dify
This commit is contained in:
0
dify/api/core/app/apps/__init__.py
Normal file
0
dify/api/core/app/apps/__init__.py
Normal file
0
dify/api/core/app/apps/advanced_chat/__init__.py
Normal file
0
dify/api/core/app/apps/advanced_chat/__init__.py
Normal file
91
dify/api/core/app/apps/advanced_chat/app_config_manager.py
Normal file
91
dify/api/core/app/apps/advanced_chat/app_config_manager.py
Normal file
@@ -0,0 +1,91 @@
|
||||
from core.app.app_config.base_app_config_manager import BaseAppConfigManager
|
||||
from core.app.app_config.common.sensitive_word_avoidance.manager import SensitiveWordAvoidanceConfigManager
|
||||
from core.app.app_config.entities import WorkflowUIBasedAppConfig
|
||||
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
|
||||
from core.app.app_config.features.opening_statement.manager import OpeningStatementConfigManager
|
||||
from core.app.app_config.features.retrieval_resource.manager import RetrievalResourceConfigManager
|
||||
from core.app.app_config.features.speech_to_text.manager import SpeechToTextConfigManager
|
||||
from core.app.app_config.features.suggested_questions_after_answer.manager import (
|
||||
SuggestedQuestionsAfterAnswerConfigManager,
|
||||
)
|
||||
from core.app.app_config.features.text_to_speech.manager import TextToSpeechConfigManager
|
||||
from core.app.app_config.workflow_ui_based_app.variables.manager import WorkflowVariablesConfigManager
|
||||
from models.model import App, AppMode
|
||||
from models.workflow import Workflow
|
||||
|
||||
|
||||
class AdvancedChatAppConfig(WorkflowUIBasedAppConfig):
|
||||
"""
|
||||
Advanced Chatbot App Config Entity.
|
||||
"""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class AdvancedChatAppConfigManager(BaseAppConfigManager):
|
||||
@classmethod
|
||||
def get_app_config(cls, app_model: App, workflow: Workflow) -> AdvancedChatAppConfig:
|
||||
features_dict = workflow.features_dict
|
||||
|
||||
app_mode = AppMode.value_of(app_model.mode)
|
||||
app_config = AdvancedChatAppConfig(
|
||||
tenant_id=app_model.tenant_id,
|
||||
app_id=app_model.id,
|
||||
app_mode=app_mode,
|
||||
workflow_id=workflow.id,
|
||||
sensitive_word_avoidance=SensitiveWordAvoidanceConfigManager.convert(config=features_dict),
|
||||
variables=WorkflowVariablesConfigManager.convert(workflow=workflow),
|
||||
additional_features=cls.convert_features(features_dict, app_mode),
|
||||
)
|
||||
|
||||
return app_config
|
||||
|
||||
@classmethod
|
||||
def config_validate(cls, tenant_id: str, config: dict, only_structure_validate: bool = False):
|
||||
"""
|
||||
Validate for advanced chat app model config
|
||||
|
||||
:param tenant_id: tenant id
|
||||
:param config: app model config args
|
||||
:param only_structure_validate: if True, only structure validation will be performed
|
||||
"""
|
||||
related_config_keys = []
|
||||
|
||||
# file upload validation
|
||||
config, current_related_config_keys = FileUploadConfigManager.validate_and_set_defaults(config=config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# opening_statement
|
||||
config, current_related_config_keys = OpeningStatementConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# suggested_questions_after_answer
|
||||
config, current_related_config_keys = SuggestedQuestionsAfterAnswerConfigManager.validate_and_set_defaults(
|
||||
config
|
||||
)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# speech_to_text
|
||||
config, current_related_config_keys = SpeechToTextConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# text_to_speech
|
||||
config, current_related_config_keys = TextToSpeechConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# return retriever resource
|
||||
config, current_related_config_keys = RetrievalResourceConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# moderation validation
|
||||
config, current_related_config_keys = SensitiveWordAvoidanceConfigManager.validate_and_set_defaults(
|
||||
tenant_id=tenant_id, config=config, only_structure_validate=only_structure_validate
|
||||
)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
related_config_keys = list(set(related_config_keys))
|
||||
|
||||
# Filter out extra parameters
|
||||
filtered_config = {key: config.get(key) for key in related_config_keys}
|
||||
|
||||
return filtered_config
|
||||
611
dify/api/core/app/apps/advanced_chat/app_generator.py
Normal file
611
dify/api/core/app/apps/advanced_chat/app_generator.py
Normal file
@@ -0,0 +1,611 @@
|
||||
import contextvars
|
||||
import logging
|
||||
import threading
|
||||
import uuid
|
||||
from collections.abc import Generator, Mapping
|
||||
from typing import Any, Literal, Union, overload
|
||||
|
||||
from flask import Flask, current_app
|
||||
from pydantic import ValidationError
|
||||
from sqlalchemy import select
|
||||
from sqlalchemy.orm import Session, sessionmaker
|
||||
|
||||
import contexts
|
||||
from configs import dify_config
|
||||
from constants import UUID_NIL
|
||||
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
|
||||
from core.app.apps.advanced_chat.app_config_manager import AdvancedChatAppConfigManager
|
||||
from core.app.apps.advanced_chat.app_runner import AdvancedChatAppRunner
|
||||
from core.app.apps.advanced_chat.generate_response_converter import AdvancedChatAppGenerateResponseConverter
|
||||
from core.app.apps.advanced_chat.generate_task_pipeline import AdvancedChatAppGenerateTaskPipeline
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
from core.app.apps.exc import GenerateTaskStoppedError
|
||||
from core.app.apps.message_based_app_generator import MessageBasedAppGenerator
|
||||
from core.app.apps.message_based_app_queue_manager import MessageBasedAppQueueManager
|
||||
from core.app.entities.app_invoke_entities import AdvancedChatAppGenerateEntity, InvokeFrom
|
||||
from core.app.entities.task_entities import ChatbotAppBlockingResponse, ChatbotAppStreamResponse
|
||||
from core.helper.trace_id_helper import extract_external_trace_id_from_args
|
||||
from core.model_runtime.errors.invoke import InvokeAuthorizationError
|
||||
from core.ops.ops_trace_manager import TraceQueueManager
|
||||
from core.prompt.utils.get_thread_messages_length import get_thread_messages_length
|
||||
from core.repositories import DifyCoreRepositoryFactory
|
||||
from core.workflow.repositories.draft_variable_repository import (
|
||||
DraftVariableSaverFactory,
|
||||
)
|
||||
from core.workflow.repositories.workflow_execution_repository import WorkflowExecutionRepository
|
||||
from core.workflow.repositories.workflow_node_execution_repository import WorkflowNodeExecutionRepository
|
||||
from core.workflow.variable_loader import DUMMY_VARIABLE_LOADER, VariableLoader
|
||||
from extensions.ext_database import db
|
||||
from factories import file_factory
|
||||
from libs.flask_utils import preserve_flask_contexts
|
||||
from models import Account, App, Conversation, EndUser, Message, Workflow, WorkflowNodeExecutionTriggeredFrom
|
||||
from models.enums import WorkflowRunTriggeredFrom
|
||||
from services.conversation_service import ConversationService
|
||||
from services.workflow_draft_variable_service import (
|
||||
DraftVarLoader,
|
||||
WorkflowDraftVariableService,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AdvancedChatAppGenerator(MessageBasedAppGenerator):
|
||||
_dialogue_count: int
|
||||
|
||||
@overload
|
||||
def generate(
|
||||
self,
|
||||
app_model: App,
|
||||
workflow: Workflow,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: Literal[False],
|
||||
) -> Mapping[str, Any]: ...
|
||||
|
||||
@overload
|
||||
def generate(
|
||||
self,
|
||||
app_model: App,
|
||||
workflow: Workflow,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping,
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: Literal[True],
|
||||
) -> Generator[Mapping | str, None, None]: ...
|
||||
|
||||
@overload
|
||||
def generate(
|
||||
self,
|
||||
app_model: App,
|
||||
workflow: Workflow,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping,
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: bool,
|
||||
) -> Mapping[str, Any] | Generator[str | Mapping, None, None]: ...
|
||||
|
||||
def generate(
|
||||
self,
|
||||
app_model: App,
|
||||
workflow: Workflow,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping,
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: bool = True,
|
||||
) -> Mapping[str, Any] | Generator[str | Mapping, None, None]:
|
||||
"""
|
||||
Generate App response.
|
||||
|
||||
:param app_model: App
|
||||
:param workflow: Workflow
|
||||
:param user: account or end user
|
||||
:param args: request args
|
||||
:param invoke_from: invoke from source
|
||||
:param streaming: is stream
|
||||
"""
|
||||
if not args.get("query"):
|
||||
raise ValueError("query is required")
|
||||
|
||||
query = args["query"]
|
||||
if not isinstance(query, str):
|
||||
raise ValueError("query must be a string")
|
||||
|
||||
query = query.replace("\x00", "")
|
||||
inputs = args["inputs"]
|
||||
|
||||
extras = {
|
||||
"auto_generate_conversation_name": args.get("auto_generate_name", False),
|
||||
**extract_external_trace_id_from_args(args),
|
||||
}
|
||||
|
||||
# get conversation
|
||||
conversation = None
|
||||
conversation_id = args.get("conversation_id")
|
||||
if conversation_id:
|
||||
conversation = ConversationService.get_conversation(
|
||||
app_model=app_model, conversation_id=conversation_id, user=user
|
||||
)
|
||||
|
||||
# parse files
|
||||
# TODO(QuantumGhost): Move file parsing logic to the API controller layer
|
||||
# for better separation of concerns.
|
||||
#
|
||||
# For implementation reference, see the `_parse_file` function and
|
||||
# `DraftWorkflowNodeRunApi` class which handle this properly.
|
||||
files = args["files"] if args.get("files") else []
|
||||
file_extra_config = FileUploadConfigManager.convert(workflow.features_dict, is_vision=False)
|
||||
if file_extra_config:
|
||||
file_objs = file_factory.build_from_mappings(
|
||||
mappings=files,
|
||||
tenant_id=app_model.tenant_id,
|
||||
config=file_extra_config,
|
||||
)
|
||||
else:
|
||||
file_objs = []
|
||||
|
||||
# convert to app config
|
||||
app_config = AdvancedChatAppConfigManager.get_app_config(app_model=app_model, workflow=workflow)
|
||||
|
||||
# get tracing instance
|
||||
trace_manager = TraceQueueManager(
|
||||
app_id=app_model.id, user_id=user.id if isinstance(user, Account) else user.session_id
|
||||
)
|
||||
|
||||
if invoke_from == InvokeFrom.DEBUGGER:
|
||||
# always enable retriever resource in debugger mode
|
||||
app_config.additional_features.show_retrieve_source = True # type: ignore
|
||||
|
||||
workflow_run_id = str(uuid.uuid4())
|
||||
# init application generate entity
|
||||
application_generate_entity = AdvancedChatAppGenerateEntity(
|
||||
task_id=str(uuid.uuid4()),
|
||||
app_config=app_config,
|
||||
file_upload_config=file_extra_config,
|
||||
conversation_id=conversation.id if conversation else None,
|
||||
inputs=self._prepare_user_inputs(
|
||||
user_inputs=inputs, variables=app_config.variables, tenant_id=app_model.tenant_id
|
||||
),
|
||||
query=query,
|
||||
files=list(file_objs),
|
||||
parent_message_id=args.get("parent_message_id") if invoke_from != InvokeFrom.SERVICE_API else UUID_NIL,
|
||||
user_id=user.id,
|
||||
stream=streaming,
|
||||
invoke_from=invoke_from,
|
||||
extras=extras,
|
||||
trace_manager=trace_manager,
|
||||
workflow_run_id=workflow_run_id,
|
||||
)
|
||||
contexts.plugin_tool_providers.set({})
|
||||
contexts.plugin_tool_providers_lock.set(threading.Lock())
|
||||
|
||||
# Create repositories
|
||||
#
|
||||
# Create session factory
|
||||
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
|
||||
# Create workflow execution(aka workflow run) repository
|
||||
if invoke_from == InvokeFrom.DEBUGGER:
|
||||
workflow_triggered_from = WorkflowRunTriggeredFrom.DEBUGGING
|
||||
else:
|
||||
workflow_triggered_from = WorkflowRunTriggeredFrom.APP_RUN
|
||||
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
|
||||
session_factory=session_factory,
|
||||
user=user,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
triggered_from=workflow_triggered_from,
|
||||
)
|
||||
# Create workflow node execution repository
|
||||
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
|
||||
session_factory=session_factory,
|
||||
user=user,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
triggered_from=WorkflowNodeExecutionTriggeredFrom.WORKFLOW_RUN,
|
||||
)
|
||||
|
||||
return self._generate(
|
||||
workflow=workflow,
|
||||
user=user,
|
||||
invoke_from=invoke_from,
|
||||
application_generate_entity=application_generate_entity,
|
||||
workflow_execution_repository=workflow_execution_repository,
|
||||
workflow_node_execution_repository=workflow_node_execution_repository,
|
||||
conversation=conversation,
|
||||
stream=streaming,
|
||||
)
|
||||
|
||||
def single_iteration_generate(
|
||||
self,
|
||||
app_model: App,
|
||||
workflow: Workflow,
|
||||
node_id: str,
|
||||
user: Account | EndUser,
|
||||
args: Mapping,
|
||||
streaming: bool = True,
|
||||
) -> Mapping[str, Any] | Generator[str | Mapping[str, Any], Any, None]:
|
||||
"""
|
||||
Generate App response.
|
||||
|
||||
:param app_model: App
|
||||
:param workflow: Workflow
|
||||
:param node_id: the node id
|
||||
:param user: account or end user
|
||||
:param args: request args
|
||||
:param streaming: is streamed
|
||||
"""
|
||||
if not node_id:
|
||||
raise ValueError("node_id is required")
|
||||
|
||||
if args.get("inputs") is None:
|
||||
raise ValueError("inputs is required")
|
||||
|
||||
# convert to app config
|
||||
app_config = AdvancedChatAppConfigManager.get_app_config(app_model=app_model, workflow=workflow)
|
||||
|
||||
# init application generate entity
|
||||
application_generate_entity = AdvancedChatAppGenerateEntity(
|
||||
task_id=str(uuid.uuid4()),
|
||||
app_config=app_config,
|
||||
conversation_id=None,
|
||||
inputs={},
|
||||
query="",
|
||||
files=[],
|
||||
user_id=user.id,
|
||||
stream=streaming,
|
||||
invoke_from=InvokeFrom.DEBUGGER,
|
||||
extras={"auto_generate_conversation_name": False},
|
||||
single_iteration_run=AdvancedChatAppGenerateEntity.SingleIterationRunEntity(
|
||||
node_id=node_id, inputs=args["inputs"]
|
||||
),
|
||||
)
|
||||
contexts.plugin_tool_providers.set({})
|
||||
contexts.plugin_tool_providers_lock.set(threading.Lock())
|
||||
|
||||
# Create repositories
|
||||
#
|
||||
# Create session factory
|
||||
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
|
||||
# Create workflow execution(aka workflow run) repository
|
||||
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
|
||||
session_factory=session_factory,
|
||||
user=user,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
triggered_from=WorkflowRunTriggeredFrom.DEBUGGING,
|
||||
)
|
||||
# Create workflow node execution repository
|
||||
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
|
||||
session_factory=session_factory,
|
||||
user=user,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
triggered_from=WorkflowNodeExecutionTriggeredFrom.SINGLE_STEP,
|
||||
)
|
||||
var_loader = DraftVarLoader(
|
||||
engine=db.engine,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
tenant_id=application_generate_entity.app_config.tenant_id,
|
||||
)
|
||||
draft_var_srv = WorkflowDraftVariableService(db.session())
|
||||
draft_var_srv.prefill_conversation_variable_default_values(workflow)
|
||||
|
||||
return self._generate(
|
||||
workflow=workflow,
|
||||
user=user,
|
||||
invoke_from=InvokeFrom.DEBUGGER,
|
||||
application_generate_entity=application_generate_entity,
|
||||
workflow_execution_repository=workflow_execution_repository,
|
||||
workflow_node_execution_repository=workflow_node_execution_repository,
|
||||
conversation=None,
|
||||
stream=streaming,
|
||||
variable_loader=var_loader,
|
||||
)
|
||||
|
||||
def single_loop_generate(
|
||||
self,
|
||||
app_model: App,
|
||||
workflow: Workflow,
|
||||
node_id: str,
|
||||
user: Account | EndUser,
|
||||
args: Mapping,
|
||||
streaming: bool = True,
|
||||
) -> Mapping[str, Any] | Generator[str | Mapping[str, Any], Any, None]:
|
||||
"""
|
||||
Generate App response.
