dify
This commit is contained in:
0
dify/api/core/agent/__init__.py
Normal file
0
dify/api/core/agent/__init__.py
Normal file
528
dify/api/core/agent/base_agent_runner.py
Normal file
528
dify/api/core/agent/base_agent_runner.py
Normal file
@@ -0,0 +1,528 @@
|
||||
import json
|
||||
import logging
|
||||
import uuid
|
||||
from typing import Union, cast
|
||||
|
||||
from sqlalchemy import select
|
||||
|
||||
from core.agent.entities import AgentEntity, AgentToolEntity
|
||||
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
|
||||
from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfig
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager
|
||||
from core.app.apps.base_app_runner import AppRunner
|
||||
from core.app.entities.app_invoke_entities import (
|
||||
AgentChatAppGenerateEntity,
|
||||
ModelConfigWithCredentialsEntity,
|
||||
)
|
||||
from core.callback_handler.agent_tool_callback_handler import DifyAgentCallbackHandler
|
||||
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
|
||||
from core.file import file_manager
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities import (
|
||||
AssistantPromptMessage,
|
||||
LLMUsage,
|
||||
PromptMessage,
|
||||
PromptMessageTool,
|
||||
SystemPromptMessage,
|
||||
TextPromptMessageContent,
|
||||
ToolPromptMessage,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.model_runtime.entities.message_entities import ImagePromptMessageContent, PromptMessageContentUnionTypes
|
||||
from core.model_runtime.entities.model_entities import ModelFeature
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.prompt.utils.extract_thread_messages import extract_thread_messages
|
||||
from core.tools.__base.tool import Tool
|
||||
from core.tools.entities.tool_entities import (
|
||||
ToolParameter,
|
||||
)
|
||||
from core.tools.tool_manager import ToolManager
|
||||
from core.tools.utils.dataset_retriever_tool import DatasetRetrieverTool
|
||||
from extensions.ext_database import db
|
||||
from factories import file_factory
|
||||
from models.model import Conversation, Message, MessageAgentThought, MessageFile
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class BaseAgentRunner(AppRunner):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
tenant_id: str,
|
||||
application_generate_entity: AgentChatAppGenerateEntity,
|
||||
conversation: Conversation,
|
||||
app_config: AgentChatAppConfig,
|
||||
model_config: ModelConfigWithCredentialsEntity,
|
||||
config: AgentEntity,
|
||||
queue_manager: AppQueueManager,
|
||||
message: Message,
|
||||
user_id: str,
|
||||
model_instance: ModelInstance,
|
||||
memory: TokenBufferMemory | None = None,
|
||||
prompt_messages: list[PromptMessage] | None = None,
|
||||
):
|
||||
self.tenant_id = tenant_id
|
||||
self.application_generate_entity = application_generate_entity
|
||||
self.conversation = conversation
|
||||
self.app_config = app_config
|
||||
self.model_config = model_config
|
||||
self.config = config
|
||||
self.queue_manager = queue_manager
|
||||
self.message = message
|
||||
self.user_id = user_id
|
||||
self.memory = memory
|
||||
self.history_prompt_messages = self.organize_agent_history(prompt_messages=prompt_messages or [])
|
||||
self.model_instance = model_instance
|
||||
|
||||
# init callback
|
||||
self.agent_callback = DifyAgentCallbackHandler()
|
||||
# init dataset tools
|
||||
hit_callback = DatasetIndexToolCallbackHandler(
|
||||
queue_manager=queue_manager,
|
||||
app_id=self.app_config.app_id,
|
||||
message_id=message.id,
|
||||
user_id=user_id,
|
||||
invoke_from=self.application_generate_entity.invoke_from,
|
||||
)
|
||||
self.dataset_tools = DatasetRetrieverTool.get_dataset_tools(
|
||||
tenant_id=tenant_id,
|
||||
dataset_ids=app_config.dataset.dataset_ids if app_config.dataset else [],
|
||||
retrieve_config=app_config.dataset.retrieve_config if app_config.dataset else None,
|
||||
return_resource=(
|
||||
app_config.additional_features.show_retrieve_source if app_config.additional_features else False
|
||||
),
|
||||
invoke_from=application_generate_entity.invoke_from,
|
||||
hit_callback=hit_callback,
|
||||
user_id=user_id,
|
||||
inputs=cast(dict, application_generate_entity.inputs),
|
||||
)
|
||||
# get how many agent thoughts have been created
|
||||
self.agent_thought_count = (
|
||||
db.session.query(MessageAgentThought)
|
||||
.where(
|
||||
MessageAgentThought.message_id == self.message.id,
|
||||
)
|
||||
.count()
|
||||
)
|
||||
db.session.close()
|
||||
|
||||
# check if model supports stream tool call
|
||||
llm_model = cast(LargeLanguageModel, model_instance.model_type_instance)
|
||||
model_schema = llm_model.get_model_schema(model_instance.model, model_instance.credentials)
|
||||
features = model_schema.features if model_schema and model_schema.features else []
|
||||
self.stream_tool_call = ModelFeature.STREAM_TOOL_CALL in features
|
||||
self.files = application_generate_entity.files if ModelFeature.VISION in features else []
|
||||
self.query: str | None = ""
|
||||
self._current_thoughts: list[PromptMessage] = []
|
||||
|
||||
def _repack_app_generate_entity(
|
||||
self, app_generate_entity: AgentChatAppGenerateEntity
|
||||
) -> AgentChatAppGenerateEntity:
|
||||
"""
|
||||
Repack app generate entity
|
||||
"""
|
||||
if app_generate_entity.app_config.prompt_template.simple_prompt_template is None:
|
||||
app_generate_entity.app_config.prompt_template.simple_prompt_template = ""
|
||||
|
||||
return app_generate_entity
|
||||
|
||||
def _convert_tool_to_prompt_message_tool(self, tool: AgentToolEntity) -> tuple[PromptMessageTool, Tool]:
|
||||
"""
|
||||
convert tool to prompt message tool
|
||||
"""
|
||||
tool_entity = ToolManager.get_agent_tool_runtime(
|
||||
tenant_id=self.tenant_id,
|
||||
app_id=self.app_config.app_id,
|
||||
agent_tool=tool,
|
||||
invoke_from=self.application_generate_entity.invoke_from,
|
||||
)
|
||||
assert tool_entity.entity.description
|
||||
message_tool = PromptMessageTool(
|
||||
name=tool.tool_name,
|
||||
description=tool_entity.entity.description.llm,
|
||||
parameters={
|
||||
"type": "object",
|
||||
"properties": {},
|
||||
"required": [],
|
||||
},
|
||||
)
|
||||
|
||||
parameters = tool_entity.get_merged_runtime_parameters()
|
||||
for parameter in parameters:
|
||||
if parameter.form != ToolParameter.ToolParameterForm.LLM:
|
||||
continue
|
||||
|
||||
parameter_type = parameter.type.as_normal_type()
|
||||
if parameter.type in {
|
||||
ToolParameter.ToolParameterType.SYSTEM_FILES,
|
||||
ToolParameter.ToolParameterType.FILE,
|
||||
ToolParameter.ToolParameterType.FILES,
|
||||
}:
|
||||
continue
|
||||
enum = []
|
||||
if parameter.type == ToolParameter.ToolParameterType.SELECT:
|
||||
enum = [option.value for option in parameter.options] if parameter.options else []
|
||||
|
||||
message_tool.parameters["properties"][parameter.name] = (
|
||||
{
|
||||
"type": parameter_type,
|
||||
"description": parameter.llm_description or "",
|
||||
}
|
||||
if parameter.input_schema is None
|
||||
else parameter.input_schema
|
||||
)
|
||||
|
||||
if len(enum) > 0:
|
||||
message_tool.parameters["properties"][parameter.name]["enum"] = enum
|
||||
|
||||
if parameter.required:
|
||||
message_tool.parameters["required"].append(parameter.name)
|
||||
|
||||
return message_tool, tool_entity
|
||||
|
||||
def _convert_dataset_retriever_tool_to_prompt_message_tool(self, tool: DatasetRetrieverTool) -> PromptMessageTool:
|
||||
"""
|
||||
convert dataset retriever tool to prompt message tool
|
||||
"""
|
||||
assert tool.entity.description
|
||||
|
||||
prompt_tool = PromptMessageTool(
|
||||
name=tool.entity.identity.name,
|
||||
description=tool.entity.description.llm,
|
||||
parameters={
|
||||
"type": "object",
|
||||
"properties": {},
|
||||
"required": [],
|
||||
},
|
||||
)
|
||||
|
||||
for parameter in tool.get_runtime_parameters():
|
||||
parameter_type = "string"
|
||||
|
||||
prompt_tool.parameters["properties"][parameter.name] = {
|
||||
"type": parameter_type,
|
||||
"description": parameter.llm_description or "",
|
||||
}
|
||||
|
||||
if parameter.required:
|
||||
if parameter.name not in prompt_tool.parameters["required"]:
|
||||
prompt_tool.parameters["required"].append(parameter.name)
|
||||
|
||||
return prompt_tool
|
||||
|
||||
def _init_prompt_tools(self) -> tuple[dict[str, Tool], list[PromptMessageTool]]:
|
||||
"""
|
||||
Init tools
|
||||
"""
|
||||
tool_instances = {}
|
||||
prompt_messages_tools = []
|
||||
|
||||
for tool in self.app_config.agent.tools or [] if self.app_config.agent else []:
|
||||
try:
|
||||
prompt_tool, tool_entity = self._convert_tool_to_prompt_message_tool(tool)
|
||||
except Exception:
|
||||
# api tool may be deleted
|
||||
continue
|
||||
# save tool entity
|
||||
tool_instances[tool.tool_name] = tool_entity
|
||||
# save prompt tool
|
||||
prompt_messages_tools.append(prompt_tool)
|
||||
|
||||
# convert dataset tools into ModelRuntime Tool format
|
||||
for dataset_tool in self.dataset_tools:
|
||||
prompt_tool = self._convert_dataset_retriever_tool_to_prompt_message_tool(dataset_tool)
|
||||
# save prompt tool
|
||||
prompt_messages_tools.append(prompt_tool)
|
||||
# save tool entity
|
||||
tool_instances[dataset_tool.entity.identity.name] = dataset_tool
|
||||
|
||||
return tool_instances, prompt_messages_tools
|
||||
|
||||
def update_prompt_message_tool(self, tool: Tool, prompt_tool: PromptMessageTool) -> PromptMessageTool:
|
||||
"""
|
||||
update prompt message tool
|
||||
"""
|
||||
# try to get tool runtime parameters
|
||||
tool_runtime_parameters = tool.get_runtime_parameters()
|
||||
|
||||
for parameter in tool_runtime_parameters:
|
||||
if parameter.form != ToolParameter.ToolParameterForm.LLM:
|
||||
continue
|
||||
|
||||
parameter_type = parameter.type.as_normal_type()
|
||||
if parameter.type in {
