.error or "Unknown error",
|
||||
execution_metadata=event.node_run_result.metadata,
|
||||
in_iteration_id=event.in_iteration_id,
|
||||
in_loop_id=event.in_loop_id,
|
||||
)
|
||||
)
|
||||
elif isinstance(event, NodeRunStreamChunkEvent):
|
||||
self._publish_event(
|
||||
QueueTextChunkEvent(
|
||||
text=event.chunk,
|
||||
from_variable_selector=list(event.selector),
|
||||
in_iteration_id=event.in_iteration_id,
|
||||
in_loop_id=event.in_loop_id,
|
||||
)
|
||||
)
|
||||
elif isinstance(event, NodeRunRetrieverResourceEvent):
|
||||
self._publish_event(
|
||||
QueueRetrieverResourcesEvent(
|
||||
retriever_resources=event.retriever_resources,
|
||||
in_iteration_id=event.in_iteration_id,
|
||||
in_loop_id=event.in_loop_id,
|
||||
)
|
||||
)
|
||||
elif isinstance(event, NodeRunAgentLogEvent):
|
||||
self._publish_event(
|
||||
QueueAgentLogEvent(
|
||||
id=event.message_id,
|
||||
label=event.label,
|
||||
node_execution_id=event.node_execution_id,
|
||||
parent_id=event.parent_id,
|
||||
error=event.error,
|
||||
status=event.status,
|
||||
data=event.data,
|
||||
metadata=event.metadata,
|
||||
node_id=event.node_id,
|
||||
)
|
||||
)
|
||||
elif isinstance(event, NodeRunIterationStartedEvent):
|
||||
self._publish_event(
|
||||
QueueIterationStartEvent(
|
||||
node_execution_id=event.id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type,
|
||||
node_title=event.node_title,
|
||||
start_at=event.start_at,
|
||||
node_run_index=workflow_entry.graph_engine.graph_runtime_state.node_run_steps,
|
||||
inputs=event.inputs,
|
||||
metadata=event.metadata,
|
||||
)
|
||||
)
|
||||
elif isinstance(event, NodeRunIterationNextEvent):
|
||||
self._publish_event(
|
||||
QueueIterationNextEvent(
|
||||
node_execution_id=event.id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type,
|
||||
node_title=event.node_title,
|
||||
index=event.index,
|
||||
node_run_index=workflow_entry.graph_engine.graph_runtime_state.node_run_steps,
|
||||
output=event.pre_iteration_output,
|
||||
)
|
||||
)
|
||||
elif isinstance(event, (NodeRunIterationSucceededEvent | NodeRunIterationFailedEvent)):
|
||||
self._publish_event(
|
||||
QueueIterationCompletedEvent(
|
||||
node_execution_id=event.id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type,
|
||||
node_title=event.node_title,
|
||||
start_at=event.start_at,
|
||||
node_run_index=workflow_entry.graph_engine.graph_runtime_state.node_run_steps,
|
||||
inputs=event.inputs,
|
||||
outputs=event.outputs,
|
||||
metadata=event.metadata,
|
||||
steps=event.steps,
|
||||
error=event.error if isinstance(event, NodeRunIterationFailedEvent) else None,
|
||||
)
|
||||
)
|
||||
elif isinstance(event, NodeRunLoopStartedEvent):
|
||||
self._publish_event(
|
||||
QueueLoopStartEvent(
|
||||
node_execution_id=event.id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type,
|
||||
node_title=event.node_title,
|
||||
start_at=event.start_at,
|
||||
node_run_index=workflow_entry.graph_engine.graph_runtime_state.node_run_steps,
|
||||
inputs=event.inputs,
|
||||
metadata=event.metadata,
|
||||
)
|
||||
)
|
||||
elif isinstance(event, NodeRunLoopNextEvent):
|
||||
self._publish_event(
|
||||
QueueLoopNextEvent(
|
||||
node_execution_id=event.id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type,
|
||||
node_title=event.node_title,
|
||||
index=event.index,
|
||||
node_run_index=workflow_entry.graph_engine.graph_runtime_state.node_run_steps,
|
||||
output=event.pre_loop_output,
|
||||
)
|
||||
)
|
||||
elif isinstance(event, (NodeRunLoopSucceededEvent | NodeRunLoopFailedEvent)):
|
||||
self._publish_event(
|
||||
QueueLoopCompletedEvent(
|
||||
node_execution_id=event.id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type,
|
||||
node_title=event.node_title,
|
||||
start_at=event.start_at,
|
||||
node_run_index=workflow_entry.graph_engine.graph_runtime_state.node_run_steps,
|
||||
inputs=event.inputs,
|
||||