|
||||
|
||||
:param app_model: App
|
||||
:param workflow: Workflow
|
||||
:param node_id: the node id
|
||||
:param user: account or end user
|
||||
:param args: request args
|
||||
:param streaming: is stream
|
||||
"""
|
||||
if not node_id:
|
||||
raise ValueError("node_id is required")
|
||||
|
||||
if args.get("inputs") is None:
|
||||
raise ValueError("inputs is required")
|
||||
|
||||
# convert to app config
|
||||
app_config = AdvancedChatAppConfigManager.get_app_config(app_model=app_model, workflow=workflow)
|
||||
|
||||
# init application generate entity
|
||||
application_generate_entity = AdvancedChatAppGenerateEntity(
|
||||
task_id=str(uuid.uuid4()),
|
||||
app_config=app_config,
|
||||
conversation_id=None,
|
||||
inputs={},
|
||||
query="",
|
||||
files=[],
|
||||
user_id=user.id,
|
||||
stream=streaming,
|
||||
invoke_from=InvokeFrom.DEBUGGER,
|
||||
extras={"auto_generate_conversation_name": False},
|
||||
single_loop_run=AdvancedChatAppGenerateEntity.SingleLoopRunEntity(node_id=node_id, inputs=args["inputs"]),
|
||||
)
|
||||
contexts.plugin_tool_providers.set({})
|
||||
contexts.plugin_tool_providers_lock.set(threading.Lock())
|
||||
|
||||
# Create repositories
|
||||
#
|
||||
# Create session factory
|
||||
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
|
||||
# Create workflow execution(aka workflow run) repository
|
||||
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
|
||||
session_factory=session_factory,
|
||||
user=user,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
triggered_from=WorkflowRunTriggeredFrom.DEBUGGING,
|
||||
)
|
||||
# Create workflow node execution repository
|
||||
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
|
||||
session_factory=session_factory,
|
||||
user=user,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
triggered_from=WorkflowNodeExecutionTriggeredFrom.SINGLE_STEP,
|
||||
)
|
||||
var_loader = DraftVarLoader(
|
||||
engine=db.engine,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
tenant_id=application_generate_entity.app_config.tenant_id,
|
||||
)
|
||||
draft_var_srv = WorkflowDraftVariableService(db.session())
|
||||
draft_var_srv.prefill_conversation_variable_default_values(workflow)
|
||||
|
||||
return self._generate(
|
||||
workflow=workflow,
|
||||
user=user,
|
||||
invoke_from=InvokeFrom.DEBUGGER,
|
||||
application_generate_entity=application_generate_entity,
|
||||
workflow_execution_repository=workflow_execution_repository,
|
||||
workflow_node_execution_repository=workflow_node_execution_repository,
|
||||
conversation=None,
|
||||
stream=streaming,
|
||||
variable_loader=var_loader,
|
||||
)
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
*,
|
||||
workflow: Workflow,
|
||||
user: Union[Account, EndUser],
|
||||
invoke_from: InvokeFrom,
|
||||
application_generate_entity: AdvancedChatAppGenerateEntity,
|
||||
workflow_execution_repository: WorkflowExecutionRepository,
|
||||
workflow_node_execution_repository: WorkflowNodeExecutionRepository,
|
||||
conversation: Conversation | None = None,
|
||||
stream: bool = True,
|
||||
variable_loader: VariableLoader = DUMMY_VARIABLE_LOADER,
|
||||
) -> Mapping[str, Any] | Generator[str | Mapping[str, Any], Any, None]:
|
||||
"""
|
||||
Generate App response.
|
||||
|
||||
:param workflow: Workflow
|
||||
:param user: account or end user
|
||||
:param invoke_from: invoke from source
|
||||
:param application_generate_entity: application generate entity
|
||||
:param workflow_execution_repository: repository for workflow execution
|
||||
:param workflow_node_execution_repository: repository for workflow node execution
|
||||
:param conversation: conversation
|
||||
:param stream: is stream
|
||||
"""
|
||||
is_first_conversation = False
|
||||
if not conversation:
|
||||
is_first_conversation = True
|
||||
|
||||
# init generate records
|
||||
(conversation, message) = self._init_generate_records(application_generate_entity, conversation)
|
||||
|
||||
if is_first_conversation:
|
||||
# update conversation features
|
||||
conversation.override_model_configs = workflow.features
|
||||
db.session.commit()
|
||||
db.session.refresh(conversation)
|
||||
|
||||
# get conversation dialogue count
|
||||
# NOTE: dialogue_count should not start from 0,
|
||||
# because during the first conversation, dialogue_count should be 1.
|
||||
self._dialogue_count = get_thread_messages_length(conversation.id) + 1
|
||||
|
||||
# init queue manager
|
||||
queue_manager = MessageBasedAppQueueManager(
|
||||
task_id=application_generate_entity.task_id,
|
||||
user_id=application_generate_entity.user_id,
|
||||
invoke_from=application_generate_entity.invoke_from,
|
||||
conversation_id=conversation.id,
|
||||
app_mode=conversation.mode,
|
||||
message_id=message.id,
|
||||
)
|
||||
|
||||
# new thread with request context and contextvars
|
||||
context = contextvars.copy_context()
|
||||
|
||||
worker_thread = threading.Thread(
|
||||
target=self._generate_worker,
|
||||
kwargs={
|
||||
"flask_app": current_app._get_current_object(), # type: ignore
|
||||
"application_generate_entity": application_generate_entity,
|
||||
"queue_manager": queue_manager,
|
||||
"conversation_id": conversation.id,
|
||||
"message_id": message.id,
|
||||
"context": context,
|
||||
"variable_loader": variable_loader,
|
||||
"workflow_execution_repository": workflow_execution_repository,
|
||||
"workflow_node_execution_repository": workflow_node_execution_repository,
|
||||
},
|
||||
)
|
||||
|
||||
worker_thread.start()
|
||||
|
||||
# release database connection, because the following new thread operations may take a long time
|
||||
db.session.refresh(workflow)
|
||||
db.session.refresh(message)
|
||||
# db.session.refresh(user)
|
||||
db.session.close()
|
||||
|
||||
# return response or stream generator
|
||||
response = self._handle_advanced_chat_response(
|
||||
application_generate_entity=application_generate_entity,
|
||||
workflow=workflow,
|
||||
queue_manager=queue_manager,
|
||||
conversation=conversation,
|
||||
message=message,
|
||||
user=user,
|
||||
stream=stream,
|
||||
draft_var_saver_factory=self._get_draft_var_saver_factory(invoke_from, account=user),
|
||||
)
|
||||
|
||||
return AdvancedChatAppGenerateResponseConverter.convert(response=response, invoke_from=invoke_from)
|
||||
|
||||
def _generate_worker(
|
||||
self,
|
||||
flask_app: Flask,
|
||||
application_generate_entity: AdvancedChatAppGenerateEntity,
|
||||
queue_manager: AppQueueManager,
|
||||
conversation_id: str,
|
||||
message_id: str,
|
||||
context: contextvars.Context,
|
||||
variable_loader: VariableLoader,
|
||||
workflow_execution_repository: WorkflowExecutionRepository,
|
||||
workflow_node_execution_repository: WorkflowNodeExecutionRepository,
|
||||
):
|
||||
"""
|
||||
Generate worker in a new thread.
|
||||
:param flask_app: Flask app
|
||||
:param application_generate_entity: application generate entity
|
||||
:param queue_manager: queue manager
|
||||
:param conversation_id: conversation ID
|
||||
:param message_id: message ID
|
||||
:return:
|
||||
"""
|
||||
|
||||
with preserve_flask_contexts(flask_app, context_vars=context):
|
||||
# get conversation and message
|
||||
conversation = self._get_conversation(conversation_id)
|
||||
message = self._get_message(message_id)
|
||||
|
||||
with Session(db.engine, expire_on_commit=False) as session:
|
||||
workflow = session.scalar(
|
||||
select(Workflow).where(
|
||||
Workflow.tenant_id == application_generate_entity.app_config.tenant_id,
|
||||
Workflow.app_id == application_generate_entity.app_config.app_id,
|
||||
Workflow.id == application_generate_entity.app_config.workflow_id,
|
||||
)
|
||||
)
|
||||
if workflow is None:
|
||||
raise ValueError("Workflow not found")
|
||||
|
||||
# Determine system_user_id based on invocation source
|
||||
is_external_api_call = application_generate_entity.invoke_from in {
|
||||
InvokeFrom.WEB_APP,
|
||||
InvokeFrom.SERVICE_API,
|
||||
}
|
||||
|
||||
if is_external_api_call:
|
||||
# For external API calls, use end user's session ID
|
||||
end_user = session.scalar(select(EndUser).where(EndUser.id == application_generate_entity.user_id))
|
||||
system_user_id = end_user.session_id if end_user else ""
|
||||
else:
|
||||
# For internal calls, use the original user ID
|
||||
system_user_id = application_generate_entity.user_id
|
||||
|
||||
app = session.scalar(select(App).where(App.id == application_generate_entity.app_config.app_id))
|
||||
if app is None:
|
||||
raise ValueError("App not found")
|
||||
|
||||
runner = AdvancedChatAppRunner(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
conversation=conversation,
|
||||
message=message,
|
||||
dialogue_count=self._dialogue_count,
|
||||
variable_loader=variable_loader,
|
||||
workflow=workflow,
|
||||
system_user_id=system_user_id,
|
||||
app=app,
|
||||
workflow_execution_repository=workflow_execution_repository,
|
||||
workflow_node_execution_repository=workflow_node_execution_repository,
|
||||
)
|
||||
|
||||
try:
|
||||
runner.run()
|
||||
except GenerateTaskStoppedError:
|
||||
pass
|
||||
except InvokeAuthorizationError:
|
||||
queue_manager.publish_error(
|
||||
InvokeAuthorizationError("Incorrect API key provided"), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
except ValidationError as e:
|
||||
logger.exception("Validation Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
except ValueError as e:
|
||||
if dify_config.DEBUG:
|
||||
logger.exception("Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
except Exception as e:
|
||||
logger.exception("Unknown Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
finally:
|
||||
db.session.close()
|
||||
|
||||
def _handle_advanced_chat_response(
|
||||
self,
|
||||
*,
|
||||
application_generate_entity: AdvancedChatAppGenerateEntity,
|
||||
workflow: Workflow,
|
||||
queue_manager: AppQueueManager,
|
||||
conversation: Conversation,
|
||||
message: Message,
|
||||
user: Union[Account, EndUser],
|
||||
draft_var_saver_factory: DraftVariableSaverFactory,
|
||||
stream: bool = False,
|
||||
) -> Union[ChatbotAppBlockingResponse, Generator[ChatbotAppStreamResponse, None, None]]:
|
||||
"""
|
||||
Handle response.
|
||||
:param application_generate_entity: application generate entity
|
||||
:param workflow: workflow
|
||||
:param queue_manager: queue manager
|
||||
:param conversation: conversation
|
||||
:param message: message
|
||||
:param user: account or end user
|
||||
:param stream: is stream
|
||||
:return:
|
||||
"""
|
||||
# init generate task pipeline
|
||||
generate_task_pipeline = AdvancedChatAppGenerateTaskPipeline(
|
||||
application_generate_entity=application_generate_entity,
|
||||
workflow=workflow,
|
||||
queue_manager=queue_manager,
|
||||
conversation=conversation,
|
||||
message=message,
|
||||
user=user,
|
||||
dialogue_count=self._dialogue_count,
|
||||
stream=stream,
|
||||
draft_var_saver_factory=draft_var_saver_factory,
|
||||
)
|
||||
|
||||
try:
|
||||
return generate_task_pipeline.process()
|
||||
except ValueError as e:
|
||||
if len(e.args) > 0 and e.args[0] == "I/O operation on closed file.": # ignore this error
|
||||
raise GenerateTaskStoppedError()
|
||||
else:
|
||||
logger.exception("Failed to process generate task pipeline, conversation_id: %s", conversation.id)
|
||||
raise e
|
||||
405
dify/api/core/app/apps/advanced_chat/app_runner.py
Normal file
405
dify/api/core/app/apps/advanced_chat/app_runner.py
Normal file
@@ -0,0 +1,405 @@
|
||||
import logging
|
||||
import time
|
||||
from collections.abc import Mapping, Sequence
|
||||
from typing import Any, cast
|
||||
|
||||
from sqlalchemy import select
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from core.app.apps.advanced_chat.app_config_manager import AdvancedChatAppConfig
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager
|
||||
from core.app.apps.workflow_app_runner import WorkflowBasedAppRunner
|
||||
from core.app.entities.app_invoke_entities import (
|
||||
AdvancedChatAppGenerateEntity,
|
||||
AppGenerateEntity,
|
||||
InvokeFrom,
|
||||
)
|
||||
from core.app.entities.queue_entities import (
|
||||
QueueAnnotationReplyEvent,
|
||||
QueueStopEvent,
|
||||
QueueTextChunkEvent,
|
||||
)
|
||||
from core.app.features.annotation_reply.annotation_reply import AnnotationReplyFeature
|
||||
from core.moderation.base import ModerationError
|
||||
from core.moderation.input_moderation import InputModeration
|
||||
from core.variables.variables import VariableUnion
|
||||
from core.workflow.enums import WorkflowType
|
||||
from core.workflow.graph_engine.command_channels.redis_channel import RedisChannel
|
||||
from core.workflow.graph_engine.layers.base import GraphEngineLayer
|
||||
from core.workflow.graph_engine.layers.persistence import PersistenceWorkflowInfo, WorkflowPersistenceLayer
|
||||
from core.workflow.repositories.workflow_execution_repository import WorkflowExecutionRepository
|
||||
from core.workflow.repositories.workflow_node_execution_repository import WorkflowNodeExecutionRepository
|
||||
from core.workflow.runtime import GraphRuntimeState, VariablePool
|
||||
from core.workflow.system_variable import SystemVariable
|
||||
from core.workflow.variable_loader import VariableLoader
|
||||
from core.workflow.workflow_entry import WorkflowEntry
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from models import Workflow
|
||||
from models.enums import UserFrom
|
||||
from models.model import App, Conversation, Message, MessageAnnotation
|
||||
from models.workflow import ConversationVariable
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AdvancedChatAppRunner(WorkflowBasedAppRunner):
|
||||
"""
|
||||
AdvancedChat Application Runner
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
application_generate_entity: AdvancedChatAppGenerateEntity,
|
||||
queue_manager: AppQueueManager,
|
||||
conversation: Conversation,
|
||||
message: Message,
|
||||
dialogue_count: int,
|
||||
variable_loader: VariableLoader,
|
||||
workflow: Workflow,
|
||||
system_user_id: str,
|
||||
app: App,
|
||||
workflow_execution_repository: WorkflowExecutionRepository,
|
||||
workflow_node_execution_repository: WorkflowNodeExecutionRepository,
|
||||
graph_engine_layers: Sequence[GraphEngineLayer] = (),
|
||||
):
|
||||
super().__init__(
|
||||
queue_manager=queue_manager,
|
||||
variable_loader=variable_loader,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
graph_engine_layers=graph_engine_layers,
|
||||
)
|
||||
self.application_generate_entity = application_generate_entity
|
||||
self.conversation = conversation
|
||||
self.message = message
|
||||
self._dialogue_count = dialogue_count
|
||||
self._workflow = workflow
|
||||
self.system_user_id = system_user_id
|
||||
self._app = app
|
||||
self._workflow_execution_repository = workflow_execution_repository
|
||||
self._workflow_node_execution_repository = workflow_node_execution_repository
|
||||
|
||||
def run(self):
|
||||
app_config = self.application_generate_entity.app_config
|
||||
app_config = cast(AdvancedChatAppConfig, app_config)
|
||||
|
||||
system_inputs = SystemVariable(
|
||||
query=self.application_generate_entity.query,
|
||||
files=self.application_generate_entity.files,
|
||||
conversation_id=self.conversation.id,
|
||||
user_id=self.system_user_id,
|
||||
dialogue_count=self._dialogue_count,
|
||||
app_id=app_config.app_id,
|
||||
workflow_id=app_config.workflow_id,
|
||||
workflow_execution_id=self.application_generate_entity.workflow_run_id,
|
||||
)
|
||||
|
||||
with Session(db.engine, expire_on_commit=False) as session:
|
||||
app_record = session.scalar(select(App).where(App.id == app_config.app_id))
|
||||
|
||||
if not app_record:
|
||||
raise ValueError("App not found")
|
||||
|
||||
if self.application_generate_entity.single_iteration_run or self.application_generate_entity.single_loop_run:
|
||||
# Handle single iteration or single loop run
|
||||
graph, variable_pool, graph_runtime_state = self._prepare_single_node_execution(
|
||||
workflow=self._workflow,
|
||||
single_iteration_run=self.application_generate_entity.single_iteration_run,
|
||||
single_loop_run=self.application_generate_entity.single_loop_run,
|
||||
)
|
||||
else:
|
||||
inputs = self.application_generate_entity.inputs
|
||||
query = self.application_generate_entity.query
|
||||
|
||||
# moderation
|
||||
if self.handle_input_moderation(
|
||||
app_record=self._app,
|
||||
app_generate_entity=self.application_generate_entity,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
message_id=self.message.id,
|
||||
):
|
||||
return
|
||||
|
||||
# annotation reply
|
||||
if self.handle_annotation_reply(
|
||||
app_record=self._app,
|
||||
message=self.message,
|
||||
query=query,
|
||||
app_generate_entity=self.application_generate_entity,
|
||||
):
|
||||
return
|
||||
|
||||
# Initialize conversation variables
|
||||
conversation_variables = self._initialize_conversation_variables()