|
||||
ToolParameter.ToolParameterType.SYSTEM_FILES,
|
||||
ToolParameter.ToolParameterType.FILE,
|
||||
ToolParameter.ToolParameterType.FILES,
|
||||
}:
|
||||
continue
|
||||
enum = []
|
||||
if parameter.type == ToolParameter.ToolParameterType.SELECT:
|
||||
enum = [option.value for option in parameter.options] if parameter.options else []
|
||||
|
||||
prompt_tool.parameters["properties"][parameter.name] = (
|
||||
{
|
||||
"type": parameter_type,
|
||||
"description": parameter.llm_description or "",
|
||||
}
|
||||
if parameter.input_schema is None
|
||||
else parameter.input_schema
|
||||
)
|
||||
|
||||
if len(enum) > 0:
|
||||
prompt_tool.parameters["properties"][parameter.name]["enum"] = enum
|
||||
|
||||
if parameter.required:
|
||||
if parameter.name not in prompt_tool.parameters["required"]:
|
||||
prompt_tool.parameters["required"].append(parameter.name)
|
||||
|
||||
return prompt_tool
|
||||
|
||||
def create_agent_thought(
|
||||
self, message_id: str, message: str, tool_name: str, tool_input: str, messages_ids: list[str]
|
||||
) -> str:
|
||||
"""
|
||||
Create agent thought
|
||||
"""
|
||||
thought = MessageAgentThought(
|
||||
message_id=message_id,
|
||||
message_chain_id=None,
|
||||
thought="",
|
||||
tool=tool_name,
|
||||
tool_labels_str="{}",
|
||||
tool_meta_str="{}",
|
||||
tool_input=tool_input,
|
||||
message=message,
|
||||
message_token=0,
|
||||
message_unit_price=0,
|
||||
message_price_unit=0,
|
||||
message_files=json.dumps(messages_ids) if messages_ids else "",
|
||||
answer="",
|
||||
observation="",
|
||||
answer_token=0,
|
||||
answer_unit_price=0,
|
||||
answer_price_unit=0,
|
||||
tokens=0,
|
||||
total_price=0,
|
||||
position=self.agent_thought_count + 1,
|
||||
currency="USD",
|
||||
latency=0,
|
||||
created_by_role="account",
|
||||
created_by=self.user_id,
|
||||
)
|
||||
|
||||
db.session.add(thought)
|
||||
db.session.commit()
|
||||
agent_thought_id = str(thought.id)
|
||||
self.agent_thought_count += 1
|
||||
db.session.close()
|
||||
|
||||
return agent_thought_id
|
||||
|
||||
def save_agent_thought(
|
||||
self,
|
||||
agent_thought_id: str,
|
||||
tool_name: str | None,
|
||||
tool_input: Union[str, dict, None],
|
||||
thought: str | None,
|
||||
observation: Union[str, dict, None],
|
||||
tool_invoke_meta: Union[str, dict, None],
|
||||
answer: str | None,
|
||||
messages_ids: list[str],
|
||||
llm_usage: LLMUsage | None = None,
|
||||
):
|
||||
"""
|
||||
Save agent thought
|
||||
"""
|
||||
stmt = select(MessageAgentThought).where(MessageAgentThought.id == agent_thought_id)
|
||||
agent_thought = db.session.scalar(stmt)
|
||||
if not agent_thought:
|
||||
raise ValueError("agent thought not found")
|
||||
|
||||
if thought:
|
||||
agent_thought.thought += thought
|
||||
|
||||
if tool_name:
|
||||
agent_thought.tool = tool_name
|
||||
|
||||
if tool_input:
|
||||
if isinstance(tool_input, dict):
|
||||
try:
|
||||
tool_input = json.dumps(tool_input, ensure_ascii=False)
|
||||
except Exception:
|
||||
tool_input = json.dumps(tool_input)
|
||||
|
||||
agent_thought.tool_input = tool_input
|
||||
|
||||
if observation:
|
||||
if isinstance(observation, dict):
|
||||
try:
|
||||
observation = json.dumps(observation, ensure_ascii=False)
|
||||
except Exception:
|
||||
observation = json.dumps(observation)
|
||||
|
||||
agent_thought.observation = observation
|
||||
|
||||
if answer:
|
||||
agent_thought.answer = answer
|
||||
|
||||
if messages_ids is not None and len(messages_ids) > 0:
|
||||
agent_thought.message_files = json.dumps(messages_ids)
|
||||
|
||||
if llm_usage:
|
||||
agent_thought.message_token = llm_usage.prompt_tokens
|
||||
agent_thought.message_price_unit = llm_usage.prompt_price_unit
|
||||
agent_thought.message_unit_price = llm_usage.prompt_unit_price
|
||||
agent_thought.answer_token = llm_usage.completion_tokens
|
||||
agent_thought.answer_price_unit = llm_usage.completion_price_unit
|
||||
agent_thought.answer_unit_price = llm_usage.completion_unit_price
|
||||
agent_thought.tokens = llm_usage.total_tokens
|
||||
agent_thought.total_price = llm_usage.total_price
|
||||
|
||||
# check if tool labels is not empty
|
||||
labels = agent_thought.tool_labels or {}
|
||||
tools = agent_thought.tool.split(";") if agent_thought.tool else []
|
||||
for tool in tools:
|
||||
if not tool:
|
||||
continue
|
||||
if tool not in labels:
|
||||
tool_label = ToolManager.get_tool_label(tool)
|
||||
if tool_label:
|
||||
labels[tool] = tool_label.to_dict()
|
||||
else:
|
||||
labels[tool] = {"en_US": tool, "zh_Hans": tool}
|
||||
|
||||
agent_thought.tool_labels_str = json.dumps(labels)
|
||||
|
||||
if tool_invoke_meta is not None:
|
||||
if isinstance(tool_invoke_meta, dict):
|
||||
try:
|
||||
tool_invoke_meta = json.dumps(tool_invoke_meta, ensure_ascii=False)
|
||||
except Exception:
|
||||
tool_invoke_meta = json.dumps(tool_invoke_meta)
|
||||
|
||||
agent_thought.tool_meta_str = tool_invoke_meta
|
||||
|
||||
db.session.commit()
|
||||
db.session.close()
|
||||
|
||||
def organize_agent_history(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
|
||||
"""
|
||||
Organize agent history
|
||||
"""
|
||||
result: list[PromptMessage] = []
|
||||
# check if there is a system message in the beginning of the conversation
|
||||
for prompt_message in prompt_messages:
|
||||
if isinstance(prompt_message, SystemPromptMessage):
|
||||
result.append(prompt_message)
|
||||
|
||||
messages = (
|
||||
(
|
||||
db.session.execute(
|
||||
select(Message)
|
||||
.where(Message.conversation_id == self.message.conversation_id)
|
||||
.order_by(Message.created_at.desc())
|
||||
)
|
||||
)
|
||||
.scalars()
|
||||
.all()
|
||||
)
|
||||
|
||||
messages = list(reversed(extract_thread_messages(messages)))
|
||||
|
||||
for message in messages:
|
||||
if message.id == self.message.id:
|
||||
continue
|
||||
|
||||
result.append(self.organize_agent_user_prompt(message))
|
||||
agent_thoughts: list[MessageAgentThought] = message.agent_thoughts
|
||||
if agent_thoughts:
|
||||
for agent_thought in agent_thoughts:
|
||||
tools = agent_thought.tool
|
||||
if tools:
|
||||
tools = tools.split(";")
|
||||
tool_calls: list[AssistantPromptMessage.ToolCall] = []
|
||||
tool_call_response: list[ToolPromptMessage] = []
|
||||
try:
|
||||
tool_inputs = json.loads(agent_thought.tool_input)
|
||||
except Exception:
|
||||
tool_inputs = {tool: {} for tool in tools}
|
||||
try:
|
||||
tool_responses = json.loads(agent_thought.observation)
|
||||
except Exception:
|
||||
tool_responses = dict.fromkeys(tools, agent_thought.observation)
|
||||
|
||||
for tool in tools:
|
||||
# generate a uuid for tool call
|
||||
tool_call_id = str(uuid.uuid4())
|
||||
tool_calls.append(
|
||||
AssistantPromptMessage.ToolCall(
|
||||
id=tool_call_id,
|
||||
type="function",
|
||||
function=AssistantPromptMessage.ToolCall.ToolCallFunction(
|
||||
name=tool,
|
||||
arguments=json.dumps(tool_inputs.get(tool, {})),
|
||||
),
|
||||
)
|
||||
)
|
||||
tool_call_response.append(
|
||||
ToolPromptMessage(
|
||||
content=tool_responses.get(tool, agent_thought.observation),
|
||||
name=tool,
|
||||
tool_call_id=tool_call_id,
|
||||
)
|
||||
)
|
||||
|
||||
result.extend(
|
||||
[
|
||||
AssistantPromptMessage(
|
||||
content=agent_thought.thought,
|
||||
tool_calls=tool_calls,
|
||||
),
|
||||
*tool_call_response,
|
||||
]
|
||||
)
|
||||
if not tools:
|
||||
result.append(AssistantPromptMessage(content=agent_thought.thought))
|
||||
else:
|
||||
if message.answer:
|
||||
result.append(AssistantPromptMessage(content=message.answer))
|
||||
|
||||
db.session.close()
|
||||
|
||||
return result
|
||||
|
||||
def organize_agent_user_prompt(self, message: Message) -> UserPromptMessage:
|
||||
stmt = select(MessageFile).where(MessageFile.message_id == message.id)
|
||||
files = db.session.scalars(stmt).all()
|
||||
if not files:
|
||||
return UserPromptMessage(content=message.query)
|
||||
if message.app_model_config:
|
||||
file_extra_config = FileUploadConfigManager.convert(message.app_model_config.to_dict())
|
||||
else:
|
||||
file_extra_config = None
|
||||
|
||||
if not file_extra_config:
|
||||
return UserPromptMessage(content=message.query)
|
||||
|
||||
image_detail_config = file_extra_config.image_config.detail if file_extra_config.image_config else None
|
||||
image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
|
||||
|
||||
file_objs = file_factory.build_from_message_files(
|
||||
message_files=files, tenant_id=self.tenant_id, config=file_extra_config
|
||||
)
|
||||
if not file_objs:
|
||||
return UserPromptMessage(content=message.query)
|
||||
prompt_message_contents: list[PromptMessageContentUnionTypes] = []
|
||||
for file in file_objs:
|
||||
prompt_message_contents.append(
|
||||
file_manager.to_prompt_message_content(
|
||||
file,
|
||||
image_detail_config=image_detail_config,
|
||||
)
|
||||
)
|
||||
prompt_message_contents.append(TextPromptMessageContent(data=message.query))
|
||||
|
||||
return UserPromptMessage(content=prompt_message_contents)
|
||||
428
dify/api/core/agent/cot_agent_runner.py
Normal file
428
dify/api/core/agent/cot_agent_runner.py
Normal file
@@ -0,0 +1,428 @@
|
||||
import json
|
||||
from abc import ABC, abstractmethod
|
||||
from collections.abc import Generator, Mapping, Sequence
|
||||
from typing import Any
|
||||
|
||||
from core.agent.base_agent_runner import BaseAgentRunner
|
||||
from core.agent.entities import AgentScratchpadUnit
|
||||
from core.agent.output_parser.cot_output_parser import CotAgentOutputParser
|
||||
from core.app.apps.base_app_queue_manager import PublishFrom
|
||||
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
|
||||
from core.model_runtime.entities.message_entities import (
|
||||
AssistantPromptMessage,
|
||||
PromptMessage,
|
||||
PromptMessageTool,
|
||||