outputs=event.outputs,
|
||||
metadata=event.metadata,
|
||||
steps=event.steps,
|
||||
error=event.error if isinstance(event, NodeRunLoopFailedEvent) else None,
|
||||
)
|
||||
)
|
||||
|
||||
def _publish_event(self, event: AppQueueEvent):
|
||||
self._queue_manager.publish(event, PublishFrom.APPLICATION_MANAGER)
|
||||
0
dify/api/core/app/entities/__init__.py
Normal file
0
dify/api/core/app/entities/__init__.py
Normal file
290
dify/api/core/app/entities/app_invoke_entities.py
Normal file
290
dify/api/core/app/entities/app_invoke_entities.py
Normal file
@@ -0,0 +1,290 @@
|
||||
from collections.abc import Mapping, Sequence
|
||||
from enum import StrEnum
|
||||
from typing import TYPE_CHECKING, Any, Optional
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field, ValidationInfo, field_validator
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from core.ops.ops_trace_manager import TraceQueueManager
|
||||
|
||||
from constants import UUID_NIL
|
||||
from core.app.app_config.entities import EasyUIBasedAppConfig, WorkflowUIBasedAppConfig
|
||||
from core.entities.provider_configuration import ProviderModelBundle
|
||||
from core.file import File, FileUploadConfig
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity
|
||||
|
||||
|
||||
class InvokeFrom(StrEnum):
|
||||
"""
|
||||
Invoke From.
|
||||
"""
|
||||
|
||||
# SERVICE_API indicates that this invocation is from an API call to Dify app.
|
||||
#
|
||||
# Description of service api in Dify docs:
|
||||
# https://docs.dify.ai/en/guides/application-publishing/developing-with-apis
|
||||
SERVICE_API = "service-api"
|
||||
|
||||
# WEB_APP indicates that this invocation is from
|
||||
# the web app of the workflow (or chatflow).
|
||||
#
|
||||
# Description of web app in Dify docs:
|
||||
# https://docs.dify.ai/en/guides/application-publishing/launch-your-webapp-quickly/README
|
||||
WEB_APP = "web-app"
|
||||
|
||||
# TRIGGER indicates that this invocation is from a trigger.
|
||||
# this is used for plugin trigger and webhook trigger.
|
||||
TRIGGER = "trigger"
|
||||
|
||||
# EXPLORE indicates that this invocation is from
|
||||
# the workflow (or chatflow) explore page.
|
||||
EXPLORE = "explore"
|
||||
# DEBUGGER indicates that this invocation is from
|
||||
# the workflow (or chatflow) edit page.
|
||||
DEBUGGER = "debugger"
|
||||
PUBLISHED = "published"
|
||||
|
||||
# VALIDATION indicates that this invocation is from validation.
|
||||
VALIDATION = "validation"
|
||||
|
||||
@classmethod
|
||||
def value_of(cls, value: str):
|
||||
"""
|
||||
Get value of given mode.
|
||||
|
||||
:param value: mode value
|
||||
:return: mode
|
||||
"""
|
||||
for mode in cls:
|
||||
if mode.value == value:
|
||||
return mode
|
||||
raise ValueError(f"invalid invoke from value {value}")
|
||||
|
||||
def to_source(self) -> str:
|
||||
"""
|
||||
Get source of invoke from.
|
||||
|
||||
:return: source
|
||||
"""
|
||||
if self == InvokeFrom.WEB_APP:
|
||||
return "web_app"
|
||||
elif self == InvokeFrom.DEBUGGER:
|
||||
return "dev"
|
||||
elif self == InvokeFrom.EXPLORE:
|
||||
return "explore_app"
|
||||
elif self == InvokeFrom.TRIGGER:
|
||||
return "trigger"
|
||||
elif self == InvokeFrom.SERVICE_API:
|
||||
return "api"
|
||||
|
||||
return "dev"
|
||||
|
||||
|
||||
class ModelConfigWithCredentialsEntity(BaseModel):
|
||||
"""
|
||||
Model Config With Credentials Entity.
|
||||
"""
|
||||
|
||||
provider: str
|
||||
model: str
|
||||
model_schema: AIModelEntity
|
||||
mode: str
|
||||
provider_model_bundle: ProviderModelBundle
|
||||
credentials: dict[str, Any] = Field(default_factory=dict)
|
||||
parameters: dict[str, Any] = Field(default_factory=dict)
|
||||
stop: list[str] = Field(default_factory=list)
|
||||
|
||||
# pydantic configs
|
||||
model_config = ConfigDict(protected_namespaces=())
|
||||
|
||||
|
||||
class AppGenerateEntity(BaseModel):
|
||||
"""
|
||||
App Generate Entity.