|
||||
|
||||
# Create a variable pool.
|
||||
# init variable pool
|
||||
variable_pool = VariablePool(
|
||||
system_variables=system_inputs,
|
||||
user_inputs=inputs,
|
||||
environment_variables=self._workflow.environment_variables,
|
||||
# Based on the definition of `VariableUnion`,
|
||||
# `list[Variable]` can be safely used as `list[VariableUnion]` since they are compatible.
|
||||
conversation_variables=conversation_variables,
|
||||
)
|
||||
|
||||
# init graph
|
||||
graph_runtime_state = GraphRuntimeState(variable_pool=variable_pool, start_at=time.time())
|
||||
graph = self._init_graph(
|
||||
graph_config=self._workflow.graph_dict,
|
||||
graph_runtime_state=graph_runtime_state,
|
||||
workflow_id=self._workflow.id,
|
||||
tenant_id=self._workflow.tenant_id,
|
||||
user_id=self.application_generate_entity.user_id,
|
||||
)
|
||||
|
||||
db.session.close()
|
||||
|
||||
# RUN WORKFLOW
|
||||
# Create Redis command channel for this workflow execution
|
||||
task_id = self.application_generate_entity.task_id
|
||||
channel_key = f"workflow:{task_id}:commands"
|
||||
command_channel = RedisChannel(redis_client, channel_key)
|
||||
|
||||
workflow_entry = WorkflowEntry(
|
||||
tenant_id=self._workflow.tenant_id,
|
||||
app_id=self._workflow.app_id,
|
||||
workflow_id=self._workflow.id,
|
||||
graph=graph,
|
||||
graph_config=self._workflow.graph_dict,
|
||||
user_id=self.application_generate_entity.user_id,
|
||||
user_from=(
|
||||
UserFrom.ACCOUNT
|
||||
if self.application_generate_entity.invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER}
|
||||
else UserFrom.END_USER
|
||||
),
|
||||
invoke_from=self.application_generate_entity.invoke_from,
|
||||
call_depth=self.application_generate_entity.call_depth,
|
||||
variable_pool=variable_pool,
|
||||
graph_runtime_state=graph_runtime_state,
|
||||
command_channel=command_channel,
|
||||
)
|
||||
|
||||
self._queue_manager.graph_runtime_state = graph_runtime_state
|
||||
|
||||
persistence_layer = WorkflowPersistenceLayer(
|
||||
application_generate_entity=self.application_generate_entity,
|
||||
workflow_info=PersistenceWorkflowInfo(
|
||||
workflow_id=self._workflow.id,
|
||||
workflow_type=WorkflowType(self._workflow.type),
|
||||
version=self._workflow.version,
|
||||
graph_data=self._workflow.graph_dict,
|
||||
),
|
||||
workflow_execution_repository=self._workflow_execution_repository,
|
||||
workflow_node_execution_repository=self._workflow_node_execution_repository,
|
||||
trace_manager=self.application_generate_entity.trace_manager,
|
||||
)
|
||||
|
||||
workflow_entry.graph_engine.layer(persistence_layer)
|
||||
for layer in self._graph_engine_layers:
|
||||
workflow_entry.graph_engine.layer(layer)
|
||||
|
||||
generator = workflow_entry.run()
|
||||
|
||||
for event in generator:
|
||||
self._handle_event(workflow_entry, event)
|
||||
|
||||
def handle_input_moderation(
|
||||
self,
|
||||
app_record: App,
|
||||
app_generate_entity: AdvancedChatAppGenerateEntity,
|
||||
inputs: Mapping[str, Any],
|
||||
query: str,
|
||||
message_id: str,
|
||||
) -> bool:
|
||||
try:
|
||||
# process sensitive_word_avoidance
|
||||
_, inputs, query = self.moderation_for_inputs(
|
||||
app_id=app_record.id,
|
||||
tenant_id=app_generate_entity.app_config.tenant_id,
|
||||
app_generate_entity=app_generate_entity,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
message_id=message_id,
|
||||
)
|
||||
except ModerationError as e:
|
||||
self._complete_with_stream_output(text=str(e), stopped_by=QueueStopEvent.StopBy.INPUT_MODERATION)
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def handle_annotation_reply(
|
||||
self, app_record: App, message: Message, query: str, app_generate_entity: AdvancedChatAppGenerateEntity
|
||||
) -> bool:
|
||||
annotation_reply = self.query_app_annotations_to_reply(
|
||||
app_record=app_record,
|
||||
message=message,
|
||||
query=query,
|
||||
user_id=app_generate_entity.user_id,
|
||||
invoke_from=app_generate_entity.invoke_from,
|
||||
)
|
||||
|
||||
if annotation_reply:
|
||||
self._publish_event(QueueAnnotationReplyEvent(message_annotation_id=annotation_reply.id))
|
||||
|
||||
self._complete_with_stream_output(
|
||||
text=annotation_reply.content, stopped_by=QueueStopEvent.StopBy.ANNOTATION_REPLY
|
||||
)
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def _complete_with_stream_output(self, text: str, stopped_by: QueueStopEvent.StopBy):
|
||||
"""
|
||||
Direct output
|
||||
"""
|
||||
self._publish_event(QueueTextChunkEvent(text=text))
|
||||
|
||||
self._publish_event(QueueStopEvent(stopped_by=stopped_by))
|
||||
|
||||
def query_app_annotations_to_reply(
|
||||
self, app_record: App, message: Message, query: str, user_id: str, invoke_from: InvokeFrom
|
||||
) -> MessageAnnotation | None:
|
||||
"""
|
||||
Query app annotations to reply
|
||||
:param app_record: app record
|
||||
:param message: message
|
||||
:param query: query
|
||||
:param user_id: user id
|
||||
:param invoke_from: invoke from
|
||||
:return:
|
||||
"""
|
||||
annotation_reply_feature = AnnotationReplyFeature()
|
||||
return annotation_reply_feature.query(
|
||||
app_record=app_record, message=message, query=query, user_id=user_id, invoke_from=invoke_from
|
||||
)
|
||||
|
||||
def moderation_for_inputs(
|
||||
self,
|
||||
*,
|
||||
app_id: str,
|
||||
tenant_id: str,
|
||||
app_generate_entity: AppGenerateEntity,
|
||||
inputs: Mapping[str, Any],
|
||||
query: str | None = None,
|
||||
message_id: str,
|
||||
) -> tuple[bool, Mapping[str, Any], str]:
|
||||
"""
|
||||
Process sensitive_word_avoidance.
|
||||
:param app_id: app id
|
||||
:param tenant_id: tenant id
|
||||
:param app_generate_entity: app generate entity
|
||||
:param inputs: inputs
|
||||
:param query: query
|
||||
:param message_id: message id
|
||||
:return:
|
||||
"""
|
||||
moderation_feature = InputModeration()
|
||||
return moderation_feature.check(
|
||||
app_id=app_id,
|
||||
tenant_id=tenant_id,
|
||||
app_config=app_generate_entity.app_config,
|
||||
inputs=dict(inputs),
|
||||
query=query or "",
|
||||
message_id=message_id,
|
||||
trace_manager=app_generate_entity.trace_manager,
|
||||
)
|
||||
|
||||
def _initialize_conversation_variables(self) -> list[VariableUnion]:
|
||||
"""
|
||||
Initialize conversation variables for the current conversation.
|
||||
|
||||
This method:
|
||||
1. Loads existing variables from the database
|
||||
2. Creates new variables if none exist
|
||||
3. Syncs missing variables from the workflow definition
|
||||
|
||||
:return: List of conversation variables ready for use
|
||||
"""
|
||||
with Session(db.engine) as session:
|
||||
existing_variables = self._load_existing_conversation_variables(session)
|
||||
|
||||
if not existing_variables:
|
||||
# First time initialization - create all variables
|
||||
existing_variables = self._create_all_conversation_variables(session)
|
||||
else:
|
||||
# Check and add any missing variables from the workflow
|
||||
existing_variables = self._sync_missing_conversation_variables(session, existing_variables)
|
||||
|
||||
# Convert to Variable objects for use in the workflow
|
||||
conversation_variables = [var.to_variable() for var in existing_variables]
|
||||
|
||||
session.commit()
|
||||
return cast(list[VariableUnion], conversation_variables)
|
||||
|
||||
def _load_existing_conversation_variables(self, session: Session) -> list[ConversationVariable]:
|
||||
"""
|
||||
Load existing conversation variables from the database.
|
||||
|
||||
:param session: Database session
|
||||
:return: List of existing conversation variables
|
||||
"""
|
||||
stmt = select(ConversationVariable).where(
|
||||
ConversationVariable.app_id == self.conversation.app_id,
|
||||
ConversationVariable.conversation_id == self.conversation.id,
|
||||
)
|
||||
return list(session.scalars(stmt).all())
|
||||
|
||||
def _create_all_conversation_variables(self, session: Session) -> list[ConversationVariable]:
|
||||
"""
|
||||
Create all conversation variables for a new conversation.
|
||||
|
||||
:param session: Database session
|
||||
:return: List of created conversation variables
|
||||
"""
|
||||
new_variables = [
|
||||
ConversationVariable.from_variable(
|
||||
app_id=self.conversation.app_id, conversation_id=self.conversation.id, variable=variable
|
||||
)
|
||||
for variable in self._workflow.conversation_variables
|
||||
]
|
||||
|
||||
if new_variables:
|
||||
session.add_all(new_variables)
|
||||
|
||||
return new_variables
|
||||
|
||||
def _sync_missing_conversation_variables(
|
||||
self, session: Session, existing_variables: list[ConversationVariable]
|
||||
) -> list[ConversationVariable]:
|
||||
"""
|
||||
Sync missing conversation variables from the workflow definition.
|
||||
|
||||
This handles the case where new variables are added to a workflow
|
||||
after conversations have already been created.
|
||||
|
||||
:param session: Database session
|
||||
:param existing_variables: List of existing conversation variables
|
||||
:return: Updated list including any newly created variables
|
||||
"""
|
||||
# Get IDs of existing and workflow variables
|
||||
existing_ids = {var.id for var in existing_variables}
|
||||
workflow_variables = {var.id: var for var in self._workflow.conversation_variables}
|
||||
|
||||
# Find missing variable IDs
|
||||
missing_ids = set(workflow_variables.keys()) - existing_ids
|
||||
|
||||
if not missing_ids:
|
||||
return existing_variables
|
||||
|
||||
# Create missing variables with their default values
|
||||
new_variables = [
|
||||
ConversationVariable.from_variable(
|
||||
app_id=self.conversation.app_id,
|
||||
conversation_id=self.conversation.id,
|
||||
variable=workflow_variables[var_id],
|
||||
)
|
||||
for var_id in missing_ids
|
||||
]
|
||||
|
||||
session.add_all(new_variables)
|
||||
|
||||
# Return combined list
|
||||
return existing_variables + new_variables
|
||||
@@ -0,0 +1,125 @@
|
||||
from collections.abc import Generator
|
||||
from typing import Any, cast
|
||||
|
||||
from core.app.apps.base_app_generate_response_converter import AppGenerateResponseConverter
|
||||
from core.app.entities.task_entities import (
|
||||
AppBlockingResponse,
|
||||
AppStreamResponse,
|
||||
ChatbotAppBlockingResponse,
|
||||
ChatbotAppStreamResponse,
|
||||
ErrorStreamResponse,
|
||||
MessageEndStreamResponse,
|
||||
NodeFinishStreamResponse,
|
||||
NodeStartStreamResponse,
|
||||
PingStreamResponse,
|
||||
)
|
||||
|
||||
|
||||
class AdvancedChatAppGenerateResponseConverter(AppGenerateResponseConverter):
|
||||
_blocking_response_type = ChatbotAppBlockingResponse
|
||||
|
||||
@classmethod
|
||||
def convert_blocking_full_response(cls, blocking_response: AppBlockingResponse) -> dict[str, Any]:
|
||||
"""
|
||||
Convert blocking full response.
|
||||
:param blocking_response: blocking response
|
||||
:return:
|
||||
"""
|
||||
blocking_response = cast(ChatbotAppBlockingResponse, blocking_response)
|
||||
response = {
|
||||
"event": "message",
|
||||
"task_id": blocking_response.task_id,
|
||||
"id": blocking_response.data.id,
|
||||
"message_id": blocking_response.data.message_id,
|
||||
"conversation_id": blocking_response.data.conversation_id,
|
||||
"mode": blocking_response.data.mode,
|
||||
"answer": blocking_response.data.answer,
|
||||
"metadata": blocking_response.data.metadata,
|
||||
"created_at": blocking_response.data.created_at,
|
||||
}
|
||||
|
||||
return response
|
||||
|
||||
@classmethod
|
||||
def convert_blocking_simple_response(cls, blocking_response: AppBlockingResponse) -> dict[str, Any]:
|
||||
"""
|
||||
Convert blocking simple response.
|
||||
:param blocking_response: blocking response
|
||||
:return:
|
||||
"""
|
||||
response = cls.convert_blocking_full_response(blocking_response)
|
||||
|
||||
metadata = response.get("metadata", {})
|
||||
response["metadata"] = cls._get_simple_metadata(metadata)
|
||||
|
||||
return response
|
||||
|
||||
@classmethod
|
||||
def convert_stream_full_response(
|
||||
cls, stream_response: Generator[AppStreamResponse, None, None]
|
||||
) -> Generator[dict | str, Any, None]:
|
||||
"""
|
||||
Convert stream full response.
|
||||
:param stream_response: stream response
|
||||
:return:
|
||||
"""
|
||||
for chunk in stream_response:
|
||||
chunk = cast(ChatbotAppStreamResponse, chunk)
|
||||
sub_stream_response = chunk.stream_response
|
||||
|
||||
if isinstance(sub_stream_response, PingStreamResponse):
|
||||
yield "ping"
|
||||
continue
|
||||
|
||||
response_chunk: dict[str, Any] = {
|
||||
"event": sub_stream_response.event.value,
|
||||
"conversation_id": chunk.conversation_id,
|
||||
"message_id": chunk.message_id,
|
||||
"created_at": chunk.created_at,
|
||||
}
|
||||
|
||||
if isinstance(sub_stream_response, ErrorStreamResponse):
|
||||
data = cls._error_to_stream_response(sub_stream_response.err)
|
||||
response_chunk.update(data)
|
||||
else:
|
||||
response_chunk.update(sub_stream_response.model_dump(mode="json"))
|
||||
yield response_chunk
|
||||
|
||||
@classmethod
|
||||
def convert_stream_simple_response(
|
||||
cls, stream_response: Generator[AppStreamResponse, None, None]
|
||||
) -> Generator[dict | str, Any, None]:
|
||||
"""
|
||||
Convert stream simple response.
|
||||
:param stream_response: stream response
|
||||
:return:
|
||||
"""
|
||||
for chunk in stream_response:
|
||||
chunk = cast(ChatbotAppStreamResponse, chunk)
|
||||
sub_stream_response = chunk.stream_response
|
||||
|
||||
if isinstance(sub_stream_response, PingStreamResponse):
|
||||
yield "ping"
|
||||
continue
|
||||
|
||||
response_chunk: dict[str, Any] = {
|
||||
"event": sub_stream_response.event.value,
|
||||
"conversation_id": chunk.conversation_id,
|
||||
"message_id": chunk.message_id,
|
||||
"created_at": chunk.created_at,
|
||||
}
|
||||
|
||||
if isinstance(sub_stream_response, MessageEndStreamResponse):
|
||||
sub_stream_response_dict = sub_stream_response.model_dump(mode="json")
|
||||
metadata = sub_stream_response_dict.get("metadata", {})
|
||||
sub_stream_response_dict["metadata"] = cls._get_simple_metadata(metadata)
|
||||
response_chunk.update(sub_stream_response_dict)
|
||||
if isinstance(sub_stream_response, ErrorStreamResponse):
|
||||
data = cls._error_to_stream_response(sub_stream_response.err)
|
||||
response_chunk.update(data)
|
||||
elif isinstance(sub_stream_response, NodeStartStreamResponse | NodeFinishStreamResponse):
|
||||
response_chunk.update(sub_stream_response.to_ignore_detail_dict())
|
||||
else:
|
||||
response_chunk.update(sub_stream_response.model_dump(mode="json"))
|
||||
|
||||
yield response_chunk
|
||||
891
dify/api/core/app/apps/advanced_chat/generate_task_pipeline.py
Normal file
891
dify/api/core/app/apps/advanced_chat/generate_task_pipeline.py
Normal file
@@ -0,0 +1,891 @@
|
||||
import json
|
||||
import logging
|
||||
import re
|
||||
import time
|
||||
from collections.abc import Callable, Generator, Mapping
|
||||
from contextlib import contextmanager
|
||||
from threading import Thread
|
||||
from typing import Any, Union
|
||||
|
||||
from sqlalchemy import select
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from constants.tts_auto_play_timeout import TTS_AUTO_PLAY_TIMEOUT, TTS_AUTO_PLAY_YIELD_CPU_TIME
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
from core.app.apps.common.graph_runtime_state_support import GraphRuntimeStateSupport
|
||||
from core.app.apps.common.workflow_response_converter import WorkflowResponseConverter
|
||||
from core.app.entities.app_invoke_entities import (
|
||||
AdvancedChatAppGenerateEntity,
|
||||
InvokeFrom,
|
||||
)
|
||||
from core.app.entities.queue_entities import (
|
||||
MessageQueueMessage,
|
||||
QueueAdvancedChatMessageEndEvent,
|
||||
QueueAgentLogEvent,
|
||||
QueueAnnotationReplyEvent,
|
||||
QueueErrorEvent,
|
||||
QueueIterationCompletedEvent,
|
||||
QueueIterationNextEvent,
|
||||
QueueIterationStartEvent,
|
||||
QueueLoopCompletedEvent,
|
||||
QueueLoopNextEvent,
|
||||
QueueLoopStartEvent,
|
||||
QueueMessageReplaceEvent,
|
||||
QueueNodeExceptionEvent,
|
||||
QueueNodeFailedEvent,
|
||||
QueueNodeRetryEvent,
|
||||
QueueNodeStartedEvent,
|
||||
QueueNodeSucceededEvent,
|
||||
QueuePingEvent,
|
||||
QueueRetrieverResourcesEvent,
|
||||
QueueStopEvent,
|
||||
QueueTextChunkEvent,
|
||||
QueueWorkflowFailedEvent,
|
||||
QueueWorkflowPartialSuccessEvent,
|
||||
QueueWorkflowStartedEvent,
|
||||
QueueWorkflowSucceededEvent,
|
||||
WorkflowQueueMessage,
|
||||
)
|
||||
from core.app.entities.task_entities import (
|
||||
ChatbotAppBlockingResponse,
|
||||
ChatbotAppStreamResponse,
|
||||
ErrorStreamResponse,
|
||||
MessageAudioEndStreamResponse,
|
||||
MessageAudioStreamResponse,
|
||||
MessageEndStreamResponse,
|
||||
PingStreamResponse,
|
||||
StreamResponse,
|
||||
WorkflowTaskState,
|
||||
)
|
||||
from core.app.task_pipeline.based_generate_task_pipeline import BasedGenerateTaskPipeline
|
||||
from core.app.task_pipeline.message_cycle_manager import MessageCycleManager
|
||||
from core.base.tts import AppGeneratorTTSPublisher, AudioTrunk
|
||||
from core.model_runtime.entities.llm_entities import LLMUsage
|
||||
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||
from core.ops.ops_trace_manager import TraceQueueManager
|
||||
from core.workflow.enums import WorkflowExecutionStatus
|
||||
from core.workflow.nodes import NodeType
|
||||
from core.workflow.repositories.draft_variable_repository import DraftVariableSaverFactory
|
||||
from core.workflow.runtime import GraphRuntimeState
|
||||
from core.workflow.system_variable import SystemVariable
|
||||
from extensions.ext_database import db
|
||||
from libs.datetime_utils import naive_utc_now
|
||||
from models import Account, Conversation, EndUser, Message, MessageFile
|
||||
from models.enums import CreatorUserRole
|
||||
from models.workflow import Workflow
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
|
||||
"""
|
||||
AdvancedChatAppGenerateTaskPipeline is a class that generate stream output and state management for Application.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
application_generate_entity: AdvancedChatAppGenerateEntity,
|
||||
workflow: Workflow,
|
||||
queue_manager: AppQueueManager,
|
||||
conversation: Conversation,
|
||||
message: Message,
|
||||
user: Union[Account, EndUser],
|
||||
stream: bool,
|
||||
dialogue_count: int,
|
||||
draft_var_saver_factory: DraftVariableSaverFactory,
|
||||
):
|
||||
self._base_task_pipeline = BasedGenerateTaskPipeline(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
stream=stream,
|
||||
)
|
||||
|
||||
if isinstance(user, EndUser):
|
||||
self._user_id = user.id
|
||||
user_session_id = user.session_id
|
||||
self._created_by_role = CreatorUserRole.END_USER
|
||||
elif isinstance(user, Account):
|
||||
self._user_id = user.id
|
||||
user_session_id = user.id
|
||||
self._created_by_role = CreatorUserRole.ACCOUNT
|
||||
else:
|
||||
raise NotImplementedError(f"User type not supported: {type(user)}")
|
||||
|
||||
self._workflow_system_variables = SystemVariable(
|
||||
query=message.query,
|
||||
files=application_generate_entity.files,
|
||||
conversation_id=conversation.id,
|
||||
user_id=user_session_id,
|
||||
dialogue_count=dialogue_count,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
workflow_id=workflow.id,
|
||||
workflow_execution_id=application_generate_entity.workflow_run_id,
|
||||
)
|
||||
self._workflow_response_converter = WorkflowResponseConverter(
|
||||
application_generate_entity=application_generate_entity,
|
||||
user=user,
|
||||
system_variables=self._workflow_system_variables,
|
||||
)
|
||||
|
||||
self._task_state = WorkflowTaskState()
|
||||
self._message_cycle_manager = MessageCycleManager(
|
||||
application_generate_entity=application_generate_entity, task_state=self._task_state
|
||||
)
|
||||
|
||||
self._application_generate_entity = application_generate_entity
|
||||
self._workflow_id = workflow.id
|
||||
self._workflow_features_dict = workflow.features_dict
|
||||
self._conversation_id = conversation.id
|
||||
self._conversation_mode = conversation.mode
|
||||
self._message_id = message.id
|
||||
self._message_created_at = int(message.created_at.timestamp())
|
||||
self._conversation_name_generate_thread: Thread | None = None
|
||||
self._recorded_files: list[Mapping[str, Any]] = []
|
||||
self._workflow_run_id: str = ""
|
||||
self._draft_var_saver_factory = draft_var_saver_factory
|
||||
self._graph_runtime_state: GraphRuntimeState | None = None
|
||||
self._seed_graph_runtime_state_from_queue_manager()
|
||||
|
||||
def process(self) -> Union[ChatbotAppBlockingResponse, Generator[ChatbotAppStreamResponse, None, None]]:
|
||||
"""
|
||||
Process generate task pipeline.