ToolPromptMessage,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.ops.ops_trace_manager import TraceQueueManager
|
||||
from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
|
||||
from core.tools.__base.tool import Tool
|
||||
from core.tools.entities.tool_entities import ToolInvokeMeta
|
||||
from core.tools.tool_engine import ToolEngine
|
||||
from models.model import Message
|
||||
|
||||
|
||||
class CotAgentRunner(BaseAgentRunner, ABC):
|
||||
_is_first_iteration = True
|
||||
_ignore_observation_providers = ["wenxin"]
|
||||
_historic_prompt_messages: list[PromptMessage]
|
||||
_agent_scratchpad: list[AgentScratchpadUnit]
|
||||
_instruction: str
|
||||
_query: str
|
||||
_prompt_messages_tools: Sequence[PromptMessageTool]
|
||||
|
||||
def run(
|
||||
self,
|
||||
message: Message,
|
||||
query: str,
|
||||
inputs: Mapping[str, str],
|
||||
) -> Generator:
|
||||
"""
|
||||
Run Cot agent application
|
||||
"""
|
||||
|
||||
app_generate_entity = self.application_generate_entity
|
||||
self._repack_app_generate_entity(app_generate_entity)
|
||||
self._init_react_state(query)
|
||||
|
||||
trace_manager = app_generate_entity.trace_manager
|
||||
|
||||
# check model mode
|
||||
if "Observation" not in app_generate_entity.model_conf.stop:
|
||||
if app_generate_entity.model_conf.provider not in self._ignore_observation_providers:
|
||||
app_generate_entity.model_conf.stop.append("Observation")
|
||||
|
||||
app_config = self.app_config
|
||||
assert app_config.agent
|
||||
|
||||
# init instruction
|
||||
inputs = inputs or {}
|
||||
instruction = app_config.prompt_template.simple_prompt_template or ""
|
||||
self._instruction = self._fill_in_inputs_from_external_data_tools(instruction, inputs)
|
||||
|
||||
iteration_step = 1
|
||||
max_iteration_steps = min(app_config.agent.max_iteration, 99) + 1
|
||||
|
||||
# convert tools into ModelRuntime Tool format
|
||||
tool_instances, prompt_messages_tools = self._init_prompt_tools()
|
||||
self._prompt_messages_tools = prompt_messages_tools
|
||||
|
||||
function_call_state = True
|
||||
llm_usage: dict[str, LLMUsage | None] = {"usage": None}
|
||||
final_answer = ""
|
||||
prompt_messages: list = [] # Initialize prompt_messages
|
||||
agent_thought_id = "" # Initialize agent_thought_id
|
||||
|
||||
def increase_usage(final_llm_usage_dict: dict[str, LLMUsage | None], usage: LLMUsage):
|
||||
if not final_llm_usage_dict["usage"]:
|
||||
final_llm_usage_dict["usage"] = usage
|
||||
else:
|
||||
llm_usage = final_llm_usage_dict["usage"]
|
||||
llm_usage.prompt_tokens += usage.prompt_tokens
|
||||
llm_usage.completion_tokens += usage.completion_tokens
|
||||
llm_usage.total_tokens += usage.total_tokens
|
||||
llm_usage.prompt_price += usage.prompt_price
|
||||
llm_usage.completion_price += usage.completion_price
|
||||
llm_usage.total_price += usage.total_price
|
||||
|
||||
model_instance = self.model_instance
|
||||
|
||||
while function_call_state and iteration_step <= max_iteration_steps:
|
||||
# continue to run until there is not any tool call
|
||||
function_call_state = False
|
||||
|
||||
if iteration_step == max_iteration_steps:
|
||||
# the last iteration, remove all tools
|
||||
self._prompt_messages_tools = []
|
||||
|
||||
message_file_ids: list[str] = []
|
||||
|
||||
agent_thought_id = self.create_agent_thought(
|
||||
message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids
|
||||
)
|
||||
|
||||
if iteration_step > 1:
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
||||
# recalc llm max tokens
|
||||
prompt_messages = self._organize_prompt_messages()
|
||||
self.recalc_llm_max_tokens(self.model_config, prompt_messages)
|
||||
# invoke model
|
||||
chunks = model_instance.invoke_llm(
|
||||
prompt_messages=prompt_messages,
|
||||
model_parameters=app_generate_entity.model_conf.parameters,
|
||||
tools=[],
|
||||
stop=app_generate_entity.model_conf.stop,
|
||||
stream=True,
|
||||
user=self.user_id,
|
||||
callbacks=[],
|
||||
)
|
||||
|
||||
usage_dict: dict[str, LLMUsage | None] = {}
|
||||
react_chunks = CotAgentOutputParser.handle_react_stream_output(chunks, usage_dict)
|
||||
scratchpad = AgentScratchpadUnit(
|
||||
agent_response="",
|
||||
thought="",
|
||||
action_str="",
|
||||
observation="",
|
||||
action=None,
|
||||
)
|
||||
|
||||
# publish agent thought if it's first iteration
|
||||
if iteration_step == 1:
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
||||
for chunk in react_chunks:
|
||||
if isinstance(chunk, AgentScratchpadUnit.Action):
|
||||
action = chunk
|
||||
# detect action
|
||||
assert scratchpad.agent_response is not None
|
||||
scratchpad.agent_response += json.dumps(chunk.model_dump())
|
||||
scratchpad.action_str = json.dumps(chunk.model_dump())
|
||||
scratchpad.action = action
|
||||
else:
|
||||
assert scratchpad.agent_response is not None
|
||||
scratchpad.agent_response += chunk
|
||||
assert scratchpad.thought is not None
|
||||
scratchpad.thought += chunk
|
||||
yield LLMResultChunk(
|
||||
model=self.model_config.model,
|
||||
prompt_messages=prompt_messages,
|
||||
system_fingerprint="",
|
||||
delta=LLMResultChunkDelta(index=0, message=AssistantPromptMessage(content=chunk), usage=None),
|
||||
)
|
||||
|
||||
assert scratchpad.thought is not None
|
||||
scratchpad.thought = scratchpad.thought.strip() or "I am thinking about how to help you"
|
||||
self._agent_scratchpad.append(scratchpad)
|
||||
|
||||
# get llm usage
|
||||
if "usage" in usage_dict:
|
||||
if usage_dict["usage"] is not None:
|
||||
increase_usage(llm_usage, usage_dict["usage"])
|
||||
else:
|
||||
usage_dict["usage"] = LLMUsage.empty_usage()
|
||||
|
||||
self.save_agent_thought(
|
||||
agent_thought_id=agent_thought_id,
|
||||
tool_name=(scratchpad.action.action_name if scratchpad.action and not scratchpad.is_final() else ""),
|
||||
tool_input={scratchpad.action.action_name: scratchpad.action.action_input} if scratchpad.action else {},
|
||||
tool_invoke_meta={},
|
||||
thought=scratchpad.thought or "",
|
||||
observation="",
|
||||
answer=scratchpad.agent_response or "",
|
||||
messages_ids=[],
|
||||
llm_usage=usage_dict["usage"],
|
||||
)
|
||||
|
||||
if not scratchpad.is_final():
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
||||
if not scratchpad.action:
|
||||
# failed to extract action, return final answer directly
|
||||
final_answer = ""
|
||||
else:
|
||||
if scratchpad.action.action_name.lower() == "final answer":
|
||||
# action is final answer, return final answer directly
|
||||
try:
|
||||
if isinstance(scratchpad.action.action_input, dict):
|
||||
final_answer = json.dumps(scratchpad.action.action_input, ensure_ascii=False)
|
||||
elif isinstance(scratchpad.action.action_input, str):
|
||||
final_answer = scratchpad.action.action_input
|
||||
else:
|
||||
final_answer = f"{scratchpad.action.action_input}"
|
||||
except TypeError:
|
||||
final_answer = f"{scratchpad.action.action_input}"
|
||||
else:
|
||||
function_call_state = True
|
||||
# action is tool call, invoke tool
|
||||
tool_invoke_response, tool_invoke_meta = self._handle_invoke_action(
|
||||
action=scratchpad.action,
|
||||
tool_instances=tool_instances,
|
||||
message_file_ids=message_file_ids,
|
||||
trace_manager=trace_manager,
|
||||
)
|
||||
scratchpad.observation = tool_invoke_response
|
||||
scratchpad.agent_response = tool_invoke_response
|
||||
|
||||
self.save_agent_thought(
|
||||
agent_thought_id=agent_thought_id,
|
||||
tool_name=scratchpad.action.action_name,
|
||||
tool_input={scratchpad.action.action_name: scratchpad.action.action_input},
|
||||
thought=scratchpad.thought or "",
|
||||
observation={scratchpad.action.action_name: tool_invoke_response},
|
||||
tool_invoke_meta={scratchpad.action.action_name: tool_invoke_meta.to_dict()},
|
||||
answer=scratchpad.agent_response,
|
||||
messages_ids=message_file_ids,
|
||||
llm_usage=usage_dict["usage"],
|
||||
)
|
||||
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
||||
# update prompt tool message
|
||||
for prompt_tool in self._prompt_messages_tools:
|
||||
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
|
||||
|
||||
iteration_step += 1
|
||||
|
||||
yield LLMResultChunk(
|
||||
model=model_instance.model,
|
||||
prompt_messages=prompt_messages,
|
||||
delta=LLMResultChunkDelta(
|
||||
index=0, message=AssistantPromptMessage(content=final_answer), usage=llm_usage["usage"]
|
||||
),
|
||||
system_fingerprint="",
|
||||
)
|
||||
|
||||
# save agent thought
|
||||
self.save_agent_thought(
|
||||
agent_thought_id=agent_thought_id,
|
||||
tool_name="",
|
||||
tool_input={},
|
||||
tool_invoke_meta={},
|
||||
thought=final_answer,
|
||||
observation={},
|
||||
answer=final_answer,
|
||||
messages_ids=[],
|
||||
)
|
||||
# publish end event
|
||||
self.queue_manager.publish(
|
||||
QueueMessageEndEvent(
|
||||
llm_result=LLMResult(
|
||||
model=model_instance.model,
|
||||
prompt_messages=prompt_messages,
|
||||
message=AssistantPromptMessage(content=final_answer),
|
||||
usage=llm_usage["usage"] or LLMUsage.empty_usage(),
|
||||
system_fingerprint="",
|
||||
)
|
||||
),
|
||||
PublishFrom.APPLICATION_MANAGER,
|
||||
)
|
||||
|
||||
def _handle_invoke_action(
|
||||
self,
|
||||
action: AgentScratchpadUnit.Action,
|
||||
tool_instances: Mapping[str, Tool],
|
||||
message_file_ids: list[str],
|
||||
trace_manager: TraceQueueManager | None = None,
|
||||
) -> tuple[str, ToolInvokeMeta]:
|
||||
"""
|
||||
handle invoke action
|
||||
:param action: action
|
||||
:param tool_instances: tool instances
|
||||
:param message_file_ids: message file ids
|
||||
:param trace_manager: trace manager
|
||||
:return: observation, meta
|
||||
"""
|
||||
# action is tool call, invoke tool
|
||||
tool_call_name = action.action_name
|
||||
tool_call_args = action.action_input
|
||||
tool_instance = tool_instances.get(tool_call_name)