|
||||
"""
|
||||
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
|
||||
task_id: str
|
||||
|
||||
# app config
|
||||
app_config: Any = None
|
||||
file_upload_config: FileUploadConfig | None = None
|
||||
|
||||
inputs: Mapping[str, Any]
|
||||
files: Sequence[File]
|
||||
|
||||
# Unique identifier of the user initiating the execution.
|
||||
# This corresponds to `Account.id` for platform users or `EndUser.id` for end users.
|
||||
#
|
||||
# Note: The `user_id` field does not indicate whether the user is a platform user or an end user.
|
||||
user_id: str
|
||||
|
||||
# extras
|
||||
stream: bool
|
||||
invoke_from: InvokeFrom
|
||||
|
||||
# invoke call depth
|
||||
call_depth: int = 0
|
||||
|
||||
# extra parameters, like: auto_generate_conversation_name
|
||||
extras: dict[str, Any] = Field(default_factory=dict)
|
||||
|
||||
# tracing instance
|
||||
trace_manager: Optional["TraceQueueManager"] = None
|
||||
|
||||
|
||||
class EasyUIBasedAppGenerateEntity(AppGenerateEntity):
|
||||
"""
|
||||
Chat Application Generate Entity.
|
||||
"""
|
||||
|
||||
# app config
|
||||
app_config: EasyUIBasedAppConfig = None # type: ignore
|
||||
model_conf: ModelConfigWithCredentialsEntity
|
||||
|
||||
query: str = ""
|
||||
|
||||
# pydantic configs
|
||||
model_config = ConfigDict(protected_namespaces=())
|
||||
|
||||
|
||||
class ConversationAppGenerateEntity(AppGenerateEntity):
|
||||
"""
|
||||
Base entity for conversation-based app generation.
|
||||
"""
|
||||
|
||||
conversation_id: str | None = None
|
||||
parent_message_id: str | None = Field(
|
||||
default=None,
|
||||
description=(
|
||||
"Starting from v0.9.0, parent_message_id is used to support message regeneration for internal chat API."
|
||||
"For service API, we need to ensure its forward compatibility, "
|
||||
"so passing in the parent_message_id as request arg is not supported for now. "
|
||||
"It needs to be set to UUID_NIL so that the subsequent processing will treat it as legacy messages."
|
||||
),
|
||||
)
|
||||
|
||||
@field_validator("parent_message_id")
|
||||
@classmethod
|
||||
def validate_parent_message_id(cls, v, info: ValidationInfo):
|
||||
if info.data.get("invoke_from") == InvokeFrom.SERVICE_API and v != UUID_NIL:
|
||||
raise ValueError("parent_message_id should be UUID_NIL for service API")
|
||||
return v
|
||||
|
||||
|
||||
class ChatAppGenerateEntity(ConversationAppGenerateEntity, EasyUIBasedAppGenerateEntity):
|
||||
"""
|
||||
Chat Application Generate Entity.
|
||||
"""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class CompletionAppGenerateEntity(EasyUIBasedAppGenerateEntity):
|
||||
"""
|
||||
Completion Application Generate Entity.
|
||||
"""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class AgentChatAppGenerateEntity(ConversationAppGenerateEntity, EasyUIBasedAppGenerateEntity):
|
||||
"""
|
||||
Agent Chat Application Generate Entity.
|
||||
"""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class AdvancedChatAppGenerateEntity(ConversationAppGenerateEntity):
|
||||
"""
|
||||
Advanced Chat Application Generate Entity.
|
||||
"""
|
||||
|
||||
# app config
|
||||
app_config: WorkflowUIBasedAppConfig = None # type: ignore
|
||||
|
||||
workflow_run_id: str | None = None
|
||||
query: str
|
||||
|
||||
class SingleIterationRunEntity(BaseModel):
|
||||
"""
|
||||
Single Iteration Run Entity.
|
||||
"""
|
||||
|
||||
node_id: str
|
||||
inputs: Mapping
|
||||
|
||||
single_iteration_run: SingleIterationRunEntity | None = None
|
||||
|
||||
class SingleLoopRunEntity(BaseModel):
|
||||
"""
|
||||
Single Loop Run Entity.