|
||||
:return:
|
||||
"""
|
||||
self._conversation_name_generate_thread = self._message_cycle_manager.generate_conversation_name(
|
||||
conversation_id=self._conversation_id, query=self._application_generate_entity.query
|
||||
)
|
||||
|
||||
generator = self._wrapper_process_stream_response(trace_manager=self._application_generate_entity.trace_manager)
|
||||
|
||||
if self._base_task_pipeline.stream:
|
||||
return self._to_stream_response(generator)
|
||||
else:
|
||||
return self._to_blocking_response(generator)
|
||||
|
||||
def _to_blocking_response(self, generator: Generator[StreamResponse, None, None]) -> ChatbotAppBlockingResponse:
|
||||
"""
|
||||
Process blocking response.
|
||||
:return:
|
||||
"""
|
||||
for stream_response in generator:
|
||||
if isinstance(stream_response, ErrorStreamResponse):
|
||||
raise stream_response.err
|
||||
elif isinstance(stream_response, MessageEndStreamResponse):
|
||||
extras = {}
|
||||
if stream_response.metadata:
|
||||
extras["metadata"] = stream_response.metadata
|
||||
|
||||
return ChatbotAppBlockingResponse(
|
||||
task_id=stream_response.task_id,
|
||||
data=ChatbotAppBlockingResponse.Data(
|
||||
id=self._message_id,
|
||||
mode=self._conversation_mode,
|
||||
conversation_id=self._conversation_id,
|
||||
message_id=self._message_id,
|
||||
answer=self._task_state.answer,
|
||||
created_at=self._message_created_at,
|
||||
**extras,
|
||||
),
|
||||
)
|
||||
else:
|
||||
continue
|
||||
|
||||
raise ValueError("queue listening stopped unexpectedly.")
|
||||
|
||||
def _to_stream_response(
|
||||
self, generator: Generator[StreamResponse, None, None]
|
||||
) -> Generator[ChatbotAppStreamResponse, Any, None]:
|
||||
"""
|
||||
To stream response.
|
||||
:return:
|
||||
"""
|
||||
for stream_response in generator:
|
||||
yield ChatbotAppStreamResponse(
|
||||
conversation_id=self._conversation_id,
|
||||
message_id=self._message_id,
|
||||
created_at=self._message_created_at,
|
||||
stream_response=stream_response,
|
||||
)
|
||||
|
||||
def _listen_audio_msg(self, publisher: AppGeneratorTTSPublisher | None, task_id: str):
|
||||
if not publisher:
|
||||
return None
|
||||
audio_msg = publisher.check_and_get_audio()
|
||||
if audio_msg and isinstance(audio_msg, AudioTrunk) and audio_msg.status != "finish":
|
||||
return MessageAudioStreamResponse(audio=audio_msg.audio, task_id=task_id)
|
||||
return None
|
||||
|
||||
def _wrapper_process_stream_response(
|
||||
self, trace_manager: TraceQueueManager | None = None
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
tts_publisher = None
|
||||
task_id = self._application_generate_entity.task_id
|
||||
tenant_id = self._application_generate_entity.app_config.tenant_id
|
||||
features_dict = self._workflow_features_dict
|
||||
|
||||
if (
|
||||
features_dict.get("text_to_speech")
|
||||
and features_dict["text_to_speech"].get("enabled")
|
||||
and features_dict["text_to_speech"].get("autoPlay") == "enabled"
|
||||
):
|
||||
tts_publisher = AppGeneratorTTSPublisher(
|
||||
tenant_id, features_dict["text_to_speech"].get("voice"), features_dict["text_to_speech"].get("language")
|
||||
)
|
||||
|
||||
for response in self._process_stream_response(tts_publisher=tts_publisher, trace_manager=trace_manager):
|
||||
while True:
|
||||
audio_response = self._listen_audio_msg(publisher=tts_publisher, task_id=task_id)
|
||||
if audio_response:
|
||||
yield audio_response
|
||||
else:
|
||||
break
|
||||
yield response
|
||||
|
||||
start_listener_time = time.time()
|
||||
while (time.time() - start_listener_time) < TTS_AUTO_PLAY_TIMEOUT:
|
||||
try:
|
||||
if not tts_publisher:
|
||||
break
|
||||
audio_trunk = tts_publisher.check_and_get_audio()
|
||||
if audio_trunk is None:
|
||||
time.sleep(TTS_AUTO_PLAY_YIELD_CPU_TIME)
|
||||
continue
|
||||
if audio_trunk.status == "finish":
|
||||
break
|
||||
else:
|
||||
start_listener_time = time.time()
|
||||
yield MessageAudioStreamResponse(audio=audio_trunk.audio, task_id=task_id)
|
||||
except Exception:
|
||||
logger.exception("Failed to listen audio message, task_id: %s", task_id)
|
||||
break
|
||||
if tts_publisher:
|
||||
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
|
||||
|
||||
@contextmanager
|
||||
def _database_session(self):
|
||||
"""Context manager for database sessions."""
|
||||
with Session(db.engine, expire_on_commit=False) as session:
|
||||
try:
|
||||
yield session
|
||||
session.commit()
|
||||
except Exception:
|
||||
session.rollback()
|
||||
raise
|
||||
|
||||
def _ensure_workflow_initialized(self):
|
||||
"""Fluent validation for workflow state."""
|
||||
if not self._workflow_run_id:
|
||||
raise ValueError("workflow run not initialized.")
|
||||
|
||||
def _handle_ping_event(self, event: QueuePingEvent, **kwargs) -> Generator[PingStreamResponse, None, None]:
|
||||
"""Handle ping events."""
|
||||
yield self._base_task_pipeline.ping_stream_response()
|
||||
|
||||
def _handle_error_event(self, event: QueueErrorEvent, **kwargs) -> Generator[ErrorStreamResponse, None, None]:
|
||||
"""Handle error events."""
|
||||
with self._database_session() as session:
|
||||
err = self._base_task_pipeline.handle_error(event=event, session=session, message_id=self._message_id)
|
||||
yield self._base_task_pipeline.error_to_stream_response(err)
|
||||
|
||||
def _handle_workflow_started_event(
|
||||
self,
|
||||
event: QueueWorkflowStartedEvent,
|
||||
**kwargs,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle workflow started events."""
|
||||
runtime_state = self._resolve_graph_runtime_state()
|
||||
run_id = self._extract_workflow_run_id(runtime_state)
|
||||
self._workflow_run_id = run_id
|
||||
|
||||
with self._database_session() as session:
|
||||
message = self._get_message(session=session)
|
||||
if not message:
|
||||
raise ValueError(f"Message not found: {self._message_id}")
|
||||
|
||||
message.workflow_run_id = run_id
|
||||
|
||||
workflow_start_resp = self._workflow_response_converter.workflow_start_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_run_id=run_id,
|
||||
workflow_id=self._workflow_id,
|
||||
)
|
||||
|
||||
yield workflow_start_resp
|
||||
|
||||
def _handle_node_retry_event(self, event: QueueNodeRetryEvent, **kwargs) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle node retry events."""
|
||||
self._ensure_workflow_initialized()
|
||||
|
||||
node_retry_resp = self._workflow_response_converter.workflow_node_retry_to_stream_response(
|
||||
event=event,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
)
|
||||
|
||||
if node_retry_resp:
|
||||
yield node_retry_resp
|
||||
|
||||
def _handle_node_started_event(
|
||||
self, event: QueueNodeStartedEvent, **kwargs
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle node started events."""
|
||||
self._ensure_workflow_initialized()
|
||||
|
||||
node_start_resp = self._workflow_response_converter.workflow_node_start_to_stream_response(
|
||||
event=event,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
)
|
||||
|
||||
if node_start_resp:
|
||||
yield node_start_resp
|
||||
|
||||
def _handle_node_succeeded_event(
|
||||
self, event: QueueNodeSucceededEvent, **kwargs
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle node succeeded events."""
|
||||
# Record files if it's an answer node or end node
|
||||
if event.node_type in [NodeType.ANSWER, NodeType.END, NodeType.LLM]:
|
||||
self._recorded_files.extend(
|
||||
self._workflow_response_converter.fetch_files_from_node_outputs(event.outputs or {})
|
||||
)
|
||||
|
||||
node_finish_resp = self._workflow_response_converter.workflow_node_finish_to_stream_response(
|
||||
event=event,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
)
|
||||
|
||||
self._save_output_for_event(event, event.node_execution_id)
|
||||
|
||||
if node_finish_resp:
|
||||
yield node_finish_resp
|
||||
|
||||
def _handle_node_failed_events(
|
||||
self,
|
||||
event: Union[QueueNodeFailedEvent, QueueNodeExceptionEvent],
|
||||
**kwargs,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle various node failure events."""
|
||||
node_finish_resp = self._workflow_response_converter.workflow_node_finish_to_stream_response(
|
||||
event=event,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
)
|
||||
|
||||
if isinstance(event, QueueNodeExceptionEvent):
|
||||
self._save_output_for_event(event, event.node_execution_id)
|
||||
|
||||
if node_finish_resp:
|
||||
yield node_finish_resp
|
||||
|
||||
def _handle_text_chunk_event(
|
||||
self,
|
||||
event: QueueTextChunkEvent,
|
||||
*,
|
||||
tts_publisher: AppGeneratorTTSPublisher | None = None,
|
||||
queue_message: Union[WorkflowQueueMessage, MessageQueueMessage] | None = None,
|
||||
**kwargs,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle text chunk events."""
|
||||
delta_text = event.text
|
||||
if delta_text is None:
|
||||
return
|
||||
|
||||
# Handle output moderation chunk
|
||||
should_direct_answer = self._handle_output_moderation_chunk(delta_text)
|
||||
if should_direct_answer:
|
||||
return
|
||||
|
||||
current_time = time.perf_counter()
|
||||
if self._task_state.first_token_time is None and delta_text.strip():
|
||||
self._task_state.first_token_time = current_time
|
||||
self._task_state.is_streaming_response = True
|
||||
|
||||
if delta_text.strip():
|
||||
self._task_state.last_token_time = current_time
|
||||
|
||||
# Only publish tts message at text chunk streaming
|
||||
if tts_publisher and queue_message:
|
||||
tts_publisher.publish(queue_message)
|
||||
|
||||
self._task_state.answer += delta_text
|
||||
yield self._message_cycle_manager.message_to_stream_response(
|
||||
answer=delta_text, message_id=self._message_id, from_variable_selector=event.from_variable_selector
|
||||
)
|
||||
|
||||
def _handle_iteration_start_event(
|
||||
self, event: QueueIterationStartEvent, **kwargs
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle iteration start events."""
|
||||
self._ensure_workflow_initialized()
|
||||
|
||||
iter_start_resp = self._workflow_response_converter.workflow_iteration_start_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_execution_id=self._workflow_run_id,
|
||||
event=event,
|
||||
)
|
||||
yield iter_start_resp
|
||||
|
||||
def _handle_iteration_next_event(
|
||||
self, event: QueueIterationNextEvent, **kwargs
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle iteration next events."""
|
||||
self._ensure_workflow_initialized()
|
||||
|
||||
iter_next_resp = self._workflow_response_converter.workflow_iteration_next_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_execution_id=self._workflow_run_id,
|
||||
event=event,
|
||||
)
|
||||
yield iter_next_resp
|
||||
|
||||
def _handle_iteration_completed_event(
|
||||
self, event: QueueIterationCompletedEvent, **kwargs
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle iteration completed events."""
|
||||
self._ensure_workflow_initialized()
|
||||
|
||||
iter_finish_resp = self._workflow_response_converter.workflow_iteration_completed_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_execution_id=self._workflow_run_id,
|
||||
event=event,
|
||||
)
|
||||
yield iter_finish_resp
|
||||
|
||||
def _handle_loop_start_event(self, event: QueueLoopStartEvent, **kwargs) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle loop start events."""
|
||||
self._ensure_workflow_initialized()
|
||||
|
||||
loop_start_resp = self._workflow_response_converter.workflow_loop_start_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_execution_id=self._workflow_run_id,
|
||||
event=event,
|
||||
)
|
||||
yield loop_start_resp
|
||||
|
||||
def _handle_loop_next_event(self, event: QueueLoopNextEvent, **kwargs) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle loop next events."""
|
||||
self._ensure_workflow_initialized()
|
||||
|
||||
loop_next_resp = self._workflow_response_converter.workflow_loop_next_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_execution_id=self._workflow_run_id,
|
||||
event=event,
|
||||
)
|
||||
yield loop_next_resp
|
||||
|
||||
def _handle_loop_completed_event(
|
||||
self, event: QueueLoopCompletedEvent, **kwargs
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle loop completed events."""
|
||||
self._ensure_workflow_initialized()
|
||||
|
||||
loop_finish_resp = self._workflow_response_converter.workflow_loop_completed_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_execution_id=self._workflow_run_id,
|
||||
event=event,
|
||||
)
|
||||
yield loop_finish_resp
|
||||
|
||||
def _handle_workflow_succeeded_event(
|
||||
self,
|
||||
event: QueueWorkflowSucceededEvent,
|
||||
*,
|
||||
trace_manager: TraceQueueManager | None = None,
|
||||
**kwargs,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle workflow succeeded events."""
|
||||
_ = trace_manager
|
||||
self._ensure_workflow_initialized()
|
||||
validated_state = self._ensure_graph_runtime_initialized()
|
||||
workflow_finish_resp = self._workflow_response_converter.workflow_finish_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_id=self._workflow_id,
|
||||
status=WorkflowExecutionStatus.SUCCEEDED,
|
||||
graph_runtime_state=validated_state,
|
||||
)
|
||||
|
||||
yield workflow_finish_resp
|
||||
self._base_task_pipeline.queue_manager.publish(QueueAdvancedChatMessageEndEvent(), PublishFrom.TASK_PIPELINE)
|
||||
|
||||
def _handle_workflow_partial_success_event(
|
||||
self,
|
||||
event: QueueWorkflowPartialSuccessEvent,
|
||||
*,
|
||||
trace_manager: TraceQueueManager | None = None,
|
||||
**kwargs,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle workflow partial success events."""
|
||||
_ = trace_manager
|
||||
self._ensure_workflow_initialized()
|
||||
validated_state = self._ensure_graph_runtime_initialized()
|
||||
workflow_finish_resp = self._workflow_response_converter.workflow_finish_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_id=self._workflow_id,
|
||||
status=WorkflowExecutionStatus.PARTIAL_SUCCEEDED,
|
||||
graph_runtime_state=validated_state,
|
||||
exceptions_count=event.exceptions_count,
|
||||
)
|
||||
|
||||
yield workflow_finish_resp
|
||||
self._base_task_pipeline.queue_manager.publish(QueueAdvancedChatMessageEndEvent(), PublishFrom.TASK_PIPELINE)
|
||||
|
||||
def _handle_workflow_failed_event(
|
||||
self,
|
||||
event: QueueWorkflowFailedEvent,
|
||||
*,
|
||||
trace_manager: TraceQueueManager | None = None,
|
||||
**kwargs,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle workflow failed events."""
|
||||
_ = trace_manager
|
||||
self._ensure_workflow_initialized()
|
||||
validated_state = self._ensure_graph_runtime_initialized()
|
||||
|
||||
workflow_finish_resp = self._workflow_response_converter.workflow_finish_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_id=self._workflow_id,
|
||||
status=WorkflowExecutionStatus.FAILED,
|
||||
graph_runtime_state=validated_state,
|
||||
error=event.error,
|
||||
exceptions_count=event.exceptions_count,
|
||||
)
|
||||
|
||||
with self._database_session() as session:
|
||||
err_event = QueueErrorEvent(error=ValueError(f"Run failed: {event.error}"))
|
||||
err = self._base_task_pipeline.handle_error(event=err_event, session=session, message_id=self._message_id)
|
||||
|
||||
yield workflow_finish_resp
|
||||
yield self._base_task_pipeline.error_to_stream_response(err)
|
||||
|
||||
def _handle_stop_event(
|
||||
self,
|
||||
event: QueueStopEvent,
|
||||
*,
|
||||
graph_runtime_state: GraphRuntimeState | None = None,
|
||||
trace_manager: TraceQueueManager | None = None,
|
||||
**kwargs,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle stop events."""
|
||||
_ = trace_manager
|
||||
resolved_state = None
|
||||
if self._workflow_run_id:
|
||||
resolved_state = self._resolve_graph_runtime_state(graph_runtime_state)
|
||||
|
||||
if self._workflow_run_id and resolved_state:
|
||||
workflow_finish_resp = self._workflow_response_converter.workflow_finish_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_id=self._workflow_id,
|
||||
status=WorkflowExecutionStatus.STOPPED,
|
||||
graph_runtime_state=resolved_state,
|
||||
error=event.get_stop_reason(),
|
||||
)
|
||||
|
||||
with self._database_session() as session:
|
||||
# Save message
|
||||
self._save_message(session=session, graph_runtime_state=resolved_state)
|
||||
|
||||
yield workflow_finish_resp
|
||||
elif event.stopped_by in (
|
||||
QueueStopEvent.StopBy.INPUT_MODERATION,
|
||||
QueueStopEvent.StopBy.ANNOTATION_REPLY,
|
||||
):
|
||||
# When hitting input-moderation or annotation-reply, the workflow will not start
|
||||
with self._database_session() as session:
|
||||
# Save message
|
||||
self._save_message(session=session)
|
||||
|
||||
yield self._message_end_to_stream_response()
|
||||
|
||||
def _handle_advanced_chat_message_end_event(
|
||||
self,
|
||||
event: QueueAdvancedChatMessageEndEvent,
|
||||
*,
|
||||
graph_runtime_state: GraphRuntimeState | None = None,
|
||||
**kwargs,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle advanced chat message end events."""
|
||||
resolved_state = self._ensure_graph_runtime_initialized(graph_runtime_state)
|
||||
|
||||
output_moderation_answer = self._base_task_pipeline.handle_output_moderation_when_task_finished(
|
||||
self._task_state.answer
|
||||
)
|
||||
if output_moderation_answer:
|
||||
self._task_state.answer = output_moderation_answer
|
||||
yield self._message_cycle_manager.message_replace_to_stream_response(
|
||||
answer=output_moderation_answer,
|
||||
reason=QueueMessageReplaceEvent.MessageReplaceReason.OUTPUT_MODERATION,
|
||||
)
|
||||
|
||||
# Save message
|
||||
with self._database_session() as session:
|
||||
self._save_message(session=session, graph_runtime_state=resolved_state)
|
||||
|
||||
yield self._message_end_to_stream_response()
|
||||
|
||||
def _handle_retriever_resources_event(
|
||||
self, event: QueueRetrieverResourcesEvent, **kwargs
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle retriever resources events."""