|
||||
|
||||
if not tool_instance:
|
||||
answer = f"there is not a tool named {tool_call_name}"
|
||||
return answer, ToolInvokeMeta.error_instance(answer)
|
||||
|
||||
if isinstance(tool_call_args, str):
|
||||
try:
|
||||
tool_call_args = json.loads(tool_call_args)
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
|
||||
# invoke tool
|
||||
tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
|
||||
tool=tool_instance,
|
||||
tool_parameters=tool_call_args,
|
||||
user_id=self.user_id,
|
||||
tenant_id=self.tenant_id,
|
||||
message=self.message,
|
||||
invoke_from=self.application_generate_entity.invoke_from,
|
||||
agent_tool_callback=self.agent_callback,
|
||||
trace_manager=trace_manager,
|
||||
)
|
||||
|
||||
# publish files
|
||||
for message_file_id in message_files:
|
||||
# publish message file
|
||||
self.queue_manager.publish(
|
||||
QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
# add message file ids
|
||||
message_file_ids.append(message_file_id)
|
||||
|
||||
return tool_invoke_response, tool_invoke_meta
|
||||
|
||||
def _convert_dict_to_action(self, action: dict) -> AgentScratchpadUnit.Action:
|
||||
"""
|
||||
convert dict to action
|
||||
"""
|
||||
return AgentScratchpadUnit.Action(action_name=action["action"], action_input=action["action_input"])
|
||||
|
||||
def _fill_in_inputs_from_external_data_tools(self, instruction: str, inputs: Mapping[str, Any]) -> str:
|
||||
"""
|
||||
fill in inputs from external data tools
|
||||
"""
|
||||
for key, value in inputs.items():
|
||||
try:
|
||||
instruction = instruction.replace(f"{{{{{key}}}}}", str(value))
|
||||
except Exception:
|
||||
continue
|
||||
|
||||
return instruction
|
||||
|
||||
def _init_react_state(self, query):
|
||||
"""
|
||||
init agent scratchpad
|
||||
"""
|
||||
self._query = query
|
||||
self._agent_scratchpad = []
|
||||
self._historic_prompt_messages = self._organize_historic_prompt_messages()
|
||||
|
||||
@abstractmethod
|
||||
def _organize_prompt_messages(self) -> list[PromptMessage]:
|
||||
"""
|
||||
organize prompt messages
|
||||
"""
|
||||
|
||||
def _format_assistant_message(self, agent_scratchpad: list[AgentScratchpadUnit]) -> str:
|
||||
"""
|
||||
format assistant message
|
||||
"""
|
||||
message = ""
|
||||
for scratchpad in agent_scratchpad:
|
||||
if scratchpad.is_final():
|
||||
message += f"Final Answer: {scratchpad.agent_response}"
|
||||
else:
|
||||
message += f"Thought: {scratchpad.thought}\n\n"
|
||||
if scratchpad.action_str:
|
||||
message += f"Action: {scratchpad.action_str}\n\n"
|
||||
if scratchpad.observation:
|
||||
message += f"Observation: {scratchpad.observation}\n\n"
|
||||
|
||||
return message
|
||||
|
||||
def _organize_historic_prompt_messages(
|
||||
self, current_session_messages: list[PromptMessage] | None = None
|
||||
) -> list[PromptMessage]:
|
||||
"""
|
||||
organize historic prompt messages
|
||||
"""
|
||||
result: list[PromptMessage] = []
|
||||
scratchpads: list[AgentScratchpadUnit] = []
|
||||
current_scratchpad: AgentScratchpadUnit | None = None
|
||||
|
||||
for message in self.history_prompt_messages:
|
||||
if isinstance(message, AssistantPromptMessage):
|
||||
if not current_scratchpad:
|
||||
assert isinstance(message.content, str)
|
||||
current_scratchpad = AgentScratchpadUnit(
|
||||
agent_response=message.content,
|
||||
thought=message.content or "I am thinking about how to help you",
|
||||
action_str="",
|
||||
action=None,
|
||||
observation=None,
|
||||
)
|
||||
scratchpads.append(current_scratchpad)
|
||||
if message.tool_calls:
|
||||
try:
|
||||
current_scratchpad.action = AgentScratchpadUnit.Action(
|
||||
action_name=message.tool_calls[0].function.name,
|
||||
action_input=json.loads(message.tool_calls[0].function.arguments),
|
||||
)
|
||||
current_scratchpad.action_str = json.dumps(current_scratchpad.action.to_dict())
|
||||
except:
|
||||
pass
|
||||
elif isinstance(message, ToolPromptMessage):
|
||||
if current_scratchpad:
|
||||
assert isinstance(message.content, str)
|
||||
current_scratchpad.observation = message.content
|
||||
else:
|
||||
raise NotImplementedError("expected str type")
|
||||
elif isinstance(message, UserPromptMessage):
|
||||
if scratchpads:
|
||||
result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads)))
|
||||
scratchpads = []
|
||||
current_scratchpad = None
|
||||
|
||||
result.append(message)
|
||||
|
||||
if scratchpads:
|
||||
result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads)))
|
||||
|
||||
historic_prompts = AgentHistoryPromptTransform(
|
||||
model_config=self.model_config,
|
||||
prompt_messages=current_session_messages or [],
|
||||
history_messages=result,
|
||||
memory=self.memory,
|
||||
).get_prompt()
|
||||
return historic_prompts
|
||||
118
dify/api/core/agent/cot_chat_agent_runner.py
Normal file
118
dify/api/core/agent/cot_chat_agent_runner.py
Normal file
@@ -0,0 +1,118 @@
|
||||
import json
|
||||
|
||||
from core.agent.cot_agent_runner import CotAgentRunner
|
||||
from core.file import file_manager
|
||||
from core.model_runtime.entities import (
|
||||
AssistantPromptMessage,
|
||||
PromptMessage,
|
||||
SystemPromptMessage,
|
||||
TextPromptMessageContent,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.model_runtime.entities.message_entities import ImagePromptMessageContent, PromptMessageContentUnionTypes
|
||||
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||
|
||||
|
||||
class CotChatAgentRunner(CotAgentRunner):
|
||||
def _organize_system_prompt(self) -> SystemPromptMessage:
|
||||
"""
|
||||
Organize system prompt
|
||||
"""
|
||||
assert self.app_config.agent
|
||||
assert self.app_config.agent.prompt
|
||||
|
||||
prompt_entity = self.app_config.agent.prompt
|
||||
if not prompt_entity:
|
||||
raise ValueError("Agent prompt configuration is not set")
|
||||
first_prompt = prompt_entity.first_prompt
|
||||
|
||||
system_prompt = (
|
||||
first_prompt.replace("{{instruction}}", self._instruction)
|
||||
.replace("{{tools}}", json.dumps(jsonable_encoder(self._prompt_messages_tools)))
|
||||
.replace("{{tool_names}}", ", ".join([tool.name for tool in self._prompt_messages_tools]))
|
||||
)
|
||||
|
||||
return SystemPromptMessage(content=system_prompt)
|
||||
|
||||
def _organize_user_query(self, query, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
|
||||
"""
|
||||
Organize user query
|
||||
"""
|
||||
if self.files:
|
||||
# get image detail config
|
||||
image_detail_config = (
|
||||
self.application_generate_entity.file_upload_config.image_config.detail
|
||||
if (
|
||||
self.application_generate_entity.file_upload_config
|
||||
and self.application_generate_entity.file_upload_config.image_config
|
||||
)
|
||||
else None
|
||||
)
|
||||
image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
|
||||
|
||||
prompt_message_contents: list[PromptMessageContentUnionTypes] = []
|
||||
for file in self.files:
|
||||
prompt_message_contents.append(
|
||||
file_manager.to_prompt_message_content(
|
||||
file,
|
||||
image_detail_config=image_detail_config,
|
||||
)
|
||||
)
|
||||
prompt_message_contents.append(TextPromptMessageContent(data=query))
|
||||
|
||||
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
|
||||
else:
|
||||
prompt_messages.append(UserPromptMessage(content=query))
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _organize_prompt_messages(self) -> list[PromptMessage]:
|
||||
"""
|
||||
Organize
|
||||
"""
|
||||
# organize system prompt
|
||||
system_message = self._organize_system_prompt()
|
||||
|
||||
# organize current assistant messages
|
||||
agent_scratchpad = self._agent_scratchpad
|
||||
if not agent_scratchpad:
|
||||
assistant_messages = []
|
||||
else:
|
||||
assistant_message = AssistantPromptMessage(content="")
|
||||
assistant_message.content = "" # FIXME: type check tell mypy that assistant_message.content is str
|
||||
for unit in agent_scratchpad:
|
||||
if unit.is_final():
|
||||
assert isinstance(assistant_message.content, str)
|
||||
assistant_message.content += f"Final Answer: {unit.agent_response}"
|
||||
else:
|
||||
assert isinstance(assistant_message.content, str)
|
||||
assistant_message.content += f"Thought: {unit.thought}\n\n"
|
||||
if unit.action_str:
|
||||
assistant_message.content += f"Action: {unit.action_str}\n\n"
|
||||
if unit.observation:
|
||||
assistant_message.content += f"Observation: {unit.observation}\n\n"
|
||||
|
||||
assistant_messages = [assistant_message]
|
||||
|
||||
# query messages
|
||||
query_messages = self._organize_user_query(self._query, [])
|
||||
|
||||
if assistant_messages:
|
||||
# organize historic prompt messages
|
||||
historic_messages = self._organize_historic_prompt_messages(
|
||||
[system_message, *query_messages, *assistant_messages, UserPromptMessage(content="continue")]
|
||||
)
|
||||
messages = [
|
||||
system_message,
|
||||
*historic_messages,
|
||||
*query_messages,
|
||||
*assistant_messages,
|
||||
UserPromptMessage(content="continue"),
|
||||
]
|
||||
else:
|
||||
# organize historic prompt messages
|
||||
historic_messages = self._organize_historic_prompt_messages([system_message, *query_messages])
|
||||
messages = [system_message, *historic_messages, *query_messages]
|
||||
|
||||
# join all messages
|
||||
return messages
|
||||
87
dify/api/core/agent/cot_completion_agent_runner.py
Normal file
87
dify/api/core/agent/cot_completion_agent_runner.py
Normal file
@@ -0,0 +1,87 @@
|
||||
import json
|
||||
|
||||
from core.agent.cot_agent_runner import CotAgentRunner
|
||||
from core.model_runtime.entities.message_entities import (
|
||||
AssistantPromptMessage,
|
||||
PromptMessage,
|
||||
TextPromptMessageContent,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||
|
||||
|
||||
class CotCompletionAgentRunner(CotAgentRunner):
|
||||
def _organize_instruction_prompt(self) -> str:
|
||||
"""
|
||||
Organize instruction prompt
|
||||
"""
|
||||
if self.app_config.agent is None:
|
||||
raise ValueError("Agent configuration is not set")
|
||||
prompt_entity = self.app_config.agent.prompt
|
||||
if prompt_entity is None:
|
||||
raise ValueError("prompt entity is not set")
|
||||
first_prompt = prompt_entity.first_prompt
|
||||
|
||||
system_prompt = (
|
||||
first_prompt.replace("{{instruction}}", self._instruction)
|
||||
.replace("{{tools}}", json.dumps(jsonable_encoder(self._prompt_messages_tools)))
|
||||
.replace("{{tool_names}}", ", ".join([tool.name for tool in self._prompt_messages_tools]))
|
||||
)
|
||||
|
||||
return system_prompt
|
||||
|
||||
def _organize_historic_prompt(self, current_session_messages: list[PromptMessage] | None = None) -> str:
|
||||
"""
|
||||
Organize historic prompt
|
||||
"""
|
||||
historic_prompt_messages = self._organize_historic_prompt_messages(current_session_messages)
|
||||
historic_prompt = ""
|
||||
|
||||
for message in historic_prompt_messages:
|
||||
if isinstance(message, UserPromptMessage):
|
||||
historic_prompt += f"Question: {message.content}\n\n"
|
||||
elif isinstance(message, AssistantPromptMessage):
|
||||
if isinstance(message.content, str):
|
||||
historic_prompt += message.content + "\n\n"
|
||||
elif isinstance(message.content, list):
|
||||
for content in message.content:
|
||||
if not isinstance(content, TextPromptMessageContent):
|
||||
continue
|
||||
historic_prompt += content.data
|
||||
|
||||
return historic_prompt
|
||||
|
||||
def _organize_prompt_messages(self) -> list[PromptMessage]:
|
||||
"""
|
||||
Organize prompt messages
|
||||
"""
|
||||
# organize system prompt
|
||||
system_prompt = self._organize_instruction_prompt()
|
||||
|
||||
# organize historic prompt messages
|
||||
historic_prompt = self._organize_historic_prompt()
|
||||
|
||||
# organize current assistant messages
|
||||
agent_scratchpad = self._agent_scratchpad
|
||||
assistant_prompt = ""
|
||||
for unit in agent_scratchpad or []:
|
||||
if unit.is_final():
|
||||
assistant_prompt += f"Final Answer: {unit.agent_response}"
|
||||
else:
|
||||
assistant_prompt += f"Thought: {unit.thought}\n\n"
|
||||
if unit.action_str:
|
||||
assistant_prompt += f"Action: {unit.action_str}\n\n"
|
||||
if unit.observation:
|
||||
assistant_prompt += f"Observation: {unit.observation}\n\n"
|
||||
|
||||
# query messages
|
||||
query_prompt = f"Question: {self._query}"
|
||||
|
||||
# join all messages
|
||||
prompt = (
|
||||
system_prompt.replace("{{historic_messages}}", historic_prompt)
|
||||
.replace("{{agent_scratchpad}}", assistant_prompt)
|
||||
.replace("{{query}}", query_prompt)
|
||||
)
|
||||
|
||||
return [UserPromptMessage(content=prompt)]
|
||||
94
dify/api/core/agent/entities.py
Normal file
94
dify/api/core/agent/entities.py
Normal file
@@ -0,0 +1,94 @@
|
||||
from enum import StrEnum
|
||||
from typing import Any, Union
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from core.tools.entities.tool_entities import ToolInvokeMessage, ToolProviderType
|
||||
|
||||
|
||||
class AgentToolEntity(BaseModel):
|
||||
"""
|
||||
Agent Tool Entity.
|
||||
"""
|
||||
|
||||
provider_type: ToolProviderType
|
||||
provider_id: str
|
||||
tool_name: str
|
||||
tool_parameters: dict[str, Any] = Field(default_factory=dict)
|
||||
plugin_unique_identifier: str | None = None
|
||||
credential_id: str | None = None
|
||||
|
||||
|
||||
class AgentPromptEntity(BaseModel):
|
||||
"""
|
||||
Agent Prompt Entity.
|
||||
"""
|
||||
|
||||
first_prompt: str
|
||||
next_iteration: str
|
||||
|
||||
|
||||
class AgentScratchpadUnit(BaseModel):
|
||||
"""
|
||||
Agent First Prompt Entity.
|
||||
"""
|
||||
|
||||
class Action(BaseModel):
|
||||
"""
|
||||
Action Entity.
|
||||
"""
|
||||
|
||||
action_name: str
|
||||
action_input: Union[dict, str]
|
||||
|
||||
def to_dict(self):
|
||||
"""
|
||||
Convert to dictionary.
|
||||
"""
|
||||
return {
|
||||
"action": self.action_name,
|
||||
"action_input": self.action_input,
|
||||
}
|
||||
|
||||
agent_response: str | None = None
|
||||
thought: str | None = None
|
||||
action_str: str | None = None
|
||||
observation: str | None = None
|
||||
action: Action | None = None
|
||||
|
||||
def is_final(self) -> bool:
|
||||
"""
|
||||
Check if the scratchpad unit is final.
|
||||
"""
|
||||
return self.action is None or (
|
||||
"final" in self.action.action_name.lower() and "answer" in self.action.action_name.lower()
|
||||
)
|
||||
|
||||
|
||||
class AgentEntity(BaseModel):
|
||||
"""
|
||||
Agent Entity.
|
||||
"""
|
||||
|
||||
class Strategy(StrEnum):
|
||||
"""
|
||||
Agent Strategy.
|
||||
"""
|
||||
|
||||
CHAIN_OF_THOUGHT = "chain-of-thought"
|
||||
FUNCTION_CALLING = "function-calling"
|
||||
|
||||
provider: str
|
||||
model: str
|
||||
strategy: Strategy
|
||||
prompt: AgentPromptEntity | None = None
|
||||
tools: list[AgentToolEntity] | None = None
|
||||
max_iteration: int = 10
|
||||
|
||||
|
||||
class AgentInvokeMessage(ToolInvokeMessage):
|
||||
"""
|
||||
Agent Invoke Message.
|
||||
"""
|
||||
|
||||
pass
|
||||
465
dify/api/core/agent/fc_agent_runner.py
Normal file
465
dify/api/core/agent/fc_agent_runner.py
Normal file
@@ -0,0 +1,465 @@
|
||||
import json
|
||||
import logging
|
||||
from collections.abc import Generator
|
||||
from copy import deepcopy
|
||||
from typing import Any, Union
|
||||
|
||||
from core.agent.base_agent_runner import BaseAgentRunner
|
||||
from core.app.apps.base_app_queue_manager import PublishFrom
|
||||
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
|
||||
from core.file import file_manager
|
||||
from core.model_runtime.entities import (
|
||||
AssistantPromptMessage,
|
||||
LLMResult,
|
||||
LLMResultChunk,
|
||||
LLMResultChunkDelta,
|
||||
LLMUsage,
|
||||
PromptMessage,
|
||||
PromptMessageContentType,
|
||||
SystemPromptMessage,
|
||||
TextPromptMessageContent,
|
||||
ToolPromptMessage,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.model_runtime.entities.message_entities import ImagePromptMessageContent, PromptMessageContentUnionTypes
|
||||
from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
|
||||
from core.tools.entities.tool_entities import ToolInvokeMeta
|
||||
from core.tools.tool_engine import ToolEngine
|
||||
from models.model import Message
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class FunctionCallAgentRunner(BaseAgentRunner):
|
||||
def run(self, message: Message, query: str, **kwargs: Any) -> Generator[LLMResultChunk, None, None]:
|
||||
"""
|
||||
Run FunctionCall agent application
|
||||
"""
|
||||
self.query = query
|
||||
app_generate_entity = self.application_generate_entity
|
||||
|
||||
app_config = self.app_config
|
||||
assert app_config is not None, "app_config is required"
|
||||
assert app_config.agent is not None, "app_config.agent is required"
|
||||
|
||||
# convert tools into ModelRuntime Tool format
|
||||
tool_instances, prompt_messages_tools = self._init_prompt_tools()
|
||||
|
||||
assert app_config.agent
|
||||
|
||||
iteration_step = 1
|
||||
max_iteration_steps = min(app_config.agent.max_iteration, 99) + 1
|
||||
|
||||
# continue to run until there is not any tool call
|
||||
function_call_state = True
|
||||
llm_usage: dict[str, LLMUsage | None] = {"usage": None}
|
||||
final_answer = ""
|
||||
prompt_messages: list = [] # Initialize prompt_messages
|
||||
|
||||
# get tracing instance
|
||||
trace_manager = app_generate_entity.trace_manager
|
||||
|
||||
def increase_usage(final_llm_usage_dict: dict[str, LLMUsage | None], usage: LLMUsage):
|
||||
if not final_llm_usage_dict["usage"]:
|
||||
final_llm_usage_dict["usage"] = usage
|
||||
else:
|
||||
llm_usage = final_llm_usage_dict["usage"]
|
||||
llm_usage.prompt_tokens += usage.prompt_tokens
|
||||
llm_usage.completion_tokens += usage.completion_tokens
|
||||
llm_usage.total_tokens += usage.total_tokens
|
||||
llm_usage.prompt_price += usage.prompt_price
|
||||
llm_usage.completion_price += usage.completion_price
|
||||
llm_usage.total_price += usage.total_price
|
||||
|
||||
model_instance = self.model_instance
|
||||
|
||||
while function_call_state and iteration_step <= max_iteration_steps:
|
||||
function_call_state = False
|
||||
|
||||
if iteration_step == max_iteration_steps:
|
||||
# the last iteration, remove all tools
|
||||
prompt_messages_tools = []
|
||||
|
||||
message_file_ids: list[str] = []
|
||||
agent_thought_id = self.create_agent_thought(
|
||||
message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids
|
||||
)
|
||||
|
||||
# recalc llm max tokens
|
||||
prompt_messages = self._organize_prompt_messages()
|
||||
self.recalc_llm_max_tokens(self.model_config, prompt_messages)
|
||||
# invoke model
|
||||
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm(
|
||||
prompt_messages=prompt_messages,
|
||||
model_parameters=app_generate_entity.model_conf.parameters,
|
||||
tools=prompt_messages_tools,
|
||||
stop=app_generate_entity.model_conf.stop,
|
||||
stream=self.stream_tool_call,
|
||||
user=self.user_id,
|
||||
callbacks=[],
|
||||
)
|
||||
|
||||
tool_calls: list[tuple[str, str, dict[str, Any]]] = []
|
||||
|
||||
# save full response
|
||||
response = ""
|
||||
|
||||
# save tool call names and inputs
|
||||
tool_call_names = ""
|
||||
tool_call_inputs = ""
|
||||
|
||||
current_llm_usage = None
|
||||
|
||||
if isinstance(chunks, Generator):
|
||||
is_first_chunk = True
|
||||
for chunk in chunks:
|
||||
if is_first_chunk:
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
is_first_chunk = False
|
||||
# check if there is any tool call
|
||||
if self.check_tool_calls(chunk):
|
||||
function_call_state = True
|
||||
tool_calls.extend(self.extract_tool_calls(chunk) or [])
|
||||
tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])
|
||||
try:
|
||||