|
||||
"""
|
||||
|
||||
node_id: str
|
||||
inputs: Mapping
|
||||
|
||||
single_loop_run: SingleLoopRunEntity | None = None
|
||||
|
||||
|
||||
class WorkflowAppGenerateEntity(AppGenerateEntity):
|
||||
"""
|
||||
Workflow Application Generate Entity.
|
||||
"""
|
||||
|
||||
# app config
|
||||
app_config: WorkflowUIBasedAppConfig = None # type: ignore
|
||||
workflow_execution_id: str
|
||||
|
||||
class SingleIterationRunEntity(BaseModel):
|
||||
"""
|
||||
Single Iteration Run Entity.
|
||||
"""
|
||||
|
||||
node_id: str
|
||||
inputs: dict
|
||||
|
||||
single_iteration_run: SingleIterationRunEntity | None = None
|
||||
|
||||
class SingleLoopRunEntity(BaseModel):
|
||||
"""
|
||||
Single Loop Run Entity.
|
||||
"""
|
||||
|
||||
node_id: str
|
||||
inputs: dict
|
||||
|
||||
single_loop_run: SingleLoopRunEntity | None = None
|
||||
|
||||
|
||||
class RagPipelineGenerateEntity(WorkflowAppGenerateEntity):
|
||||
"""
|
||||
RAG Pipeline Application Generate Entity.
|
||||
"""
|
||||
|
||||
# pipeline config
|
||||
pipeline_config: WorkflowUIBasedAppConfig
|
||||
datasource_type: str
|
||||
datasource_info: Mapping[str, Any]
|
||||
dataset_id: str
|
||||
batch: str
|
||||
document_id: str | None = None
|
||||
original_document_id: str | None = None
|
||||
start_node_id: str | None = None
|
||||
|
||||
|
||||
# Import TraceQueueManager at runtime to resolve forward references
|
||||
from core.ops.ops_trace_manager import TraceQueueManager
|
||||
|
||||
# Rebuild models that use forward references
|
||||
AppGenerateEntity.model_rebuild()
|
||||
EasyUIBasedAppGenerateEntity.model_rebuild()
|
||||
ConversationAppGenerateEntity.model_rebuild()
|
||||
ChatAppGenerateEntity.model_rebuild()
|
||||
CompletionAppGenerateEntity.model_rebuild()
|
||||
AgentChatAppGenerateEntity.model_rebuild()
|
||||
AdvancedChatAppGenerateEntity.model_rebuild()
|
||||
WorkflowAppGenerateEntity.model_rebuild()
|
||||
RagPipelineGenerateEntity.model_rebuild()
|
||||
511
dify/api/core/app/entities/queue_entities.py
Normal file
511
dify/api/core/app/entities/queue_entities.py
Normal file
@@ -0,0 +1,511 @@
|
||||
from collections.abc import Mapping, Sequence
|
||||
from datetime import datetime
|
||||
from enum import StrEnum, auto
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk
|
||||
from core.rag.entities.citation_metadata import RetrievalSourceMetadata
|
||||
from core.workflow.entities import AgentNodeStrategyInit
|
||||
from core.workflow.enums import WorkflowNodeExecutionMetadataKey
|
||||
from core.workflow.nodes import NodeType
|
||||
|
||||
|
||||
class QueueEvent(StrEnum):
|
||||
"""
|
||||
QueueEvent enum
|
||||
"""
|
||||
|
||||
LLM_CHUNK = "llm_chunk"
|
||||
TEXT_CHUNK = "text_chunk"
|
||||
AGENT_MESSAGE = "agent_message"
|
||||
MESSAGE_REPLACE = "message_replace"
|
||||
MESSAGE_END = "message_end"
|
||||
ADVANCED_CHAT_MESSAGE_END = "advanced_chat_message_end"
|
||||
WORKFLOW_STARTED = "workflow_started"
|
||||
WORKFLOW_SUCCEEDED = "workflow_succeeded"
|
||||
WORKFLOW_FAILED = "workflow_failed"
|
||||
WORKFLOW_PARTIAL_SUCCEEDED = "workflow_partial_succeeded"
|
||||
ITERATION_START = "iteration_start"