|
||||
self._message_cycle_manager.handle_retriever_resources(event)
|
||||
return
|
||||
yield # Make this a generator
|
||||
|
||||
def _handle_annotation_reply_event(
|
||||
self, event: QueueAnnotationReplyEvent, **kwargs
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle annotation reply events."""
|
||||
self._message_cycle_manager.handle_annotation_reply(event)
|
||||
return
|
||||
yield # Make this a generator
|
||||
|
||||
def _handle_message_replace_event(
|
||||
self, event: QueueMessageReplaceEvent, **kwargs
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle message replace events."""
|
||||
yield self._message_cycle_manager.message_replace_to_stream_response(answer=event.text, reason=event.reason)
|
||||
|
||||
def _handle_agent_log_event(self, event: QueueAgentLogEvent, **kwargs) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle agent log events."""
|
||||
yield self._workflow_response_converter.handle_agent_log(
|
||||
task_id=self._application_generate_entity.task_id, event=event
|
||||
)
|
||||
|
||||
def _get_event_handlers(self) -> dict[type, Callable]:
|
||||
"""Get mapping of event types to their handlers using fluent pattern."""
|
||||
return {
|
||||
# Basic events
|
||||
QueuePingEvent: self._handle_ping_event,
|
||||
QueueErrorEvent: self._handle_error_event,
|
||||
QueueTextChunkEvent: self._handle_text_chunk_event,
|
||||
# Workflow events
|
||||
QueueWorkflowStartedEvent: self._handle_workflow_started_event,
|
||||
QueueWorkflowSucceededEvent: self._handle_workflow_succeeded_event,
|
||||
QueueWorkflowPartialSuccessEvent: self._handle_workflow_partial_success_event,
|
||||
QueueWorkflowFailedEvent: self._handle_workflow_failed_event,
|
||||
# Node events
|
||||
QueueNodeRetryEvent: self._handle_node_retry_event,
|
||||
QueueNodeStartedEvent: self._handle_node_started_event,
|
||||
QueueNodeSucceededEvent: self._handle_node_succeeded_event,
|
||||
# Iteration events
|
||||
QueueIterationStartEvent: self._handle_iteration_start_event,
|
||||
QueueIterationNextEvent: self._handle_iteration_next_event,
|
||||
QueueIterationCompletedEvent: self._handle_iteration_completed_event,
|
||||
# Loop events
|
||||
QueueLoopStartEvent: self._handle_loop_start_event,
|
||||
QueueLoopNextEvent: self._handle_loop_next_event,
|
||||
QueueLoopCompletedEvent: self._handle_loop_completed_event,
|
||||
# Control events
|
||||
QueueStopEvent: self._handle_stop_event,
|
||||
# Message events
|
||||
QueueRetrieverResourcesEvent: self._handle_retriever_resources_event,
|
||||
QueueAnnotationReplyEvent: self._handle_annotation_reply_event,
|
||||
QueueMessageReplaceEvent: self._handle_message_replace_event,
|
||||
QueueAdvancedChatMessageEndEvent: self._handle_advanced_chat_message_end_event,
|
||||
QueueAgentLogEvent: self._handle_agent_log_event,
|
||||
}
|
||||
|
||||
def _dispatch_event(
|
||||
self,
|
||||
event: Any,
|
||||
*,
|
||||
tts_publisher: AppGeneratorTTSPublisher | None = None,
|
||||
trace_manager: TraceQueueManager | None = None,
|
||||
queue_message: Union[WorkflowQueueMessage, MessageQueueMessage] | None = None,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Dispatch events using elegant pattern matching."""
|
||||
handlers = self._get_event_handlers()
|
||||
event_type = type(event)
|
||||
|
||||
# Direct handler lookup
|
||||
if handler := handlers.get(event_type):
|
||||
yield from handler(
|
||||
event,
|
||||
tts_publisher=tts_publisher,
|
||||
trace_manager=trace_manager,
|
||||
queue_message=queue_message,
|
||||
)
|
||||
return
|
||||
|
||||
# Handle node failure events with isinstance check
|
||||
if isinstance(
|
||||
event,
|
||||
(
|
||||
QueueNodeFailedEvent,
|
||||
QueueNodeExceptionEvent,
|
||||
),
|
||||
):
|
||||
yield from self._handle_node_failed_events(
|
||||
event,
|
||||
tts_publisher=tts_publisher,
|
||||
trace_manager=trace_manager,
|
||||
queue_message=queue_message,
|
||||
)
|
||||
return
|
||||
|
||||
# For unhandled events, we continue (original behavior)
|
||||
return
|
||||
|
||||
def _process_stream_response(
|
||||
self,
|
||||
tts_publisher: AppGeneratorTTSPublisher | None = None,
|
||||
trace_manager: TraceQueueManager | None = None,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""
|
||||
Process stream response using elegant Fluent Python patterns.
|
||||
Maintains exact same functionality as original 57-if-statement version.
|
||||
"""
|
||||
for queue_message in self._base_task_pipeline.queue_manager.listen():
|
||||
event = queue_message.event
|
||||
|
||||
match event:
|
||||
case QueueWorkflowStartedEvent():
|
||||
self._resolve_graph_runtime_state()
|
||||
yield from self._handle_workflow_started_event(event)
|
||||
|
||||
case QueueErrorEvent():
|
||||
yield from self._handle_error_event(event)
|
||||
break
|
||||
|
||||
case QueueWorkflowFailedEvent():
|
||||
yield from self._handle_workflow_failed_event(event, trace_manager=trace_manager)
|
||||
break
|
||||
|
||||
case QueueStopEvent():
|
||||
yield from self._handle_stop_event(event, graph_runtime_state=None, trace_manager=trace_manager)
|
||||
break
|
||||
|
||||
# Handle all other events through elegant dispatch
|
||||
case _:
|
||||
if responses := list(
|
||||
self._dispatch_event(
|
||||
event,
|
||||
tts_publisher=tts_publisher,
|
||||
trace_manager=trace_manager,
|
||||
queue_message=queue_message,
|
||||
)
|
||||
):
|
||||
yield from responses
|
||||
|
||||
if tts_publisher:
|
||||
tts_publisher.publish(None)
|
||||
|
||||
if self._conversation_name_generate_thread:
|
||||
self._conversation_name_generate_thread.join()
|
||||
|
||||
def _save_message(self, *, session: Session, graph_runtime_state: GraphRuntimeState | None = None):
|
||||
message = self._get_message(session=session)
|
||||
|
||||
# If there are assistant files, remove markdown image links from answer
|
||||
answer_text = self._task_state.answer
|
||||
if self._recorded_files:
|
||||
# Remove markdown image links since we're storing files separately
|
||||
answer_text = re.sub(r"!\[.*?\]\(.*?\)", "", answer_text).strip()
|
||||
|
||||
message.answer = answer_text
|
||||
message.updated_at = naive_utc_now()
|
||||
message.provider_response_latency = time.perf_counter() - self._base_task_pipeline.start_at
|
||||
|
||||
# Set usage first before dumping metadata
|
||||
if graph_runtime_state and graph_runtime_state.llm_usage:
|
||||
usage = graph_runtime_state.llm_usage
|
||||
message.message_tokens = usage.prompt_tokens
|
||||
message.message_unit_price = usage.prompt_unit_price
|
||||
message.message_price_unit = usage.prompt_price_unit
|
||||
message.answer_tokens = usage.completion_tokens
|
||||
message.answer_unit_price = usage.completion_unit_price
|
||||
message.answer_price_unit = usage.completion_price_unit
|
||||
message.total_price = usage.total_price
|
||||
message.currency = usage.currency
|
||||
self._task_state.metadata.usage = usage
|
||||
else:
|
||||
usage = LLMUsage.empty_usage()
|
||||
self._task_state.metadata.usage = usage
|
||||
|
||||
# Add streaming metrics to usage if available
|
||||
if self._task_state.is_streaming_response and self._task_state.first_token_time:
|
||||
start_time = self._base_task_pipeline.start_at
|
||||
first_token_time = self._task_state.first_token_time
|
||||
last_token_time = self._task_state.last_token_time or first_token_time
|
||||
usage.time_to_first_token = round(first_token_time - start_time, 3)
|
||||
usage.time_to_generate = round(last_token_time - first_token_time, 3)
|
||||
|
||||
metadata = self._task_state.metadata.model_dump()
|
||||
message.message_metadata = json.dumps(jsonable_encoder(metadata))
|
||||
message_files = [
|
||||
MessageFile(
|
||||
message_id=message.id,
|
||||
type=file["type"],
|
||||
transfer_method=file["transfer_method"],
|
||||
url=file["remote_url"],
|
||||
belongs_to="assistant",
|
||||
upload_file_id=file["related_id"],
|
||||
created_by_role=CreatorUserRole.ACCOUNT
|
||||
if message.invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER}
|
||||
else CreatorUserRole.END_USER,
|
||||
created_by=message.from_account_id or message.from_end_user_id or "",
|
||||
)
|
||||
for file in self._recorded_files
|
||||
]
|
||||
session.add_all(message_files)
|
||||
|
||||
def _seed_graph_runtime_state_from_queue_manager(self) -> None:
|
||||
"""Bootstrap the cached runtime state from the queue manager when present."""
|
||||
candidate = self._base_task_pipeline.queue_manager.graph_runtime_state
|
||||
if candidate is not None:
|
||||
self._graph_runtime_state = candidate
|
||||
|
||||
def _message_end_to_stream_response(self) -> MessageEndStreamResponse:
|
||||
"""
|
||||
Message end to stream response.
|
||||
:return:
|
||||
"""
|
||||
extras = self._task_state.metadata.model_dump()
|
||||
|
||||
if self._task_state.metadata.annotation_reply:
|
||||
del extras["annotation_reply"]
|
||||
|
||||
return MessageEndStreamResponse(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
id=self._message_id,
|
||||
files=self._recorded_files,
|
||||
metadata=extras,
|
||||
)
|
||||
|
||||
def _handle_output_moderation_chunk(self, text: str) -> bool:
|
||||
"""
|
||||
Handle output moderation chunk.
|
||||
:param text: text
|
||||
:return: True if output moderation should direct output, otherwise False
|
||||
"""
|
||||
if self._base_task_pipeline.output_moderation_handler:
|
||||
if self._base_task_pipeline.output_moderation_handler.should_direct_output():
|
||||
self._task_state.answer = self._base_task_pipeline.output_moderation_handler.get_final_output()
|
||||
self._base_task_pipeline.queue_manager.publish(
|
||||
QueueTextChunkEvent(text=self._task_state.answer), PublishFrom.TASK_PIPELINE
|
||||
)
|
||||
|
||||
self._base_task_pipeline.queue_manager.publish(
|
||||
QueueStopEvent(stopped_by=QueueStopEvent.StopBy.OUTPUT_MODERATION), PublishFrom.TASK_PIPELINE
|
||||
)
|
||||
return True
|
||||
else:
|
||||
self._base_task_pipeline.output_moderation_handler.append_new_token(text)
|
||||
|
||||
return False
|
||||
|
||||
def _get_message(self, *, session: Session):
|
||||
stmt = select(Message).where(Message.id == self._message_id)
|
||||
message = session.scalar(stmt)
|
||||
if not message:
|
||||
raise ValueError(f"Message not found: {self._message_id}")
|
||||
return message
|
||||
|
||||
def _save_output_for_event(self, event: QueueNodeSucceededEvent | QueueNodeExceptionEvent, node_execution_id: str):
|
||||
with Session(db.engine) as session, session.begin():
|
||||
saver = self._draft_var_saver_factory(
|
||||
session=session,
|
||||
app_id=self._application_generate_entity.app_config.app_id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type,
|
||||
node_execution_id=node_execution_id,
|
||||
enclosing_node_id=event.in_loop_id or event.in_iteration_id,
|
||||
)
|
||||
saver.save(event.process_data, event.outputs)
|
||||
0
dify/api/core/app/apps/agent_chat/__init__.py
Normal file
0
dify/api/core/app/apps/agent_chat/__init__.py
Normal file
236
dify/api/core/app/apps/agent_chat/app_config_manager.py
Normal file
236
dify/api/core/app/apps/agent_chat/app_config_manager.py
Normal file
@@ -0,0 +1,236 @@
|
||||
import uuid
|
||||
from collections.abc import Mapping
|
||||
from typing import Any, cast
|
||||
|
||||
from core.agent.entities import AgentEntity
|
||||
from core.app.app_config.base_app_config_manager import BaseAppConfigManager
|
||||
from core.app.app_config.common.sensitive_word_avoidance.manager import SensitiveWordAvoidanceConfigManager
|
||||
from core.app.app_config.easy_ui_based_app.agent.manager import AgentConfigManager
|
||||
from core.app.app_config.easy_ui_based_app.dataset.manager import DatasetConfigManager
|
||||
from core.app.app_config.easy_ui_based_app.model_config.manager import ModelConfigManager
|
||||
from core.app.app_config.easy_ui_based_app.prompt_template.manager import PromptTemplateConfigManager
|
||||
from core.app.app_config.easy_ui_based_app.variables.manager import BasicVariablesConfigManager
|
||||
from core.app.app_config.entities import EasyUIBasedAppConfig, EasyUIBasedAppModelConfigFrom
|
||||
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
|
||||
from core.app.app_config.features.opening_statement.manager import OpeningStatementConfigManager
|
||||
from core.app.app_config.features.retrieval_resource.manager import RetrievalResourceConfigManager
|
||||
from core.app.app_config.features.speech_to_text.manager import SpeechToTextConfigManager
|
||||
from core.app.app_config.features.suggested_questions_after_answer.manager import (
|
||||
SuggestedQuestionsAfterAnswerConfigManager,
|
||||
)
|
||||
from core.app.app_config.features.text_to_speech.manager import TextToSpeechConfigManager
|
||||
from core.entities.agent_entities import PlanningStrategy
|
||||
from models.model import App, AppMode, AppModelConfig, Conversation
|
||||
|
||||
OLD_TOOLS = ["dataset", "google_search", "web_reader", "wikipedia", "current_datetime"]
|
||||
|
||||
|
||||
class AgentChatAppConfig(EasyUIBasedAppConfig):
|
||||
"""
|
||||
Agent Chatbot App Config Entity.