tool_call_inputs = json.dumps(
|
||||
{tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False
|
||||
)
|
||||
except TypeError:
|
||||
# fallback: force ASCII to handle non-serializable objects
|
||||
tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})
|
||||
|
||||
if chunk.delta.message and chunk.delta.message.content:
|
||||
if isinstance(chunk.delta.message.content, list):
|
||||
for content in chunk.delta.message.content:
|
||||
response += content.data
|
||||
else:
|
||||
response += str(chunk.delta.message.content)
|
||||
|
||||
if chunk.delta.usage:
|
||||
increase_usage(llm_usage, chunk.delta.usage)
|
||||
current_llm_usage = chunk.delta.usage
|
||||
|
||||
yield chunk
|
||||
else:
|
||||
result = chunks
|
||||
# check if there is any tool call
|
||||
if self.check_blocking_tool_calls(result):
|
||||
function_call_state = True
|
||||
tool_calls.extend(self.extract_blocking_tool_calls(result) or [])
|
||||
tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])
|
||||
try:
|
||||
tool_call_inputs = json.dumps(
|
||||
{tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False
|
||||
)
|
||||
except TypeError:
|
||||
# fallback: force ASCII to handle non-serializable objects
|
||||
tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})
|
||||
|
||||
if result.usage:
|
||||
increase_usage(llm_usage, result.usage)
|
||||
current_llm_usage = result.usage
|
||||
|
||||
if result.message and result.message.content:
|
||||
if isinstance(result.message.content, list):
|
||||
for content in result.message.content:
|
||||
response += content.data
|
||||
else:
|
||||
response += str(result.message.content)
|
||||
|
||||
if not result.message.content:
|
||||
result.message.content = ""
|
||||
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
||||
yield LLMResultChunk(
|
||||
model=model_instance.model,
|
||||
prompt_messages=result.prompt_messages,
|
||||
system_fingerprint=result.system_fingerprint,
|
||||
delta=LLMResultChunkDelta(
|
||||
index=0,
|
||||
message=result.message,
|
||||
usage=result.usage,
|
||||
),
|
||||
)
|
||||
|
||||
assistant_message = AssistantPromptMessage(content="", tool_calls=[])
|
||||
if tool_calls:
|
||||
assistant_message.tool_calls = [
|
||||
AssistantPromptMessage.ToolCall(
|
||||
id=tool_call[0],
|
||||
type="function",
|
||||
function=AssistantPromptMessage.ToolCall.ToolCallFunction(
|
||||
name=tool_call[1], arguments=json.dumps(tool_call[2], ensure_ascii=False)
|
||||
),
|
||||
)
|
||||
for tool_call in tool_calls
|
||||
]
|
||||
else:
|
||||
assistant_message.content = response
|
||||
|
||||
self._current_thoughts.append(assistant_message)
|
||||
|
||||
# save thought
|
||||
self.save_agent_thought(
|
||||
agent_thought_id=agent_thought_id,
|
||||
tool_name=tool_call_names,
|
||||
tool_input=tool_call_inputs,
|
||||
thought=response,
|
||||
tool_invoke_meta=None,
|
||||
observation=None,
|
||||
answer=response,
|
||||
messages_ids=[],
|
||||
llm_usage=current_llm_usage,
|
||||
)
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
||||
final_answer += response + "\n"
|
||||
|
||||
# call tools
|
||||
tool_responses = []
|
||||
for tool_call_id, tool_call_name, tool_call_args in tool_calls:
|
||||
tool_instance = tool_instances.get(tool_call_name)
|
||||
if not tool_instance:
|
||||
tool_response = {
|
||||
"tool_call_id": tool_call_id,
|
||||
"tool_call_name": tool_call_name,
|
||||
"tool_response": f"there is not a tool named {tool_call_name}",
|
||||
"meta": ToolInvokeMeta.error_instance(f"there is not a tool named {tool_call_name}").to_dict(),
|
||||
}
|
||||
else:
|
||||
# invoke tool
|
||||
tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
|
||||
tool=tool_instance,
|
||||
tool_parameters=tool_call_args,
|
||||
user_id=self.user_id,
|
||||
tenant_id=self.tenant_id,
|
||||
message=self.message,
|
||||
invoke_from=self.application_generate_entity.invoke_from,
|
||||
agent_tool_callback=self.agent_callback,
|
||||
trace_manager=trace_manager,
|
||||
app_id=self.application_generate_entity.app_config.app_id,
|
||||
message_id=self.message.id,
|
||||
conversation_id=self.conversation.id,
|
||||
)
|
||||
# publish files
|
||||
for message_file_id in message_files:
|
||||
# publish message file
|
||||
self.queue_manager.publish(
|
||||
QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
# add message file ids
|
||||
message_file_ids.append(message_file_id)
|
||||
|
||||
tool_response = {
|
||||
"tool_call_id": tool_call_id,
|
||||
"tool_call_name": tool_call_name,
|
||||
"tool_response": tool_invoke_response,
|
||||
"meta": tool_invoke_meta.to_dict(),
|
||||
}
|
||||
|
||||
tool_responses.append(tool_response)
|
||||
if tool_response["tool_response"] is not None:
|
||||
self._current_thoughts.append(
|
||||
ToolPromptMessage(
|
||||
content=str(tool_response["tool_response"]),
|
||||
tool_call_id=tool_call_id,
|
||||
name=tool_call_name,
|
||||
)
|
||||
)
|
||||
|
||||
if len(tool_responses) > 0:
|
||||
# save agent thought
|
||||
self.save_agent_thought(
|
||||
agent_thought_id=agent_thought_id,
|
||||
tool_name="",
|
||||
tool_input="",
|
||||
thought="",
|
||||
tool_invoke_meta={
|
||||
tool_response["tool_call_name"]: tool_response["meta"] for tool_response in tool_responses
|
||||
},
|
||||
observation={
|
||||
tool_response["tool_call_name"]: tool_response["tool_response"]
|
||||
for tool_response in tool_responses
|
||||
},
|
||||
answer="",
|
||||
messages_ids=message_file_ids,
|
||||
)
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
||||
# update prompt tool
|
||||
for prompt_tool in prompt_messages_tools:
|
||||
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
|
||||
|
||||
iteration_step += 1
|
||||
|
||||
# publish end event
|
||||
self.queue_manager.publish(
|
||||
QueueMessageEndEvent(
|
||||
llm_result=LLMResult(
|
||||
model=model_instance.model,
|
||||
prompt_messages=prompt_messages,
|
||||
message=AssistantPromptMessage(content=final_answer),
|
||||
usage=llm_usage["usage"] or LLMUsage.empty_usage(),
|
||||
system_fingerprint="",
|
||||
)
|
||||
),
|
||||
PublishFrom.APPLICATION_MANAGER,
|
||||
)
|
||||
|
||||
def check_tool_calls(self, llm_result_chunk: LLMResultChunk) -> bool:
|
||||
"""
|
||||
Check if there is any tool call in llm result chunk
|
||||
"""
|
||||
if llm_result_chunk.delta.message.tool_calls:
|
||||
return True
|
||||
return False
|
||||
|
||||
def check_blocking_tool_calls(self, llm_result: LLMResult) -> bool:
|
||||
"""
|
||||
Check if there is any blocking tool call in llm result
|
||||
"""
|
||||
if llm_result.message.tool_calls:
|
||||
return True
|
||||
return False
|
||||
|
||||
def extract_tool_calls(self, llm_result_chunk: LLMResultChunk) -> list[tuple[str, str, dict[str, Any]]]:
|
||||
"""
|
||||
Extract tool calls from llm result chunk
|
||||
|
||||
Returns:
|
||||
List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
|
||||
"""
|
||||
tool_calls = []
|
||||
for prompt_message in llm_result_chunk.delta.message.tool_calls:
|
||||
args = {}
|
||||
if prompt_message.function.arguments != "":
|
||||
args = json.loads(prompt_message.function.arguments)
|
||||
|
||||
tool_calls.append(
|
||||
(
|
||||
prompt_message.id,
|
||||
prompt_message.function.name,
|
||||
args,
|
||||
)
|
||||
)
|
||||
|
||||
return tool_calls
|
||||
|
||||
def extract_blocking_tool_calls(self, llm_result: LLMResult) -> list[tuple[str, str, dict[str, Any]]]:
|
||||
"""
|
||||
Extract blocking tool calls from llm result
|
||||
|
||||
Returns:
|
||||
List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
|
||||
"""
|
||||
tool_calls = []
|
||||
for prompt_message in llm_result.message.tool_calls:
|
||||
args = {}
|
||||
if prompt_message.function.arguments != "":
|
||||
args = json.loads(prompt_message.function.arguments)
|
||||
|
||||
tool_calls.append(
|
||||
(
|
||||
prompt_message.id,
|
||||
prompt_message.function.name,
|
||||
args,
|
||||
)
|
||||
)
|
||||
|
||||
return tool_calls
|
||||
|
||||
def _init_system_message(self, prompt_template: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
|
||||
"""
|
||||
Initialize system message
|
||||
"""
|
||||
if not prompt_messages and prompt_template:
|
||||
return [
|
||||
SystemPromptMessage(content=prompt_template),
|
||||
]
|
||||
|
||||
if prompt_messages and not isinstance(prompt_messages[0], SystemPromptMessage) and prompt_template:
|
||||
prompt_messages.insert(0, SystemPromptMessage(content=prompt_template))
|
||||
|
||||
return prompt_messages or []
|
||||
|
||||
def _organize_user_query(self, query: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
|
||||
"""
|
||||
Organize user query
|
||||
"""
|
||||
if self.files:
|
||||
# get image detail config
|
||||
image_detail_config = (
|
||||
self.application_generate_entity.file_upload_config.image_config.detail
|
||||
if (
|
||||
self.application_generate_entity.file_upload_config
|
||||
and self.application_generate_entity.file_upload_config.image_config
|
||||
)
|
||||
else None
|
||||
)
|
||||
image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
|
||||
|
||||
prompt_message_contents: list[PromptMessageContentUnionTypes] = []
|
||||
for file in self.files:
|
||||
prompt_message_contents.append(
|
||||
file_manager.to_prompt_message_content(
|
||||
file,
|
||||
image_detail_config=image_detail_config,
|
||||
)
|
||||
)
|
||||
prompt_message_contents.append(TextPromptMessageContent(data=query))
|
||||
|
||||
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
|
||||
else:
|
||||
prompt_messages.append(UserPromptMessage(content=query))
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _clear_user_prompt_image_messages(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
|
||||
"""
|
||||
As for now, gpt supports both fc and vision at the first iteration.
|
||||
We need to remove the image messages from the prompt messages at the first iteration.