|
||||
ITERATION_NEXT = "iteration_next"
|
||||
ITERATION_COMPLETED = "iteration_completed"
|
||||
LOOP_START = "loop_start"
|
||||
LOOP_NEXT = "loop_next"
|
||||
LOOP_COMPLETED = "loop_completed"
|
||||
NODE_STARTED = "node_started"
|
||||
NODE_SUCCEEDED = "node_succeeded"
|
||||
NODE_FAILED = "node_failed"
|
||||
NODE_EXCEPTION = "node_exception"
|
||||
RETRIEVER_RESOURCES = "retriever_resources"
|
||||
ANNOTATION_REPLY = "annotation_reply"
|
||||
AGENT_THOUGHT = "agent_thought"
|
||||
MESSAGE_FILE = "message_file"
|
||||
AGENT_LOG = "agent_log"
|
||||
ERROR = "error"
|
||||
PING = "ping"
|
||||
STOP = "stop"
|
||||
RETRY = "retry"
|
||||
|
||||
|
||||
class AppQueueEvent(BaseModel):
|
||||
"""
|
||||
QueueEvent abstract entity
|
||||
"""
|
||||
|
||||
event: QueueEvent
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
|
||||
|
||||
class QueueLLMChunkEvent(AppQueueEvent):
|
||||
"""
|
||||
QueueLLMChunkEvent entity
|
||||
Only for basic mode apps
|
||||
"""
|
||||
|
||||
event: QueueEvent = QueueEvent.LLM_CHUNK
|
||||
chunk: LLMResultChunk
|
||||
|
||||
|
||||
class QueueIterationStartEvent(AppQueueEvent):
|
||||
"""
|
||||
QueueIterationStartEvent entity
|
||||
"""
|
||||
|
||||
event: QueueEvent = QueueEvent.ITERATION_START
|
||||
node_execution_id: str
|
||||
node_id: str
|
||||
node_type: NodeType
|
||||
node_title: str
|
||||
start_at: datetime
|
||||
|
||||
node_run_index: int
|
||||
inputs: Mapping[str, object] = Field(default_factory=dict)
|
||||
metadata: Mapping[str, object] = Field(default_factory=dict)
|
||||
|
||||
|
||||
class QueueIterationNextEvent(AppQueueEvent):
|
||||
"""
|
||||
QueueIterationNextEvent entity
|
||||
"""
|
||||
|
||||
event: QueueEvent = QueueEvent.ITERATION_NEXT
|
||||
|
||||
index: int
|
||||
node_execution_id: str
|
||||
node_id: str
|
||||
node_type: NodeType
|
||||
node_title: str
|
||||
node_run_index: int
|
||||
output: Any = None # output for the current iteration
|
||||
|
||||
|
||||
class QueueIterationCompletedEvent(AppQueueEvent):
|
||||
"""
|
||||
QueueIterationCompletedEvent entity
|
||||
"""
|
||||
|
||||
event: QueueEvent = QueueEvent.ITERATION_COMPLETED
|
||||
|
||||
node_execution_id: str
|
||||
node_id: str
|
||||
node_type: NodeType
|
||||
node_title: str
|
||||
start_at: datetime
|
||||
|
||||
node_run_index: int
|
||||
inputs: Mapping[str, object] = Field(default_factory=dict)
|
||||
outputs: Mapping[str, object] = Field(default_factory=dict)
|
||||
metadata: Mapping[str, object] = Field(default_factory=dict)
|
||||
steps: int = 0
|
||||
|
||||
error: str | None = None
|
||||
|
||||
|
||||
class QueueLoopStartEvent(AppQueueEvent):
|
||||
"""
|
||||
QueueLoopStartEvent entity
|
||||
"""
|
||||
|
||||
event: QueueEvent = QueueEvent.LOOP_START
|
||||
node_execution_id: str
|
||||
node_id: str
|
||||
node_type: NodeType
|
||||
node_title: str
|
||||
start_at: datetime
|
||||
|
||||
node_run_index: int
|
||||
inputs: Mapping[str, object] = Field(default_factory=dict)
|
||||
metadata: Mapping[str, object] = Field(default_factory=dict)
|
||||
|
||||
|
||||
class QueueLoopNextEvent(AppQueueEvent):
|
||||
"""
|
||||
QueueLoopNextEvent entity
|