|
||||
"""
|
||||
|
||||
agent: AgentEntity | None = None
|
||||
|
||||
|
||||
class AgentChatAppConfigManager(BaseAppConfigManager):
|
||||
@classmethod
|
||||
def get_app_config(
|
||||
cls,
|
||||
app_model: App,
|
||||
app_model_config: AppModelConfig,
|
||||
conversation: Conversation | None = None,
|
||||
override_config_dict: dict | None = None,
|
||||
) -> AgentChatAppConfig:
|
||||
"""
|
||||
Convert app model config to agent chat app config
|
||||
:param app_model: app model
|
||||
:param app_model_config: app model config
|
||||
:param conversation: conversation
|
||||
:param override_config_dict: app model config dict
|
||||
:return:
|
||||
"""
|
||||
if override_config_dict:
|
||||
config_from = EasyUIBasedAppModelConfigFrom.ARGS
|
||||
elif conversation:
|
||||
config_from = EasyUIBasedAppModelConfigFrom.CONVERSATION_SPECIFIC_CONFIG
|
||||
else:
|
||||
config_from = EasyUIBasedAppModelConfigFrom.APP_LATEST_CONFIG
|
||||
|
||||
if config_from != EasyUIBasedAppModelConfigFrom.ARGS:
|
||||
app_model_config_dict = app_model_config.to_dict()
|
||||
config_dict = app_model_config_dict.copy()
|
||||
else:
|
||||
config_dict = override_config_dict or {}
|
||||
|
||||
app_mode = AppMode.value_of(app_model.mode)
|
||||
app_config = AgentChatAppConfig(
|
||||
tenant_id=app_model.tenant_id,
|
||||
app_id=app_model.id,
|
||||
app_mode=app_mode,
|
||||
app_model_config_from=config_from,
|
||||
app_model_config_id=app_model_config.id,
|
||||
app_model_config_dict=config_dict,
|
||||
model=ModelConfigManager.convert(config=config_dict),
|
||||
prompt_template=PromptTemplateConfigManager.convert(config=config_dict),
|
||||
sensitive_word_avoidance=SensitiveWordAvoidanceConfigManager.convert(config=config_dict),
|
||||
dataset=DatasetConfigManager.convert(config=config_dict),
|
||||
agent=AgentConfigManager.convert(config=config_dict),
|
||||
additional_features=cls.convert_features(config_dict, app_mode),
|
||||
)
|
||||
|
||||
app_config.variables, app_config.external_data_variables = BasicVariablesConfigManager.convert(
|
||||
config=config_dict
|
||||
)
|
||||
|
||||
return app_config
|
||||
|
||||
@classmethod
|
||||
def config_validate(cls, tenant_id: str, config: Mapping[str, Any]):
|
||||
"""
|
||||
Validate for agent chat app model config
|
||||
|
||||
:param tenant_id: tenant id
|
||||
:param config: app model config args
|
||||
"""
|
||||
app_mode = AppMode.AGENT_CHAT
|
||||
|
||||
related_config_keys = []
|
||||
|
||||
# model
|
||||
config, current_related_config_keys = ModelConfigManager.validate_and_set_defaults(tenant_id, config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# user_input_form
|
||||
config, current_related_config_keys = BasicVariablesConfigManager.validate_and_set_defaults(tenant_id, config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# file upload validation
|
||||
config, current_related_config_keys = FileUploadConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# prompt
|
||||
config, current_related_config_keys = PromptTemplateConfigManager.validate_and_set_defaults(app_mode, config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# agent_mode
|
||||
config, current_related_config_keys = cls.validate_agent_mode_and_set_defaults(tenant_id, config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# opening_statement
|
||||
config, current_related_config_keys = OpeningStatementConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# suggested_questions_after_answer
|
||||
config, current_related_config_keys = SuggestedQuestionsAfterAnswerConfigManager.validate_and_set_defaults(
|
||||
config
|
||||
)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# speech_to_text
|
||||
config, current_related_config_keys = SpeechToTextConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# text_to_speech
|
||||
config, current_related_config_keys = TextToSpeechConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# return retriever resource
|
||||
config, current_related_config_keys = RetrievalResourceConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# dataset configs
|
||||
# dataset_query_variable
|
||||
config, current_related_config_keys = DatasetConfigManager.validate_and_set_defaults(
|
||||
tenant_id, app_mode, config
|
||||
)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# moderation validation
|
||||
config, current_related_config_keys = SensitiveWordAvoidanceConfigManager.validate_and_set_defaults(
|
||||
tenant_id, config
|
||||
)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
related_config_keys = list(set(related_config_keys))
|
||||
|
||||
# Filter out extra parameters
|
||||
filtered_config = {key: config.get(key) for key in related_config_keys}
|
||||
|
||||
return filtered_config
|
||||
|
||||
@classmethod
|
||||
def validate_agent_mode_and_set_defaults(
|
||||
cls, tenant_id: str, config: dict[str, Any]
|
||||
) -> tuple[dict[str, Any], list[str]]:
|
||||
"""
|
||||
Validate agent_mode and set defaults for agent feature
|
||||
|
||||
:param tenant_id: tenant ID
|
||||
:param config: app model config args
|
||||
"""
|
||||
if not config.get("agent_mode"):
|
||||
config["agent_mode"] = {"enabled": False, "tools": []}
|
||||
|
||||
agent_mode = config["agent_mode"]
|
||||
if not isinstance(agent_mode, dict):
|
||||
raise ValueError("agent_mode must be of object type")
|
||||
|
||||
# FIXME(-LAN-): Cast needed due to basedpyright limitation with dict type narrowing
|
||||
agent_mode = cast(dict[str, Any], agent_mode)
|
||||
|
||||
if "enabled" not in agent_mode or not agent_mode["enabled"]:
|
||||
agent_mode["enabled"] = False
|
||||
|
||||
if not isinstance(agent_mode["enabled"], bool):
|
||||
raise ValueError("enabled in agent_mode must be of boolean type")
|
||||
|
||||
if not agent_mode.get("strategy"):
|
||||
agent_mode["strategy"] = PlanningStrategy.ROUTER
|
||||
|
||||
if agent_mode["strategy"] not in [member.value for member in list(PlanningStrategy.__members__.values())]:
|
||||
raise ValueError("strategy in agent_mode must be in the specified strategy list")
|
||||
|
||||
if not agent_mode.get("tools"):
|
||||
agent_mode["tools"] = []
|
||||
|
||||
if not isinstance(agent_mode["tools"], list):
|
||||
raise ValueError("tools in agent_mode must be a list of objects")
|
||||
|
||||
for tool in agent_mode["tools"]:
|
||||
key = list(tool.keys())[0]
|
||||
if key in OLD_TOOLS:
|
||||
# old style, use tool name as key
|
||||
tool_item = tool[key]
|
||||
|
||||
if "enabled" not in tool_item or not tool_item["enabled"]:
|
||||
tool_item["enabled"] = False
|
||||
|
||||
if not isinstance(tool_item["enabled"], bool):
|
||||
raise ValueError("enabled in agent_mode.tools must be of boolean type")
|
||||
|
||||
if key == "dataset":
|
||||
if "id" not in tool_item:
|
||||
raise ValueError("id is required in dataset")
|
||||
|
||||
try:
|
||||
uuid.UUID(tool_item["id"])
|
||||
except ValueError:
|
||||
raise ValueError("id in dataset must be of UUID type")
|
||||
|
||||
if not DatasetConfigManager.is_dataset_exists(tenant_id, tool_item["id"]):
|
||||
raise ValueError("Dataset ID does not exist, please check your permission.")
|
||||
else:
|
||||
# latest style, use key-value pair
|
||||
if "enabled" not in tool or not tool["enabled"]:
|
||||
tool["enabled"] = False
|
||||
if "provider_type" not in tool:
|
||||
raise ValueError("provider_type is required in agent_mode.tools")
|
||||
if "provider_id" not in tool:
|
||||
raise ValueError("provider_id is required in agent_mode.tools")
|
||||
if "tool_name" not in tool:
|
||||
raise ValueError("tool_name is required in agent_mode.tools")
|
||||
if "tool_parameters" not in tool:
|
||||
raise ValueError("tool_parameters is required in agent_mode.tools")
|
||||
|
||||
return config, ["agent_mode"]
|
||||
266
dify/api/core/app/apps/agent_chat/app_generator.py
Normal file
266
dify/api/core/app/apps/agent_chat/app_generator.py
Normal file
@@ -0,0 +1,266 @@
|
||||
import contextvars
|
||||
import logging
|
||||
import threading
|
||||
import uuid
|
||||
from collections.abc import Generator, Mapping
|
||||
from typing import Any, Literal, Union, overload
|
||||
|
||||
from flask import Flask, current_app
|
||||
from pydantic import ValidationError
|
||||
|
||||
from configs import dify_config
|
||||
from constants import UUID_NIL
|
||||
from core.app.app_config.easy_ui_based_app.model_config.converter import ModelConfigConverter
|
||||
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
|
||||
from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfigManager
|
||||
from core.app.apps.agent_chat.app_runner import AgentChatAppRunner
|
||||
from core.app.apps.agent_chat.generate_response_converter import AgentChatAppGenerateResponseConverter
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
from core.app.apps.exc import GenerateTaskStoppedError
|
||||
from core.app.apps.message_based_app_generator import MessageBasedAppGenerator
|
||||
from core.app.apps.message_based_app_queue_manager import MessageBasedAppQueueManager
|
||||
from core.app.entities.app_invoke_entities import AgentChatAppGenerateEntity, InvokeFrom
|
||||
from core.model_runtime.errors.invoke import InvokeAuthorizationError
|
||||
from core.ops.ops_trace_manager import TraceQueueManager
|
||||
from extensions.ext_database import db
|
||||
from factories import file_factory
|
||||
from libs.flask_utils import preserve_flask_contexts
|
||||
from models import Account, App, EndUser
|
||||
from services.conversation_service import ConversationService
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AgentChatAppGenerator(MessageBasedAppGenerator):
|
||||
@overload
|
||||
def generate(
|
||||
self,
|
||||
*,
|
||||
app_model: App,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: Literal[False],
|
||||
) -> Mapping[str, Any]: ...
|
||||
|
||||
@overload
|
||||
def generate(
|
||||
self,
|
||||
*,
|
||||
app_model: App,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: Literal[True],
|
||||
) -> Generator[Mapping | str, None, None]: ...
|
||||
|
||||
@overload
|
||||
def generate(
|
||||
self,
|
||||
*,
|
||||
app_model: App,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: bool,
|
||||
) -> Union[Mapping, Generator[Mapping | str, None, None]]: ...
|
||||
|
||||
def generate(
|
||||
self,
|
||||
*,
|
||||
app_model: App,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: bool = True,
|
||||
) -> Union[Mapping, Generator[Mapping | str, None, None]]:
|
||||
"""
|
||||
Generate App response.
|
||||
|
||||
:param app_model: App
|
||||
:param user: account or end user
|
||||
:param args: request args
|
||||
:param invoke_from: invoke from source
|
||||
:param streaming: is stream
|
||||
"""
|
||||
if not streaming:
|
||||
raise ValueError("Agent Chat App does not support blocking mode")
|
||||
|
||||
if not args.get("query"):
|
||||
raise ValueError("query is required")
|
||||
|
||||
query = args["query"]
|
||||
if not isinstance(query, str):
|
||||
raise ValueError("query must be a string")
|
||||
|
||||
query = query.replace("\x00", "")
|
||||
inputs = args["inputs"]
|
||||
|
||||
extras = {"auto_generate_conversation_name": args.get("auto_generate_name", True)}
|
||||
|
||||
# get conversation
|
||||
conversation = None
|
||||
conversation_id = args.get("conversation_id")
|
||||
if conversation_id:
|
||||
conversation = ConversationService.get_conversation(
|
||||
app_model=app_model, conversation_id=conversation_id, user=user
|
||||
)
|
||||
# get app model config
|
||||
app_model_config = self._get_app_model_config(app_model=app_model, conversation=conversation)
|
||||
|
||||
# validate override model config
|
||||
override_model_config_dict = None
|
||||
if args.get("model_config"):
|
||||
if invoke_from != InvokeFrom.DEBUGGER:
|
||||
raise ValueError("Only in App debug mode can override model config")
|
||||
|
||||
# validate config
|
||||
override_model_config_dict = AgentChatAppConfigManager.config_validate(
|
||||
tenant_id=app_model.tenant_id,
|
||||
config=args["model_config"],
|
||||
)
|
||||
|
||||
# always enable retriever resource in debugger mode
|
||||
override_model_config_dict["retriever_resource"] = {"enabled": True}
|
||||
|
||||
# parse files
|
||||
# TODO(QuantumGhost): Move file parsing logic to the API controller layer
|
||||
# for better separation of concerns.
|
||||
#
|
||||
# For implementation reference, see the `_parse_file` function and
|
||||
# `DraftWorkflowNodeRunApi` class which handle this properly.
|
||||
files = args.get("files") or []
|
||||
file_extra_config = FileUploadConfigManager.convert(override_model_config_dict or app_model_config.to_dict())
|
||||
if file_extra_config:
|
||||
file_objs = file_factory.build_from_mappings(
|
||||
mappings=files,
|
||||
tenant_id=app_model.tenant_id,
|
||||
config=file_extra_config,
|
||||
)
|
||||
else:
|
||||
file_objs = []
|
||||
|
||||
# convert to app config
|
||||
app_config = AgentChatAppConfigManager.get_app_config(
|
||||
app_model=app_model,
|
||||
app_model_config=app_model_config,
|
||||
conversation=conversation,
|
||||
override_config_dict=override_model_config_dict,
|
||||
)
|
||||
|
||||
# get tracing instance
|
||||
trace_manager = TraceQueueManager(app_model.id, user.id if isinstance(user, Account) else user.session_id)
|
||||
|
||||
# init application generate entity
|
||||
application_generate_entity = AgentChatAppGenerateEntity(
|
||||
task_id=str(uuid.uuid4()),
|
||||
app_config=app_config,
|
||||
model_conf=ModelConfigConverter.convert(app_config),
|
||||
file_upload_config=file_extra_config,
|
||||
conversation_id=conversation.id if conversation else None,
|
||||
inputs=self._prepare_user_inputs(
|
||||
user_inputs=inputs, variables=app_config.variables, tenant_id=app_model.tenant_id
|
||||
),
|
||||
query=query,
|
||||
files=list(file_objs),
|
||||
parent_message_id=args.get("parent_message_id") if invoke_from != InvokeFrom.SERVICE_API else UUID_NIL,
|
||||
user_id=user.id,
|
||||
stream=streaming,
|
||||
invoke_from=invoke_from,
|
||||
extras=extras,
|
||||
call_depth=0,
|
||||
trace_manager=trace_manager,
|
||||
)
|
||||
|
||||
# init generate records
|
||||
(conversation, message) = self._init_generate_records(application_generate_entity, conversation)
|
||||
|
||||
# init queue manager
|
||||
queue_manager = MessageBasedAppQueueManager(
|
||||
task_id=application_generate_entity.task_id,
|
||||
user_id=application_generate_entity.user_id,
|
||||
invoke_from=application_generate_entity.invoke_from,
|
||||
conversation_id=conversation.id,
|
||||
app_mode=conversation.mode,
|
||||
message_id=message.id,
|
||||
)
|
||||
|
||||
# new thread with request context and contextvars
|
||||
context = contextvars.copy_context()
|
||||
|
||||
worker_thread = threading.Thread(
|
||||
target=self._generate_worker,
|
||||
kwargs={
|
||||
"flask_app": current_app._get_current_object(), # type: ignore
|
||||
"context": context,
|
||||
"application_generate_entity": application_generate_entity,
|
||||
"queue_manager": queue_manager,
|
||||
"conversation_id": conversation.id,
|
||||
"message_id": message.id,
|
||||
},
|
||||
)
|
||||
|
||||
worker_thread.start()
|
||||
|
||||
# return response or stream generator
|
||||
response = self._handle_response(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
conversation=conversation,
|
||||
message=message,
|
||||
user=user,
|
||||
stream=streaming,
|
||||
)
|
||||
return AgentChatAppGenerateResponseConverter.convert(response=response, invoke_from=invoke_from)
|
||||
|
||||
def _generate_worker(
|
||||
self,
|
||||
flask_app: Flask,
|
||||
context: contextvars.Context,
|
||||
application_generate_entity: AgentChatAppGenerateEntity,
|
||||
queue_manager: AppQueueManager,
|
||||
conversation_id: str,
|
||||
message_id: str,
|
||||
):
|
||||
"""
|
||||
Generate worker in a new thread.