|
||||
"""
|
||||
prompt_messages = deepcopy(prompt_messages)
|
||||
|
||||
for prompt_message in prompt_messages:
|
||||
if isinstance(prompt_message, UserPromptMessage):
|
||||
if isinstance(prompt_message.content, list):
|
||||
prompt_message.content = "\n".join(
|
||||
[
|
||||
content.data
|
||||
if content.type == PromptMessageContentType.TEXT
|
||||
else "[image]"
|
||||
if content.type == PromptMessageContentType.IMAGE
|
||||
else "[file]"
|
||||
for content in prompt_message.content
|
||||
]
|
||||
)
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _organize_prompt_messages(self):
|
||||
prompt_template = self.app_config.prompt_template.simple_prompt_template or ""
|
||||
self.history_prompt_messages = self._init_system_message(prompt_template, self.history_prompt_messages)
|
||||
query_prompt_messages = self._organize_user_query(self.query or "", [])
|
||||
|
||||
self.history_prompt_messages = AgentHistoryPromptTransform(
|
||||
model_config=self.model_config,
|
||||
prompt_messages=[*query_prompt_messages, *self._current_thoughts],
|
||||
history_messages=self.history_prompt_messages,
|
||||
memory=self.memory,
|
||||
).get_prompt()
|
||||
|
||||
prompt_messages = [*self.history_prompt_messages, *query_prompt_messages, *self._current_thoughts]
|
||||
if len(self._current_thoughts) != 0:
|
||||
# clear messages after the first iteration
|
||||
prompt_messages = self._clear_user_prompt_image_messages(prompt_messages)
|
||||
return prompt_messages
|
||||
220
dify/api/core/agent/output_parser/cot_output_parser.py
Normal file
220
dify/api/core/agent/output_parser/cot_output_parser.py
Normal file
@@ -0,0 +1,220 @@
|
||||
import json
|
||||
import re
|
||||
from collections.abc import Generator
|
||||
from typing import Union
|
||||
|
||||
from core.agent.entities import AgentScratchpadUnit
|
||||
from core.model_runtime.entities.llm_entities import LLMResultChunk
|
||||
|
||||
|
||||
class CotAgentOutputParser:
|
||||
@classmethod
|
||||
def handle_react_stream_output(
|
||||
cls, llm_response: Generator[LLMResultChunk, None, None], usage_dict: dict
|
||||
) -> Generator[Union[str, AgentScratchpadUnit.Action], None, None]:
|
||||
def parse_action(action) -> Union[str, AgentScratchpadUnit.Action]:
|
||||
action_name = None
|
||||
action_input = None
|
||||
if isinstance(action, str):
|
||||
try:
|
||||
action = json.loads(action, strict=False)
|
||||
except json.JSONDecodeError:
|
||||
return action or ""
|
||||
|
||||
# cohere always returns a list
|
||||
if isinstance(action, list) and len(action) == 1:
|
||||
action = action[0]
|
||||
|
||||
for key, value in action.items():
|
||||
if "input" in key.lower():
|
||||
action_input = value
|
||||
else:
|
||||
action_name = value
|
||||
|
||||
if action_name is not None and action_input is not None:
|
||||
return AgentScratchpadUnit.Action(
|
||||
action_name=action_name,
|
||||
action_input=action_input,
|
||||
)
|
||||
else:
|
||||
return json.dumps(action)
|
||||
|
||||
def extra_json_from_code_block(code_block) -> list[Union[list, dict]]:
|
||||
blocks = re.findall(r"```[json]*\s*([\[{].*[]}])\s*```", code_block, re.DOTALL | re.IGNORECASE)
|
||||
if not blocks:
|
||||
return []
|
||||
try:
|
||||
json_blocks = []
|
||||
for block in blocks:
|
||||
json_text = re.sub(r"^[a-zA-Z]+\n", "", block.strip(), flags=re.MULTILINE)
|
||||
json_blocks.append(json.loads(json_text, strict=False))
|
||||
return json_blocks
|
||||
except:
|
||||
return []
|
||||
|
||||
code_block_cache = ""
|
||||
code_block_delimiter_count = 0
|
||||
in_code_block = False
|
||||
json_cache = ""
|
||||
json_quote_count = 0
|
||||
in_json = False
|
||||
got_json = False
|
||||
|
||||
action_cache = ""
|
||||
action_str = "action:"
|
||||
action_idx = 0
|
||||
|
||||
thought_cache = ""
|
||||
thought_str = "thought:"
|
||||
thought_idx = 0
|
||||
|
||||
last_character = ""
|
||||
|
||||
for response in llm_response:
|
||||
if response.delta.usage:
|
||||
usage_dict["usage"] = response.delta.usage
|
||||
response_content = response.delta.message.content
|
||||
if not isinstance(response_content, str):
|
||||
continue
|
||||
|
||||
# stream
|
||||
index = 0
|
||||
while index < len(response_content):
|
||||
steps = 1
|
||||
delta = response_content[index : index + steps]
|
||||
yield_delta = False
|
||||
|
||||
if not in_json and delta == "`":
|
||||
last_character = delta
|
||||
code_block_cache += delta
|
||||
code_block_delimiter_count += 1
|
||||
else:
|
||||
if not in_code_block:
|
||||
if code_block_delimiter_count > 0:
|
||||
last_character = delta
|
||||
yield code_block_cache
|
||||
code_block_cache = ""
|
||||
else:
|
||||
last_character = delta
|
||||
code_block_cache += delta
|
||||
code_block_delimiter_count = 0
|
||||
|
||||
if not in_code_block and not in_json:
|
||||
if delta.lower() == action_str[action_idx] and action_idx == 0:
|
||||
if last_character not in {"\n", " ", ""}:
|
||||
yield_delta = True
|
||||
else:
|
||||
last_character = delta
|
||||
action_cache += delta
|
||||
action_idx += 1
|
||||
if action_idx == len(action_str):
|
||||
action_cache = ""
|
||||
action_idx = 0
|
||||
index += steps
|
||||
continue
|
||||
elif delta.lower() == action_str[action_idx] and action_idx > 0:
|
||||
last_character = delta
|
||||
action_cache += delta
|
||||
action_idx += 1
|
||||
if action_idx == len(action_str):
|
||||
action_cache = ""
|
||||
action_idx = 0
|
||||
index += steps
|
||||
continue
|
||||
else:
|
||||
if action_cache:
|
||||
last_character = delta
|
||||
yield action_cache
|
||||
action_cache = ""
|
||||
action_idx = 0
|
||||
|
||||
if delta.lower() == thought_str[thought_idx] and thought_idx == 0:
|
||||
if last_character not in {"\n", " ", ""}:
|
||||
yield_delta = True
|
||||
else:
|
||||
last_character = delta
|
||||
thought_cache += delta
|
||||
thought_idx += 1
|
||||
if thought_idx == len(thought_str):
|
||||
thought_cache = ""
|
||||
thought_idx = 0
|
||||
index += steps
|
||||
continue
|
||||
elif delta.lower() == thought_str[thought_idx] and thought_idx > 0:
|
||||
last_character = delta
|
||||
thought_cache += delta
|
||||
thought_idx += 1
|
||||
if thought_idx == len(thought_str):
|
||||
thought_cache = ""
|
||||
thought_idx = 0
|
||||
index += steps
|
||||
continue
|
||||
else:
|
||||
if thought_cache:
|
||||
last_character = delta
|
||||
yield thought_cache
|
||||
thought_cache = ""
|
||||
thought_idx = 0
|
||||
|
||||
if yield_delta:
|
||||
index += steps
|
||||
last_character = delta
|
||||
yield delta
|
||||
continue
|
||||
|
||||
if code_block_delimiter_count == 3:
|
||||
if in_code_block:
|
||||
last_character = delta
|
||||
action_json_list = extra_json_from_code_block(code_block_cache)
|
||||
if action_json_list:
|
||||
for action_json in action_json_list:
|
||||
yield parse_action(action_json)
|
||||
code_block_cache = ""
|
||||
else:
|
||||
index += steps
|
||||
continue
|
||||
|
||||
in_code_block = not in_code_block
|
||||
code_block_delimiter_count = 0
|
||||
|
||||
if not in_code_block:
|
||||
# handle single json
|
||||
if delta == "{":
|
||||
json_quote_count += 1
|
||||
in_json = True
|
||||
last_character = delta
|
||||
json_cache += delta
|
||||
elif delta == "}":
|
||||
last_character = delta
|
||||
json_cache += delta
|
||||
if json_quote_count > 0:
|
||||
json_quote_count -= 1
|
||||
if json_quote_count == 0:
|
||||
in_json = False
|
||||
got_json = True
|
||||
index += steps
|
||||
continue
|
||||
else:
|
||||
if in_json:
|
||||
last_character = delta
|
||||
json_cache += delta
|
||||
|
||||
if got_json:
|
||||
got_json = False
|
||||
last_character = delta
|
||||
yield parse_action(json_cache)
|
||||
json_cache = ""
|
||||
json_quote_count = 0
|
||||
in_json = False
|
||||
|
||||
if not in_code_block and not in_json:
|
||||
last_character = delta
|
||||
yield delta.replace("`", "")
|
||||
|
||||
index += steps
|
||||
|
||||
if code_block_cache:
|
||||
yield code_block_cache
|
||||
|
||||
if json_cache:
|
||||
yield parse_action(json_cache)
|
||||
100
dify/api/core/agent/plugin_entities.py
Normal file
100
dify/api/core/agent/plugin_entities.py
Normal file
@@ -0,0 +1,100 @@
|
||||
from enum import StrEnum
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field, ValidationInfo, field_validator
|
||||
|
||||
from core.entities.parameter_entities import CommonParameterType
|
||||
from core.plugin.entities.parameters import (
|
||||
PluginParameter,
|
||||
as_normal_type,
|
||||
cast_parameter_value,
|
||||
init_frontend_parameter,
|
||||
)
|
||||
from core.tools.entities.common_entities import I18nObject
|
||||
from core.tools.entities.tool_entities import (
|
||||
ToolIdentity,
|
||||
ToolProviderIdentity,
|
||||
)
|
||||
|
||||
|
||||
class AgentStrategyProviderIdentity(ToolProviderIdentity):
|
||||
"""
|
||||
Inherits from ToolProviderIdentity, without any additional fields.