||||
"""
|
||||
|
||||
event: QueueEvent = QueueEvent.LOOP_NEXT
|
||||
|
||||
index: int
|
||||
node_execution_id: str
|
||||
node_id: str
|
||||
node_type: NodeType
|
||||
node_title: str
|
||||
node_run_index: int
|
||||
output: Any = None # output for the current loop
|
||||
|
||||
|
||||
class QueueLoopCompletedEvent(AppQueueEvent):
|
||||
"""
|
||||
QueueLoopCompletedEvent entity
|
||||
"""
|
||||
|
||||
event: QueueEvent = QueueEvent.LOOP_COMPLETED
|
||||
|
||||
node_execution_id: str
|
||||
node_id: str
|
||||
node_type: NodeType
|
||||
node_title: str
|
||||
start_at: datetime
|
||||
|
||||
node_run_index: int
|
||||
inputs: Mapping[str, object] = Field(default_factory=dict)
|
||||
outputs: Mapping[str, object] = Field(default_factory=dict)
|
||||
metadata: Mapping[str, object] = Field(default_factory=dict)
|
||||
steps: int = 0
|
||||
|
||||
error: str | None = None
|
||||
|
||||
|
||||
class QueueTextChunkEvent(AppQueueEvent):
|
||||
"""
|
||||
QueueTextChunkEvent entity
|
||||
"""
|
||||
|
||||
event: QueueEvent = QueueEvent.TEXT_CHUNK
|
||||
text: str
|
||||
from_variable_selector: list[str] | None = None
|
||||
"""from variable selector"""
|
||||
in_iteration_id: str | None = None
|
||||
"""iteration id if node is in iteration"""
|
||||
in_loop_id: str | None = None
|
||||
"""loop id if node is in loop"""
|
||||
|
||||
|
||||
class QueueAgentMessageEvent(AppQueueEvent):
|
||||
"""
|
||||
QueueMessageEvent entity
|
||||
"""
|
||||
|
||||
event: QueueEvent = QueueEvent.AGENT_MESSAGE
|
||||
chunk: LLMResultChunk
|
||||
|
||||
|
||||
class QueueMessageReplaceEvent(AppQueueEvent):
|
||||
"""
|
||||
QueueMessageReplaceEvent entity
|
||||
"""
|
||||
|
||||
class MessageReplaceReason(StrEnum):
|
||||
"""
|
||||
Reason for message replace event
|
||||
"""
|
||||
|
||||
OUTPUT_MODERATION = "output_moderation"
|
||||
|
||||
event: QueueEvent = QueueEvent.MESSAGE_REPLACE
|
||||
text: str
|
||||
reason: str
|
||||
|
||||
|
||||
class QueueRetrieverResourcesEvent(AppQueueEvent):
|
||||
"""
|
||||
QueueRetrieverResourcesEvent entity
|
||||
"""
|
||||
|
||||
event: QueueEvent = QueueEvent.RETRIEVER_RESOURCES
|
||||
retriever_resources: Sequence[RetrievalSourceMetadata]
|
||||
in_iteration_id: str | None = None
|
||||
"""iteration id if node is in iteration"""
|
||||
in_loop_id: str | None = None
|
||||
"""loop id if node is in loop"""
|
||||
|
||||
|
||||
class QueueAnnotationReplyEvent(AppQueueEvent):
|
||||
"""
|
||||
QueueAnnotationReplyEvent entity
|
||||
"""
|
||||
|
||||
event: QueueEvent = QueueEvent.ANNOTATION_REPLY
|
||||
message_annotation_id: str
|
||||
|
||||
|
||||
class QueueMessageEndEvent(AppQueueEvent):
|
||||
"""
|
||||
QueueMessageEndEvent entity
|
||||
"""
|
||||
|
||||
event: QueueEvent = QueueEvent.MESSAGE_END
|
||||
llm_result: LLMResult | None = None
|
||||
|
||||
|
||||
class QueueAdvancedChatMessageEndEvent(AppQueueEvent):
|
||||
"""
|
||||
QueueAdvancedChatMessageEndEvent entity
|
||||
"""
|
||||
|
||||
event: QueueEvent = QueueEvent.ADVANCED_CHAT_MESSAGE_END
|
||||
|
||||
|
||||
class QueueWorkflowStartedEvent(AppQueueEvent):
|
||||
"""QueueWorkflowStartedEvent entity."""