|
||||
:param flask_app: Flask app
|
||||
:param application_generate_entity: application generate entity
|
||||
:param queue_manager: queue manager
|
||||
:param conversation_id: conversation ID
|
||||
:param message_id: message ID
|
||||
:return:
|
||||
"""
|
||||
|
||||
with preserve_flask_contexts(flask_app, context_vars=context):
|
||||
try:
|
||||
# get conversation and message
|
||||
conversation = self._get_conversation(conversation_id)
|
||||
message = self._get_message(message_id)
|
||||
|
||||
# chatbot app
|
||||
runner = AgentChatAppRunner()
|
||||
runner.run(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
conversation=conversation,
|
||||
message=message,
|
||||
)
|
||||
except GenerateTaskStoppedError:
|
||||
pass
|
||||
except InvokeAuthorizationError:
|
||||
queue_manager.publish_error(
|
||||
InvokeAuthorizationError("Incorrect API key provided"), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
except ValidationError as e:
|
||||
logger.exception("Validation Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
except ValueError as e:
|
||||
if dify_config.DEBUG:
|
||||
logger.exception("Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
except Exception as e:
|
||||
logger.exception("Unknown Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
finally:
|
||||
db.session.close()
|
||||
239
dify/api/core/app/apps/agent_chat/app_runner.py
Normal file
239
dify/api/core/app/apps/agent_chat/app_runner.py
Normal file
@@ -0,0 +1,239 @@
|
||||
import logging
|
||||
from typing import cast
|
||||
|
||||
from sqlalchemy import select
|
||||
|
||||
from core.agent.cot_chat_agent_runner import CotChatAgentRunner
|
||||
from core.agent.cot_completion_agent_runner import CotCompletionAgentRunner
|
||||
from core.agent.entities import AgentEntity
|
||||
from core.agent.fc_agent_runner import FunctionCallAgentRunner
|
||||
from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfig
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
from core.app.apps.base_app_runner import AppRunner
|
||||
from core.app.entities.app_invoke_entities import AgentChatAppGenerateEntity
|
||||
from core.app.entities.queue_entities import QueueAnnotationReplyEvent
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.llm_entities import LLMMode
|
||||
from core.model_runtime.entities.model_entities import ModelFeature, ModelPropertyKey
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.moderation.base import ModerationError
|
||||
from extensions.ext_database import db
|
||||
from models.model import App, Conversation, Message
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AgentChatAppRunner(AppRunner):
|
||||
"""
|
||||
Agent Application Runner
|
||||
"""
|
||||
|
||||
def run(
|
||||
self,
|
||||
application_generate_entity: AgentChatAppGenerateEntity,
|
||||
queue_manager: AppQueueManager,
|
||||
conversation: Conversation,
|
||||
message: Message,
|
||||
):
|
||||
"""
|
||||
Run assistant application
|
||||
:param application_generate_entity: application generate entity
|
||||
:param queue_manager: application queue manager
|
||||
:param conversation: conversation
|
||||
:param message: message
|
||||
:return:
|
||||
"""
|
||||
app_config = application_generate_entity.app_config
|
||||
app_config = cast(AgentChatAppConfig, app_config)
|
||||
app_stmt = select(App).where(App.id == app_config.app_id)
|
||||
app_record = db.session.scalar(app_stmt)
|
||||
if not app_record:
|
||||
raise ValueError("App not found")
|
||||
|
||||
inputs = application_generate_entity.inputs
|
||||
query = application_generate_entity.query
|
||||
files = application_generate_entity.files
|
||||
|
||||
memory = None
|
||||
if application_generate_entity.conversation_id:
|
||||
# get memory of conversation (read-only)
|
||||
model_instance = ModelInstance(
|
||||
provider_model_bundle=application_generate_entity.model_conf.provider_model_bundle,
|
||||
model=application_generate_entity.model_conf.model,
|
||||
)
|
||||
|
||||
memory = TokenBufferMemory(conversation=conversation, model_instance=model_instance)
|
||||
|
||||
# organize all inputs and template to prompt messages
|
||||
# Include: prompt template, inputs, query(optional), files(optional)
|
||||
# memory(optional)
|
||||
prompt_messages, _ = self.organize_prompt_messages(
|
||||
app_record=app_record,
|
||||
model_config=application_generate_entity.model_conf,
|
||||
prompt_template_entity=app_config.prompt_template,
|
||||
inputs=dict(inputs),
|
||||
files=list(files),
|
||||
query=query,
|
||||
memory=memory,
|
||||
)
|
||||
|
||||
# moderation
|
||||
try:
|
||||
# process sensitive_word_avoidance
|
||||
_, inputs, query = self.moderation_for_inputs(
|
||||
app_id=app_record.id,
|
||||
tenant_id=app_config.tenant_id,
|
||||
app_generate_entity=application_generate_entity,
|
||||
inputs=dict(inputs),
|
||||
query=query or "",
|
||||
message_id=message.id,
|
||||
)
|
||||
except ModerationError as e:
|
||||
self.direct_output(
|
||||
queue_manager=queue_manager,
|
||||
app_generate_entity=application_generate_entity,
|
||||
prompt_messages=prompt_messages,
|
||||
text=str(e),
|
||||
stream=application_generate_entity.stream,
|
||||
)
|
||||
return
|
||||
|
||||
if query:
|
||||
# annotation reply
|
||||
annotation_reply = self.query_app_annotations_to_reply(
|
||||
app_record=app_record,
|
||||
message=message,
|
||||
query=query,
|
||||
user_id=application_generate_entity.user_id,
|
||||
invoke_from=application_generate_entity.invoke_from,
|
||||
)
|
||||
|
||||
if annotation_reply:
|
||||
queue_manager.publish(
|
||||
QueueAnnotationReplyEvent(message_annotation_id=annotation_reply.id),
|
||||
PublishFrom.APPLICATION_MANAGER,
|
||||
)
|
||||
|
||||
self.direct_output(
|
||||
queue_manager=queue_manager,
|
||||
app_generate_entity=application_generate_entity,
|
||||
prompt_messages=prompt_messages,
|
||||
text=annotation_reply.content,
|
||||
stream=application_generate_entity.stream,
|
||||
)
|
||||
return
|
||||
|
||||
# fill in variable inputs from external data tools if exists
|
||||
external_data_tools = app_config.external_data_variables
|
||||
if external_data_tools:
|
||||
inputs = self.fill_in_inputs_from_external_data_tools(
|
||||
tenant_id=app_record.tenant_id,
|
||||
app_id=app_record.id,
|
||||
external_data_tools=external_data_tools,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
)
|
||||
|
||||
# reorganize all inputs and template to prompt messages
|
||||
# Include: prompt template, inputs, query(optional), files(optional)
|
||||
# memory(optional), external data, dataset context(optional)
|
||||
prompt_messages, _ = self.organize_prompt_messages(
|
||||
app_record=app_record,
|
||||
model_config=application_generate_entity.model_conf,
|
||||
prompt_template_entity=app_config.prompt_template,
|
||||
inputs=dict(inputs),
|
||||
files=list(files),
|
||||
query=query,
|
||||
memory=memory,
|
||||
)
|
||||
|
||||
# check hosting moderation
|
||||
hosting_moderation_result = self.check_hosting_moderation(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
prompt_messages=prompt_messages,
|
||||
)
|
||||
|
||||
if hosting_moderation_result:
|
||||
return
|
||||
|
||||
agent_entity = app_config.agent
|
||||
assert agent_entity is not None
|
||||
|
||||
# init model instance
|
||||
model_instance = ModelInstance(
|
||||
provider_model_bundle=application_generate_entity.model_conf.provider_model_bundle,
|
||||
model=application_generate_entity.model_conf.model,
|
||||
)
|
||||
prompt_message, _ = self.organize_prompt_messages(
|
||||
app_record=app_record,
|
||||
model_config=application_generate_entity.model_conf,
|
||||
prompt_template_entity=app_config.prompt_template,
|
||||
inputs=dict(inputs),
|
||||
files=list(files),
|
||||
query=query,
|
||||
memory=memory,
|
||||
)
|
||||
|
||||
# change function call strategy based on LLM model
|
||||
llm_model = cast(LargeLanguageModel, model_instance.model_type_instance)
|
||||
model_schema = llm_model.get_model_schema(model_instance.model, model_instance.credentials)
|
||||
if not model_schema:
|
||||
raise ValueError("Model schema not found")
|
||||
|
||||
if {ModelFeature.MULTI_TOOL_CALL, ModelFeature.TOOL_CALL}.intersection(model_schema.features or []):
|
||||
agent_entity.strategy = AgentEntity.Strategy.FUNCTION_CALLING
|
||||
conversation_stmt = select(Conversation).where(Conversation.id == conversation.id)
|
||||
conversation_result = db.session.scalar(conversation_stmt)
|
||||
if conversation_result is None:
|
||||
raise ValueError("Conversation not found")
|
||||
msg_stmt = select(Message).where(Message.id == message.id)
|
||||
message_result = db.session.scalar(msg_stmt)
|
||||
if message_result is None:
|
||||
raise ValueError("Message not found")
|
||||
db.session.close()
|
||||
|
||||
runner_cls: type[FunctionCallAgentRunner] | type[CotChatAgentRunner] | type[CotCompletionAgentRunner]
|
||||
# start agent runner
|
||||
if agent_entity.strategy == AgentEntity.Strategy.CHAIN_OF_THOUGHT:
|
||||
# check LLM mode
|
||||
if model_schema.model_properties.get(ModelPropertyKey.MODE) == LLMMode.CHAT:
|
||||
runner_cls = CotChatAgentRunner
|
||||
elif model_schema.model_properties.get(ModelPropertyKey.MODE) == LLMMode.COMPLETION:
|
||||
runner_cls = CotCompletionAgentRunner
|
||||
else:
|
||||
raise ValueError(f"Invalid LLM mode: {model_schema.model_properties.get(ModelPropertyKey.MODE)}")
|
||||
elif agent_entity.strategy == AgentEntity.Strategy.FUNCTION_CALLING:
|
||||
runner_cls = FunctionCallAgentRunner
|
||||
else:
|
||||
raise ValueError(f"Invalid agent strategy: {agent_entity.strategy}")
|
||||
|
||||
runner = runner_cls(
|
||||
tenant_id=app_config.tenant_id,
|
||||
application_generate_entity=application_generate_entity,
|
||||
conversation=conversation_result,
|
||||
app_config=app_config,
|
||||
model_config=application_generate_entity.model_conf,
|
||||
config=agent_entity,
|
||||
queue_manager=queue_manager,
|
||||
message=message_result,
|
||||
user_id=application_generate_entity.user_id,
|
||||
memory=memory,
|
||||
prompt_messages=prompt_message,
|
||||
model_instance=model_instance,
|
||||
)
|
||||
|
||||
invoke_result = runner.run(
|
||||
message=message,
|
||||
query=query,
|
||||
inputs=inputs,
|
||||
)
|
||||
|
||||
# handle invoke result
|
||||
self._handle_invoke_result(
|
||||
invoke_result=invoke_result,
|
||||
queue_manager=queue_manager,
|
||||
stream=application_generate_entity.stream,
|
||||
agent=True,
|
||||
)
|
||||
122
dify/api/core/app/apps/agent_chat/generate_response_converter.py
Normal file
122
dify/api/core/app/apps/agent_chat/generate_response_converter.py
Normal file
@@ -0,0 +1,122 @@
|
||||
from collections.abc import Generator
|
||||
from typing import cast
|
||||
|
||||
from core.app.apps.base_app_generate_response_converter import AppGenerateResponseConverter
|
||||
from core.app.entities.task_entities import (
|
||||
AppStreamResponse,
|
||||
ChatbotAppBlockingResponse,
|
||||
ChatbotAppStreamResponse,
|
||||
ErrorStreamResponse,
|
||||
MessageEndStreamResponse,
|
||||
PingStreamResponse,
|
||||
)
|
||||
|
||||
|
||||
class AgentChatAppGenerateResponseConverter(AppGenerateResponseConverter):
|
||||
_blocking_response_type = ChatbotAppBlockingResponse
|
||||
|
||||
@classmethod
|
||||
def convert_blocking_full_response(cls, blocking_response: ChatbotAppBlockingResponse): # type: ignore[override]
|
||||
"""
|
||||
Convert blocking full response.
|
||||
:param blocking_response: blocking response
|
||||
:return:
|
||||
"""
|
||||
response = {
|
||||
"event": "message",
|
||||
"task_id": blocking_response.task_id,
|
||||
"id": blocking_response.data.id,
|
||||
"message_id": blocking_response.data.message_id,
|
||||
"conversation_id": blocking_response.data.conversation_id,
|
||||
"mode": blocking_response.data.mode,
|
||||
"answer": blocking_response.data.answer,
|
||||
"metadata": blocking_response.data.metadata,
|
||||
"created_at": blocking_response.data.created_at,
|
||||
}
|
||||
|
||||
return response
|
||||
|
||||
@classmethod
|
||||
def convert_blocking_simple_response(cls, blocking_response: ChatbotAppBlockingResponse): # type: ignore[override]
|
||||
"""
|
||||
Convert blocking simple response.
|
||||
:param blocking_response: blocking response
|
||||
:return:
|
||||
"""
|
||||
response = cls.convert_blocking_full_response(blocking_response)
|
||||
|
||||
metadata = response.get("metadata", {})
|
||||
if isinstance(metadata, dict):
|
||||
response["metadata"] = cls._get_simple_metadata(metadata)
|
||||
else:
|
||||
response["metadata"] = {}
|
||||
|
||||
return response
|
||||
|
||||
@classmethod
|
||||
def convert_stream_full_response(
|
||||
cls, stream_response: Generator[AppStreamResponse, None, None]
|
||||
) -> Generator[dict | str, None, None]:
|
||||
"""
|
||||
Convert stream full response.
|
||||
:param stream_response: stream response
|
||||
:return:
|
||||
"""
|
||||
for chunk in stream_response:
|
||||
chunk = cast(ChatbotAppStreamResponse, chunk)
|
||||
sub_stream_response = chunk.stream_response
|
||||
|
||||
if isinstance(sub_stream_response, PingStreamResponse):
|
||||
yield "ping"
|
||||
continue
|
||||
|
||||
response_chunk = {
|
||||
"event": sub_stream_response.event.value,
|
||||
"conversation_id": chunk.conversation_id,
|
||||
"message_id": chunk.message_id,
|
||||
"created_at": chunk.created_at,
|
||||
}
|
||||
|
||||
if isinstance(sub_stream_response, ErrorStreamResponse):
|
||||
data = cls._error_to_stream_response(sub_stream_response.err)
|
||||
response_chunk.update(data)
|
||||
else:
|
||||
response_chunk.update(sub_stream_response.model_dump(mode="json"))
|
||||
yield response_chunk
|
||||
|
||||
@classmethod
|
||||
def convert_stream_simple_response(
|
||||
cls, stream_response: Generator[AppStreamResponse, None, None]
|
||||
) -> Generator[dict | str, None, None]:
|
||||
"""
|
||||
Convert stream simple response.
|
||||
:param stream_response: stream response
|
||||
:return:
|
||||
"""
|
||||
for chunk in stream_response:
|
||||
chunk = cast(ChatbotAppStreamResponse, chunk)
|
||||
sub_stream_response = chunk.stream_response
|
||||
|
||||
if isinstance(sub_stream_response, PingStreamResponse):
|
||||
yield "ping"
|
||||
continue
|
||||
|
||||
response_chunk = {
|
||||
"event": sub_stream_response.event.value,
|
||||
"conversation_id": chunk.conversation_id,
|
||||
"message_id": chunk.message_id,
|
||||
"created_at": chunk.created_at,
|
||||
}
|
||||
|
||||
if isinstance(sub_stream_response, MessageEndStreamResponse):
|
||||
sub_stream_response_dict = sub_stream_response.model_dump(mode="json")
|
||||
metadata = sub_stream_response_dict.get("metadata", {})
|
||||
sub_stream_response_dict["metadata"] = cls._get_simple_metadata(metadata)
|
||||
response_chunk.update(sub_stream_response_dict)
|
||||
if isinstance(sub_stream_response, ErrorStreamResponse):
|
||||
data = cls._error_to_stream_response(sub_stream_response.err)
|
||||
response_chunk.update(data)
|
||||
else:
|
||||
response_chunk.update(sub_stream_response.model_dump(mode="json"))
|
||||
|
||||
yield response_chunk
|
||||
132
dify/api/core/app/apps/base_app_generate_response_converter.py
Normal file
132
dify/api/core/app/apps/base_app_generate_response_converter.py
Normal file
@@ -0,0 +1,132 @@
|
||||
import logging
|
||||
from abc import ABC, abstractmethod
|
||||
from collections.abc import Generator, Mapping
|
||||
from typing import Any, Union
|
||||
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom
|
||||
from core.app.entities.task_entities import AppBlockingResponse, AppStreamResponse
|
||||
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
|
||||
from core.model_runtime.errors.invoke import InvokeError
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AppGenerateResponseConverter(ABC):
|
||||
_blocking_response_type: type[AppBlockingResponse]
|
||||
|
||||
@classmethod
|
||||
def convert(
|
||||
cls, response: Union[AppBlockingResponse, Generator[AppStreamResponse, Any, None]], invoke_from: InvokeFrom
|
||||
) -> Mapping[str, Any] | Generator[str | Mapping[str, Any], Any, None]:
|
||||
if invoke_from in {InvokeFrom.DEBUGGER, InvokeFrom.SERVICE_API}:
|
||||
if isinstance(response, AppBlockingResponse):
|
||||
return cls.convert_blocking_full_response(response)
|
||||
else:
|
||||
|
||||
def _generate_full_response() -> Generator[dict | str, Any, None]:
|
||||
yield from cls.convert_stream_full_response(response)
|
||||
|
||||
return _generate_full_response()
|
||||
else:
|
||||
if isinstance(response, AppBlockingResponse):
|
||||
return cls.convert_blocking_simple_response(response)
|
||||
else:
|
||||
|
||||
def _generate_simple_response() -> Generator[dict | str, Any, None]:
|
||||
yield from cls.convert_stream_simple_response(response)
|
||||
|
||||
return _generate_simple_response()
|
||||
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
def convert_blocking_full_response(cls, blocking_response: AppBlockingResponse) -> dict[str, Any]:
|
||||
raise NotImplementedError
|
||||
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
def convert_blocking_simple_response(cls, blocking_response: AppBlockingResponse) -> dict[str, Any]:
|
||||
raise NotImplementedError
|
||||
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
def convert_stream_full_response(
|
||||
cls, stream_response: Generator[AppStreamResponse, None, None]
|
||||
) -> Generator[dict | str, None, None]:
|
||||
raise NotImplementedError
|
||||
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
def convert_stream_simple_response(
|
||||
cls, stream_response: Generator[AppStreamResponse, None, None]
|
||||
) -> Generator[dict | str, None, None]:
|
||||
raise NotImplementedError
|
||||
|
||||
@classmethod
|
||||
def _get_simple_metadata(cls, metadata: dict[str, Any]):
|
||||
"""
|
||||
Get simple metadata.
|
||||
:param metadata: metadata
|
||||
:return:
|
||||
"""
|
||||
# show_retrieve_source
|
||||
updated_resources = []
|
||||
if "retriever_resources" in metadata:
|
||||
for resource in metadata["retriever_resources"]:
|
||||
updated_resources.append(
|
||||
{
|
||||
"segment_id": resource.get("segment_id", ""),
|
||||
"position": resource["position"],
|
||||
"document_name": resource["document_name"],
|
||||
"score": resource["score"],
|
||||
"content": resource["content"],
|
||||
}
|
||||
)
|
||||
metadata["retriever_resources"] = updated_resources
|
||||
|
||||
# show annotation reply
|
||||
if "annotation_reply" in metadata:
|
||||
del metadata["annotation_reply"]
|
||||
|
||||
# show usage
|
||||
if "usage" in metadata:
|
||||
del metadata["usage"]
|
||||
|
||||
return metadata
|
||||
|
||||
@classmethod
|
||||
def _error_to_stream_response(cls, e: Exception):
|
||||
"""
|
||||
Error to stream response.