|
||||
"""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class AgentStrategyParameter(PluginParameter):
|
||||
class AgentStrategyParameterType(StrEnum):
|
||||
"""
|
||||
Keep all the types from PluginParameterType
|
||||
"""
|
||||
|
||||
STRING = CommonParameterType.STRING
|
||||
NUMBER = CommonParameterType.NUMBER
|
||||
BOOLEAN = CommonParameterType.BOOLEAN
|
||||
SELECT = CommonParameterType.SELECT
|
||||
SECRET_INPUT = CommonParameterType.SECRET_INPUT
|
||||
FILE = CommonParameterType.FILE
|
||||
FILES = CommonParameterType.FILES
|
||||
APP_SELECTOR = CommonParameterType.APP_SELECTOR
|
||||
MODEL_SELECTOR = CommonParameterType.MODEL_SELECTOR
|
||||
TOOLS_SELECTOR = CommonParameterType.TOOLS_SELECTOR
|
||||
ANY = CommonParameterType.ANY
|
||||
|
||||
# deprecated, should not use.
|
||||
SYSTEM_FILES = CommonParameterType.SYSTEM_FILES
|
||||
|
||||
def as_normal_type(self):
|
||||
return as_normal_type(self)
|
||||
|
||||
def cast_value(self, value: Any):
|
||||
return cast_parameter_value(self, value)
|
||||
|
||||
type: AgentStrategyParameterType = Field(..., description="The type of the parameter")
|
||||
help: I18nObject | None = None
|
||||
|
||||
def init_frontend_parameter(self, value: Any):
|
||||
return init_frontend_parameter(self, self.type, value)
|
||||
|
||||
|
||||
class AgentStrategyProviderEntity(BaseModel):
|
||||
identity: AgentStrategyProviderIdentity
|
||||
plugin_id: str | None = Field(None, description="The id of the plugin")
|
||||
|
||||
|
||||
class AgentStrategyIdentity(ToolIdentity):
|
||||
"""
|
||||
Inherits from ToolIdentity, without any additional fields.
|
||||
"""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class AgentFeature(StrEnum):
|
||||
"""
|
||||
Agent Feature, used to describe the features of the agent strategy.
|
||||
"""
|
||||
|
||||
HISTORY_MESSAGES = "history-messages"
|
||||
|
||||
|
||||
class AgentStrategyEntity(BaseModel):
|
||||
identity: AgentStrategyIdentity
|
||||
parameters: list[AgentStrategyParameter] = Field(default_factory=list)
|
||||
description: I18nObject = Field(..., description="The description of the agent strategy")
|
||||
output_schema: dict | None = None
|
||||
features: list[AgentFeature] | None = None
|
||||
meta_version: str | None = None
|
||||
# pydantic configs
|
||||
model_config = ConfigDict(protected_namespaces=())
|
||||
|
||||
@field_validator("parameters", mode="before")
|
||||
@classmethod
|
||||
def set_parameters(cls, v, validation_info: ValidationInfo) -> list[AgentStrategyParameter]:
|
||||
return v or []
|
||||
|
||||
|
||||
class AgentProviderEntityWithPlugin(AgentStrategyProviderEntity):
|
||||
strategies: list[AgentStrategyEntity] = Field(default_factory=list)
|
||||
106
dify/api/core/agent/prompt/template.py
Normal file
106
dify/api/core/agent/prompt/template.py
Normal file
@@ -0,0 +1,106 @@
|
||||
ENGLISH_REACT_COMPLETION_PROMPT_TEMPLATES = """Respond to the human as helpfully and accurately as possible.
|
||||
|
||||
{{instruction}}
|
||||
|
||||
You have access to the following tools:
|
||||
|
||||
{{tools}}
|
||||
|
||||
Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
|
||||
Valid "action" values: "Final Answer" or {{tool_names}}
|
||||
|
||||
Provide only ONE action per $JSON_BLOB, as shown:
|
||||
|
||||
```
|
||||
{
|
||||
"action": $TOOL_NAME,
|
||||
"action_input": $ACTION_INPUT
|
||||
}
|
||||
```
|
||||
|
||||
Follow this format:
|
||||
|
||||
Question: input question to answer
|
||||
Thought: consider previous and subsequent steps
|
||||
Action:
|
||||
```
|
||||
$JSON_BLOB
|
||||
```
|
||||
Observation: action result
|
||||
... (repeat Thought/Action/Observation N times)
|
||||
Thought: I know what to respond
|
||||
Action:
|
||||
```
|
||||
{
|
||||
"action": "Final Answer",
|
||||
"action_input": "Final response to human"
|
||||
}
|
||||
```
|
||||
|
||||
Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.
|
||||
{{historic_messages}}
|
||||
Question: {{query}}
|
||||
{{agent_scratchpad}}
|
||||
Thought:""" # noqa: E501
|
||||
|
||||
|
||||
ENGLISH_REACT_COMPLETION_AGENT_SCRATCHPAD_TEMPLATES = """Observation: {{observation}}
|
||||
Thought:"""
|
||||
|
||||
ENGLISH_REACT_CHAT_PROMPT_TEMPLATES = """Respond to the human as helpfully and accurately as possible.
|
||||
|
||||
{{instruction}}
|
||||
|
||||
You have access to the following tools:
|
||||
|
||||
{{tools}}
|
||||
|
||||
Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
|
||||
Valid "action" values: "Final Answer" or {{tool_names}}
|
||||
|
||||
Provide only ONE action per $JSON_BLOB, as shown:
|
||||
|
||||
```
|
||||
{
|
||||
"action": $TOOL_NAME,
|
||||
"action_input": $ACTION_INPUT
|
||||
}
|
||||
```
|
||||
|
||||
Follow this format:
|
||||
|
||||
Question: input question to answer
|
||||
Thought: consider previous and subsequent steps
|
||||
Action:
|
||||
```
|
||||
$JSON_BLOB
|
||||
```
|
||||
Observation: action result
|
||||
... (repeat Thought/Action/Observation N times)
|
||||
Thought: I know what to respond
|
||||
Action:
|
||||
```
|
||||
{
|
||||
"action": "Final Answer",
|
||||
"action_input": "Final response to human"
|
||||
}
|
||||
```
|
||||
|
||||
Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.
|
||||
""" # noqa: E501
|
||||
|
||||
|
||||
ENGLISH_REACT_CHAT_AGENT_SCRATCHPAD_TEMPLATES = ""
|
||||
|
||||
REACT_PROMPT_TEMPLATES = {
|
||||
"english": {
|
||||
"chat": {
|
||||
"prompt": ENGLISH_REACT_CHAT_PROMPT_TEMPLATES,
|
||||
"agent_scratchpad": ENGLISH_REACT_CHAT_AGENT_SCRATCHPAD_TEMPLATES,
|
||||
},
|
||||
"completion": {
|
||||
"prompt": ENGLISH_REACT_COMPLETION_PROMPT_TEMPLATES,
|
||||
"agent_scratchpad": ENGLISH_REACT_COMPLETION_AGENT_SCRATCHPAD_TEMPLATES,
|
||||
},
|
||||
}
|
||||
}
|
||||
45
dify/api/core/agent/strategy/base.py
Normal file
45
dify/api/core/agent/strategy/base.py
Normal file
@@ -0,0 +1,45 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from collections.abc import Generator, Sequence
|
||||
from typing import Any
|
||||
|
||||
from core.agent.entities import AgentInvokeMessage
|
||||
from core.agent.plugin_entities import AgentStrategyParameter
|
||||
from core.plugin.entities.request import InvokeCredentials
|
||||
|
||||
|
||||
class BaseAgentStrategy(ABC):
|
||||
"""
|
||||
Agent Strategy
|
||||
"""
|
||||
|
||||
def invoke(
|
||||
self,
|
||||
params: dict[str, Any],
|
||||
user_id: str,
|
||||
conversation_id: str | None = None,
|
||||
app_id: str | None = None,
|
||||
message_id: str | None = None,
|
||||
credentials: InvokeCredentials | None = None,
|
||||
) -> Generator[AgentInvokeMessage, None, None]:
|
||||
"""
|
||||
Invoke the agent strategy.
|
||||
"""
|
||||
yield from self._invoke(params, user_id, conversation_id, app_id, message_id, credentials)
|
||||
|
||||
def get_parameters(self) -> Sequence[AgentStrategyParameter]:
|
||||
"""
|
||||
Get the parameters for the agent strategy.
|
||||
"""
|
||||
return []
|
||||
|
||||
@abstractmethod
|
||||
def _invoke(
|
||||
self,
|
||||
params: dict[str, Any],
|
||||
user_id: str,
|
||||
conversation_id: str | None = None,
|
||||
app_id: str | None = None,
|
||||
message_id: str | None = None,
|
||||
credentials: InvokeCredentials | None = None,
|
||||
) -> Generator[AgentInvokeMessage, None, None]:
|
||||
pass
|
||||
64
dify/api/core/agent/strategy/plugin.py
Normal file
64
dify/api/core/agent/strategy/plugin.py
Normal file
@@ -0,0 +1,64 @@
|
||||
from collections.abc import Generator, Sequence
|
||||
from typing import Any
|
||||
|
||||
from core.agent.entities import AgentInvokeMessage
|
||||
from core.agent.plugin_entities import AgentStrategyEntity, AgentStrategyParameter
|
||||
from core.agent.strategy.base import BaseAgentStrategy
|
||||
from core.plugin.entities.request import InvokeCredentials, PluginInvokeContext
|
||||
from core.plugin.impl.agent import PluginAgentClient
|
||||
from core.plugin.utils.converter import convert_parameters_to_plugin_format
|
||||
|
||||
|
||||
class PluginAgentStrategy(BaseAgentStrategy):
|
||||
"""
|
||||
Agent Strategy
|
||||
"""
|
||||
|
||||
tenant_id: str
|
||||
declaration: AgentStrategyEntity
|
||||
meta_version: str | None = None
|
||||
|
||||
def __init__(self, tenant_id: str, declaration: AgentStrategyEntity, meta_version: str | None):
|
||||
self.tenant_id = tenant_id
|
||||
self.declaration = declaration
|
||||
self.meta_version = meta_version
|
||||
|
||||
def get_parameters(self) -> Sequence[AgentStrategyParameter]:
|
||||
return self.declaration.parameters
|
||||
|
||||
def initialize_parameters(self, params: dict[str, Any]) -> dict[str, Any]:
|
||||
"""
|
||||
Initialize the parameters for the agent strategy.
|
||||
"""
|
||||
for parameter in self.declaration.parameters:
|
||||
params[parameter.name] = parameter.init_frontend_parameter(params.get(parameter.name))
|
||||
return params
|
||||
|
||||
def _invoke(
|
||||
self,
|
||||
params: dict[str, Any],
|
||||
user_id: str,
|
||||
conversation_id: str | None = None,
|
||||
app_id: str | None = None,
|
||||
message_id: str | None = None,
|
||||
credentials: InvokeCredentials | None = None,
|
||||
) -> Generator[AgentInvokeMessage, None, None]:
|
||||
"""
|
||||
Invoke the agent strategy.
|
||||
"""
|
||||
manager = PluginAgentClient()
|
||||
|
||||
initialized_params = self.initialize_parameters(params)
|
||||
params = convert_parameters_to_plugin_format(initialized_params)
|
||||
|
||||
yield from manager.invoke(
|
||||
tenant_id=self.tenant_id,
|
||||
user_id=user_id,
|
||||
agent_provider=self.declaration.identity.provider,
|
||||
agent_strategy=self.declaration.identity.name,
|
||||
agent_params=params,
|
||||
conversation_id=conversation_id,
|
||||
app_id=app_id,
|
||||
message_id=message_id,
|
||||
context=PluginInvokeContext(credentials=credentials or InvokeCredentials()),
|
||||
)
|
||||
Reference in New Issue
Block a user