|
||||
|
||||
event: QueueEvent = QueueEvent.WORKFLOW_STARTED
|
||||
|
||||
|
||||
class QueueWorkflowSucceededEvent(AppQueueEvent):
|
||||
"""
|
||||
QueueWorkflowSucceededEvent entity
|
||||
"""
|
||||
|
||||
event: QueueEvent = QueueEvent.WORKFLOW_SUCCEEDED
|
||||
outputs: Mapping[str, object] = Field(default_factory=dict)
|
||||
|
||||
|
||||
class QueueWorkflowFailedEvent(AppQueueEvent):
|
||||
"""
|
||||
QueueWorkflowFailedEvent entity
|
||||
"""
|
||||
|
||||
event: QueueEvent = QueueEvent.WORKFLOW_FAILED
|
||||
error: str
|
||||
exceptions_count: int
|
||||
|
||||
|
||||
class QueueWorkflowPartialSuccessEvent(AppQueueEvent):
|
||||
"""
|
||||
QueueWorkflowFailedEvent entity
|
||||
"""
|
||||
|
||||
event: QueueEvent = QueueEvent.WORKFLOW_PARTIAL_SUCCEEDED
|
||||
exceptions_count: int
|
||||
outputs: Mapping[str, object] = Field(default_factory=dict)
|
||||
|
||||
|
||||
class QueueNodeStartedEvent(AppQueueEvent):
|
||||
"""
|
||||
QueueNodeStartedEvent entity
|
||||
"""
|
||||
|
||||
event: QueueEvent = QueueEvent.NODE_STARTED
|
||||
|
||||
node_execution_id: str
|
||||
node_id: str
|
||||
node_title: str
|
||||
node_type: NodeType
|
||||
node_run_index: int = 1 # FIXME(-LAN-): may not used
|
||||
in_iteration_id: str | None = None
|
||||
in_loop_id: str | None = None
|
||||
start_at: datetime
|
||||
agent_strategy: AgentNodeStrategyInit | None = None
|
||||
|
||||
# FIXME(-LAN-): only for ToolNode, need to refactor
|
||||
provider_type: str # should be a core.tools.entities.tool_entities.ToolProviderType
|
||||
provider_id: str
|
||||
|
||||
|
||||
class QueueNodeSucceededEvent(AppQueueEvent):
|
||||
"""
|
||||
QueueNodeSucceededEvent entity
|
||||
"""
|
||||
|
||||
event: QueueEvent = QueueEvent.NODE_SUCCEEDED
|
||||
|
||||
node_execution_id: str
|
||||
node_id: str
|
||||
node_type: NodeType
|
||||
in_iteration_id: str | None = None
|
||||
"""iteration id if node is in iteration"""
|
||||
in_loop_id: str | None = None
|
||||
"""loop id if node is in loop"""
|
||||
start_at: datetime
|
||||
|
||||
inputs: Mapping[str, object] = Field(default_factory=dict)
|
||||
process_data: Mapping[str, object] = Field(default_factory=dict)
|
||||
outputs: Mapping[str, object] = Field(default_factory=dict)
|
||||
execution_metadata: Mapping[WorkflowNodeExecutionMetadataKey, Any] | None = None
|
||||
|
||||
error: str | None = None
|
||||
|
||||
|
||||
class QueueAgentLogEvent(AppQueueEvent):
|
||||
"""
|
||||
QueueAgentLogEvent entity
|
||||
"""
|
||||
|
||||
event: QueueEvent = QueueEvent.AGENT_LOG
|
||||
id: str
|
||||
label: str
|
||||
node_execution_id: str
|
||||
parent_id: str | None = None
|
||||
error: str | None = None
|
||||
status: str
|
||||
data: Mapping[str, Any]
|
||||
metadata: Mapping[str, object] = Field(default_factory=dict)
|
||||
node_id: str
|
||||
|
||||
|
||||
class QueueNodeRetryEvent(QueueNodeStartedEvent):
|
||||
"""QueueNodeRetryEvent entity"""
|
||||
|
||||
event: QueueEvent = QueueEvent.RETRY
|
||||
|
||||
inputs: Mapping[str, object] = Field(default_factory=dict)
|
||||
process_data: Mapping[str, object] = Field(default_factory=dict)
|
||||
outputs: Mapping[str, object] = Field(default_factory=dict)
|
||||
execution_metadata: Mapping[WorkflowNodeExecutionMetadataKey, Any] | None = None
|
||||
|
||||
error: str
|
||||
retry_index: int # retry index
|
||||
|
||||
|
||||
class QueueNodeExceptionEvent(AppQueueEvent):
|
||||
"""
|
||||
QueueNodeExceptionEvent entity
|
||||
"""
|
||||
|
||||
event: QueueEvent = QueueEvent.NODE_EXCEPTION
|
||||
|
||||
node_execution_id: str
|
||||
node_id: str
|
||||
node_type: NodeType
|
||||
in_iteration_id: str | None = None
|
||||
"""iteration id if node is in iteration"""
|
||||
in_loop_id: str | None = None
|
||||
"""loop id if node is in loop"""
|
||||
start_at: datetime
|
||||
|
||||
inputs: Mapping[str, object] = Field(default_factory=dict)
|
||||
process_data: Mapping[str, object] = Field(default_factory=dict)
|
||||
outputs: Mapping[str, object] = Field(default_factory=dict)
|
||||
execution_metadata: Mapping[WorkflowNodeExecutionMetadataKey, Any] | None = None
|
||||
|
||||
error: str
|
||||
|
||||
|
||||
class QueueNodeFailedEvent(AppQueueEvent):
|
||||
"""
|
||||
QueueNodeFailedEvent entity
|
||||
"""
|
||||
|
||||
event: QueueEvent = QueueEvent.NODE_FAILED
|
||||
|
||||
node_execution_id: str
|
||||
node_id: str
|
||||
node_type: NodeType
|
||||
in_iteration_id: str | None = None
|
||||
"""iteration id if node is in iteration"""
|
||||
in_loop_id: str | None = None
|
||||
"""loop id if node is in loop"""
|
||||
start_at: datetime
|
||||
|
||||
inputs: Mapping[str, object] = Field(default_factory=dict)
|
||||
process_data: Mapping[str, object] = Field(default_factory=dict)
|
||||
outputs: Mapping[str, object] = Field(default_factory=dict)
|
||||
execution_metadata: Mapping[WorkflowNodeExecutionMetadataKey, Any] | None = None
|
||||
|
||||
error: str
|
||||
|
||||
|
||||
class QueueAgentThoughtEvent(AppQueueEvent):
|
||||
"""
|
||||
QueueAgentThoughtEvent entity
|
||||
"""
|
||||
|
||||
event: QueueEvent = QueueEvent.AGENT_THOUGHT
|
||||
agent_thought_id: str
|
||||
|
||||
|
||||
class QueueMessageFileEvent(AppQueueEvent):
|
||||
"""
|
||||
QueueAgentThoughtEvent entity
|
||||
"""
|
||||
|
||||
event: QueueEvent = QueueEvent.MESSAGE_FILE
|
||||
message_file_id: str
|
||||
|
||||
|
||||
class QueueErrorEvent(AppQueueEvent):
|
||||
"""
|
||||
QueueErrorEvent entity
|
||||
"""
|
||||
|
||||
event: QueueEvent = QueueEvent.ERROR
|
||||
error: Any = None
|
||||
|
||||
|
||||
class QueuePingEvent(AppQueueEvent):
|
||||
"""
|
||||
QueuePingEvent entity
|
||||
"""
|
||||
|
||||
event: QueueEvent = QueueEvent.PING
|
||||
|
||||
|
||||
class QueueStopEvent(AppQueueEvent):
|
||||
"""
|
||||
QueueStopEvent entity
|
||||
"""
|
||||
|
||||
class StopBy(StrEnum):
|
||||
"""
|
||||
Stop by enum
|
||||
"""
|
||||
|
||||
USER_MANUAL = auto()
|
||||
ANNOTATION_REPLY = auto()
|
||||
OUTPUT_MODERATION = auto()
|
||||
INPUT_MODERATION = auto()
|
||||
|
||||
event: QueueEvent = QueueEvent.STOP
|
||||
stopped_by: StopBy
|
||||
|
||||
def get_stop_reason(self) -> str:
|
||||
"""
|
||||
To stop reason
|
||||
"""
|
||||
reason_mapping = {
|
||||
QueueStopEvent.StopBy.USER_MANUAL: "Stopped by user.",
|
||||
QueueStopEvent.StopBy.ANNOTATION_REPLY: "Stopped by annotation reply.",
|
||||
QueueStopEvent.StopBy.OUTPUT_MODERATION: "Stopped by output moderation.",
|
||||
QueueStopEvent.StopBy.INPUT_MODERATION: "Stopped by input moderation.",
|
||||
}
|
||||
|
||||
return reason_mapping.get(self.stopped_by, "Stopped by unknown reason.")
|
||||
|
||||
|
||||
class QueueMessage(BaseModel):
|
||||
"""
|
||||
QueueMessage abstract entity
|
||||
"""
|
||||
|
||||
task_id: str
|
||||
app_mode: str
|
||||
event: AppQueueEvent
|
||||
|
||||
|
||||
class MessageQueueMessage(QueueMessage):
|
||||
"""
|
||||
MessageQueueMessage entity
|
||||
"""
|
||||
|
||||
message_id: str
|
||||
conversation_id: str
|
||||
|
||||
|
||||
class WorkflowQueueMessage(QueueMessage):
|
||||
"""
|
||||
WorkflowQueueMessage entity
|
||||
"""
|
||||
|
||||
pass
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user