|
||||
:param e: exception
|
||||
:return:
|
||||
"""
|
||||
error_responses = {
|
||||
ValueError: {"code": "invalid_param", "status": 400},
|
||||
ProviderTokenNotInitError: {"code": "provider_not_initialize", "status": 400},
|
||||
QuotaExceededError: {
|
||||
"code": "provider_quota_exceeded",
|
||||
"message": "Your quota for Dify Hosted Model Provider has been exhausted. "
|
||||
"Please go to Settings -> Model Provider to complete your own provider credentials.",
|
||||
"status": 400,
|
||||
},
|
||||
ModelCurrentlyNotSupportError: {"code": "model_currently_not_support", "status": 400},
|
||||
InvokeError: {"code": "completion_request_error", "status": 400},
|
||||
}
|
||||
|
||||
# Determine the response based on the type of exception
|
||||
data = None
|
||||
for k, v in error_responses.items():
|
||||
if isinstance(e, k):
|
||||
data = v
|
||||
|
||||
if data:
|
||||
data.setdefault("message", getattr(e, "description", str(e)))
|
||||
else:
|
||||
logger.error(e)
|
||||
data = {
|
||||
"code": "internal_server_error",
|
||||
"message": "Internal Server Error, please contact support.",
|
||||
"status": 500,
|
||||
}
|
||||
|
||||
return data
|
||||
232
dify/api/core/app/apps/base_app_generator.py
Normal file
232
dify/api/core/app/apps/base_app_generator.py
Normal file
@@ -0,0 +1,232 @@
|
||||
from collections.abc import Generator, Mapping, Sequence
|
||||
from typing import TYPE_CHECKING, Any, Union, final
|
||||
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from core.app.app_config.entities import VariableEntityType
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom
|
||||
from core.file import File, FileUploadConfig
|
||||
from core.workflow.enums import NodeType
|
||||
from core.workflow.repositories.draft_variable_repository import (
|
||||
DraftVariableSaver,
|
||||
DraftVariableSaverFactory,
|
||||
NoopDraftVariableSaver,
|
||||
)
|
||||
from factories import file_factory
|
||||
from libs.orjson import orjson_dumps
|
||||
from models import Account, EndUser
|
||||
from services.workflow_draft_variable_service import DraftVariableSaver as DraftVariableSaverImpl
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from core.app.app_config.entities import VariableEntity
|
||||
|
||||
|
||||
class BaseAppGenerator:
|
||||
def _prepare_user_inputs(
|
||||
self,
|
||||
*,
|
||||
user_inputs: Mapping[str, Any] | None,
|
||||
variables: Sequence["VariableEntity"],
|
||||
tenant_id: str,
|
||||
strict_type_validation: bool = False,
|
||||
) -> Mapping[str, Any]:
|
||||
user_inputs = user_inputs or {}
|
||||
# Filter input variables from form configuration, handle required fields, default values, and option values
|
||||
user_inputs = {
|
||||
var.variable: self._validate_inputs(value=user_inputs.get(var.variable), variable_entity=var)
|
||||
for var in variables
|
||||
}
|
||||
user_inputs = {k: self._sanitize_value(v) for k, v in user_inputs.items()}
|
||||
# Convert files in inputs to File
|
||||
entity_dictionary = {item.variable: item for item in variables}
|
||||
# Convert single file to File
|
||||
files_inputs = {
|
||||
k: file_factory.build_from_mapping(
|
||||
mapping=v,
|
||||
tenant_id=tenant_id,
|
||||
config=FileUploadConfig(
|
||||
allowed_file_types=entity_dictionary[k].allowed_file_types or [],
|
||||
allowed_file_extensions=entity_dictionary[k].allowed_file_extensions or [],
|
||||
allowed_file_upload_methods=entity_dictionary[k].allowed_file_upload_methods or [],
|
||||
),
|
||||
strict_type_validation=strict_type_validation,
|
||||
)
|
||||
for k, v in user_inputs.items()
|
||||
if isinstance(v, dict) and entity_dictionary[k].type == VariableEntityType.FILE
|
||||
}
|
||||
# Convert list of files to File
|
||||
file_list_inputs = {
|
||||
k: file_factory.build_from_mappings(
|
||||
mappings=v,
|
||||
tenant_id=tenant_id,
|
||||
config=FileUploadConfig(
|
||||
allowed_file_types=entity_dictionary[k].allowed_file_types or [],
|
||||
allowed_file_extensions=entity_dictionary[k].allowed_file_extensions or [],
|
||||
allowed_file_upload_methods=entity_dictionary[k].allowed_file_upload_methods or [],
|
||||
),
|
||||
)
|
||||
for k, v in user_inputs.items()
|
||||
if isinstance(v, list)
|
||||
# Ensure skip List<File>
|
||||
and all(isinstance(item, dict) for item in v)
|
||||
and entity_dictionary[k].type == VariableEntityType.FILE_LIST
|
||||
}
|
||||
# Merge all inputs
|
||||
user_inputs = {**user_inputs, **files_inputs, **file_list_inputs}
|
||||
|
||||
# Check if all files are converted to File
|
||||
if any(filter(lambda v: isinstance(v, dict), user_inputs.values())):
|
||||
raise ValueError("Invalid input type")
|
||||
if any(
|
||||
filter(lambda v: isinstance(v, dict), filter(lambda item: isinstance(item, list), user_inputs.values()))
|
||||
):
|
||||
raise ValueError("Invalid input type")
|
||||
|
||||
return user_inputs
|
||||
|
||||
def _validate_inputs(
|
||||
self,
|
||||
*,
|
||||
variable_entity: "VariableEntity",
|
||||
value: Any,
|
||||
):
|
||||
if value is None:
|
||||
if variable_entity.required:
|
||||
raise ValueError(f"{variable_entity.variable} is required in input form")
|
||||
# Use default value and continue validation to ensure type conversion
|
||||
value = variable_entity.default
|
||||
# If default is also None, return None directly
|
||||
if value is None:
|
||||
return None
|
||||
|
||||
if variable_entity.type in {
|
||||
VariableEntityType.TEXT_INPUT,
|
||||
VariableEntityType.SELECT,
|
||||
VariableEntityType.PARAGRAPH,
|
||||
} and not isinstance(value, str):
|
||||
raise ValueError(
|
||||
f"(type '{variable_entity.type}') {variable_entity.variable} in input form must be a string"
|
||||
)
|
||||
|
||||
if variable_entity.type == VariableEntityType.NUMBER:
|
||||
if isinstance(value, (int, float)):
|
||||
return value
|
||||
elif isinstance(value, str):
|
||||
# handle empty string case
|
||||
if not value.strip():
|
||||
return None
|
||||
# may raise ValueError if user_input_value is not a valid number
|
||||
try:
|
||||
if "." in value:
|
||||
return float(value)
|
||||
else:
|
||||
return int(value)
|
||||
except ValueError:
|
||||
raise ValueError(f"{variable_entity.variable} in input form must be a valid number")
|
||||
else:
|
||||
raise TypeError(f"expected value type int, float or str, got {type(value)}, value: {value}")
|
||||
|
||||
match variable_entity.type:
|
||||
case VariableEntityType.SELECT:
|
||||
if value not in variable_entity.options:
|
||||
raise ValueError(
|
||||
f"{variable_entity.variable} in input form must be one of the following: "
|
||||
f"{variable_entity.options}"
|
||||
)
|
||||
case VariableEntityType.TEXT_INPUT | VariableEntityType.PARAGRAPH:
|
||||
if variable_entity.max_length and len(value) > variable_entity.max_length:
|
||||
raise ValueError(
|
||||
f"{variable_entity.variable} in input form must be less than {variable_entity.max_length} "
|
||||
"characters"
|
||||
)
|
||||
case VariableEntityType.FILE:
|
||||
if not isinstance(value, dict) and not isinstance(value, File):
|
||||
raise ValueError(f"{variable_entity.variable} in input form must be a file")
|
||||
case VariableEntityType.FILE_LIST:
|
||||
# if number of files exceeds the limit, raise ValueError
|
||||
if not (
|
||||
isinstance(value, list)
|
||||
and (all(isinstance(item, dict) for item in value) or all(isinstance(item, File) for item in value))
|
||||
):
|
||||
raise ValueError(f"{variable_entity.variable} in input form must be a list of files")
|
||||
|
||||
if variable_entity.max_length and len(value) > variable_entity.max_length:
|
||||
raise ValueError(
|
||||
f"{variable_entity.variable} in input form must be less than {variable_entity.max_length} files"
|
||||
)
|
||||
case VariableEntityType.CHECKBOX:
|
||||
if isinstance(value, str):
|
||||
normalized_value = value.strip().lower()
|
||||
if normalized_value in {"true", "1", "yes", "on"}:
|
||||
value = True
|
||||
elif normalized_value in {"false", "0", "no", "off"}:
|
||||
value = False
|
||||
elif isinstance(value, (int, float)):
|
||||
if value == 1:
|
||||
value = True
|
||||
elif value == 0:
|
||||
value = False
|
||||
case _:
|
||||
raise AssertionError("this statement should be unreachable.")
|
||||
|
||||
return value
|
||||
|
||||
def _sanitize_value(self, value: Any):
|
||||
if isinstance(value, str):
|
||||
return value.replace("\x00", "")
|
||||
return value
|
||||
|
||||
@classmethod
|
||||
def convert_to_event_stream(cls, generator: Union[Mapping, Generator[Mapping | str, None, None]]):
|
||||
"""
|
||||
Convert messages into event stream
|
||||
"""
|
||||
if isinstance(generator, dict):
|
||||
return generator
|
||||
else:
|
||||
|
||||
def gen():
|
||||
for message in generator:
|
||||
if isinstance(message, Mapping | dict):
|
||||
yield f"data: {orjson_dumps(message)}\n\n"
|
||||
else:
|
||||
yield f"event: {message}\n\n"
|
||||
|
||||
return gen()
|
||||
|
||||
@final
|
||||
@staticmethod
|
||||
def _get_draft_var_saver_factory(invoke_from: InvokeFrom, account: Account | EndUser) -> DraftVariableSaverFactory:
|
||||
if invoke_from == InvokeFrom.DEBUGGER:
|
||||
assert isinstance(account, Account)
|
||||
|
||||
def draft_var_saver_factory(
|
||||
session: Session,
|
||||
app_id: str,
|
||||
node_id: str,
|
||||
node_type: NodeType,
|
||||
node_execution_id: str,
|
||||
enclosing_node_id: str | None = None,
|
||||
) -> DraftVariableSaver:
|
||||
return DraftVariableSaverImpl(
|
||||
session=session,
|
||||
app_id=app_id,
|
||||
node_id=node_id,
|
||||
node_type=node_type,
|
||||
node_execution_id=node_execution_id,
|
||||
enclosing_node_id=enclosing_node_id,
|
||||
user=account,
|
||||
)
|
||||
else:
|
||||
|
||||
def draft_var_saver_factory(
|
||||
session: Session,
|
||||
app_id: str,
|
||||
node_id: str,
|
||||
node_type: NodeType,
|
||||
node_execution_id: str,
|
||||
enclosing_node_id: str | None = None,
|
||||
) -> DraftVariableSaver:
|
||||
return NoopDraftVariableSaver()
|
||||
|
||||
return draft_var_saver_factory
|
||||
219
dify/api/core/app/apps/base_app_queue_manager.py
Normal file
219
dify/api/core/app/apps/base_app_queue_manager.py
Normal file
@@ -0,0 +1,219 @@
|
||||
import logging
|
||||
import queue
|
||||
import threading
|
||||
import time
|
||||
from abc import abstractmethod
|
||||
from enum import IntEnum, auto
|
||||
from typing import Any
|
||||
|
||||
from cachetools import TTLCache, cachedmethod
|
||||
from redis.exceptions import RedisError
|
||||
from sqlalchemy.orm import DeclarativeMeta
|
||||
|
||||
from configs import dify_config
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom
|
||||
from core.app.entities.queue_entities import (
|
||||
AppQueueEvent,
|
||||
MessageQueueMessage,
|
||||
QueueErrorEvent,
|
||||
QueuePingEvent,
|
||||
QueueStopEvent,
|
||||
WorkflowQueueMessage,
|
||||
)
|
||||
from core.workflow.runtime import GraphRuntimeState
|
||||
from extensions.ext_redis import redis_client
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class PublishFrom(IntEnum):
|
||||
APPLICATION_MANAGER = auto()
|
||||
TASK_PIPELINE = auto()
|
||||
|
||||
|
||||
class AppQueueManager:
|
||||
def __init__(self, task_id: str, user_id: str, invoke_from: InvokeFrom):
|
||||
if not user_id:
|
||||
raise ValueError("user is required")
|
||||
|
||||
self._task_id = task_id
|
||||
self._user_id = user_id
|
||||
self._invoke_from = invoke_from
|
||||
self.invoke_from = invoke_from # Public accessor for invoke_from
|
||||
|
||||
user_prefix = "account" if self._invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER} else "end-user"
|
||||
self._task_belong_cache_key = AppQueueManager._generate_task_belong_cache_key(self._task_id)
|
||||
redis_client.setex(self._task_belong_cache_key, 1800, f"{user_prefix}-{self._user_id}")
|
||||
|
||||
q: queue.Queue[WorkflowQueueMessage | MessageQueueMessage | None] = queue.Queue()
|
||||
|
||||
self._q = q
|
||||
self._graph_runtime_state: GraphRuntimeState | None = None
|
||||
self._stopped_cache: TTLCache[tuple, bool] = TTLCache(maxsize=1, ttl=1)
|
||||
self._cache_lock = threading.Lock()
|
||||
|
||||
def listen(self):
|
||||
"""
|
||||
Listen to queue
|
||||
:return:
|
||||
"""
|
||||
# wait for APP_MAX_EXECUTION_TIME seconds to stop listen
|
||||
listen_timeout = dify_config.APP_MAX_EXECUTION_TIME
|
||||
start_time = time.time()
|
||||
last_ping_time: int | float = 0
|
||||
while True:
|
||||
try:
|
||||
message = self._q.get(timeout=1)
|
||||
if message is None:
|
||||
break
|
||||
|
||||
yield message
|
||||
except queue.Empty:
|
||||
continue
|
||||
finally:
|
||||
elapsed_time = time.time() - start_time
|
||||
if elapsed_time >= listen_timeout or self._is_stopped():
|
||||
# publish two messages to make sure the client can receive the stop signal
|
||||
# and stop listening after the stop signal processed
|
||||
self.publish(
|
||||
QueueStopEvent(stopped_by=QueueStopEvent.StopBy.USER_MANUAL), PublishFrom.TASK_PIPELINE
|
||||
)
|
||||
|
||||
if elapsed_time // 10 > last_ping_time:
|
||||
self.publish(QueuePingEvent(), PublishFrom.TASK_PIPELINE)
|
||||
last_ping_time = elapsed_time // 10
|
||||
|
||||
def stop_listen(self):
|
||||
"""
|
||||
Stop listen to queue
|
||||
:return:
|
||||
"""
|
||||
self._clear_task_belong_cache()
|
||||
self._q.put(None)
|
||||
|
||||
def _clear_task_belong_cache(self) -> None:
|
||||
"""
|
||||
Remove the task belong cache key once listening is finished.
|
||||
"""
|
||||
try:
|
||||
redis_client.delete(self._task_belong_cache_key)
|
||||
except RedisError:
|
||||
logger.exception(
|
||||
"Failed to clear task belong cache for task %s (key: %s)", self._task_id, self._task_belong_cache_key
|
||||
)
|
||||
|
||||
def publish_error(self, e, pub_from: PublishFrom) -> None:
|
||||
"""
|
||||
Publish error
|
||||
:param e: error
|
||||
:param pub_from: publish from
|
||||
:return:
|
||||
"""
|
||||
self.publish(QueueErrorEvent(error=e), pub_from)
|
||||
|
||||
@property
|
||||
def graph_runtime_state(self) -> GraphRuntimeState | None:
|
||||
"""Retrieve the attached graph runtime state, if available."""
|
||||
return self._graph_runtime_state
|
||||
|
||||
@graph_runtime_state.setter
|
||||
def graph_runtime_state(self, graph_runtime_state: GraphRuntimeState | None) -> None:
|
||||
"""Attach the live graph runtime state reference for downstream consumers."""
|
||||
self._graph_runtime_state = graph_runtime_state
|
||||
|
||||
def publish(self, event: AppQueueEvent, pub_from: PublishFrom):
|
||||
"""
|
||||
Publish event to queue
|
||||
:param event:
|
||||
:param pub_from:
|
||||
:return:
|
||||
"""
|
||||
self._check_for_sqlalchemy_models(event.model_dump())
|
||||
self._publish(event, pub_from)
|
||||
|
||||
@abstractmethod
|
||||
def _publish(self, event: AppQueueEvent, pub_from: PublishFrom):
|
||||
"""
|
||||
Publish event to queue
|
||||
:param event:
|
||||
:param pub_from:
|
||||
:return:
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@classmethod
|
||||
def set_stop_flag(cls, task_id: str, invoke_from: InvokeFrom, user_id: str):
|
||||
"""
|
||||
Set task stop flag
|
||||
:return:
|
||||
"""
|
||||
result: Any | None = redis_client.get(cls._generate_task_belong_cache_key(task_id))
|
||||
if result is None:
|
||||
return
|
||||
|
||||
user_prefix = "account" if invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER} else "end-user"
|
||||
if result.decode("utf-8") != f"{user_prefix}-{user_id}":
|
||||
return
|
||||
|
||||
stopped_cache_key = cls._generate_stopped_cache_key(task_id)
|
||||
redis_client.setex(stopped_cache_key, 600, 1)
|
||||
|
||||
@classmethod
|
||||
def set_stop_flag_no_user_check(cls, task_id: str) -> None:
|
||||
"""
|
||||
Set task stop flag without user permission check.
|
||||
This method allows stopping workflows without user context.
|
||||
|
||||
:param task_id: The task ID to stop
|
||||
:return:
|
||||
"""
|
||||
if not task_id:
|
||||
return
|
||||
|
||||
stopped_cache_key = cls._generate_stopped_cache_key(task_id)
|
||||
redis_client.setex(stopped_cache_key, 600, 1)
|
||||
|
||||
@cachedmethod(lambda self: self._stopped_cache, lock=lambda self: self._cache_lock)
|
||||
def _is_stopped(self) -> bool:
|
||||
"""
|
||||
Check if task is stopped
|
||||
:return:
|
||||
"""
|
||||
stopped_cache_key = AppQueueManager._generate_stopped_cache_key(self._task_id)
|
||||
result = redis_client.get(stopped_cache_key)
|
||||
if result is not None:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
@classmethod
|
||||
def _generate_task_belong_cache_key(cls, task_id: str) -> str:
|
||||
"""
|
||||
Generate task belong cache key
|
||||
:param task_id: task id
|
||||
:return:
|
||||
"""
|
||||
return f"generate_task_belong:{task_id}"
|
||||
|
||||
@classmethod
|
||||
def _generate_stopped_cache_key(cls, task_id: str) -> str:
|
||||
"""
|
||||
Generate stopped cache key
|
||||
:param task_id: task id
|
||||
:return:
|
||||
"""
|
||||
return f"generate_task_stopped:{task_id}"
|
||||
|
||||
def _check_for_sqlalchemy_models(self, data: Any):
|
||||
# from entity to dict or list
|
||||
if isinstance(data, dict):
|
||||
for value in data.values():
|
||||
self._check_for_sqlalchemy_models(value)
|
||||
elif isinstance(data, list):
|
||||
for item in data:
|
||||
self._check_for_sqlalchemy_models(item)
|
||||
else:
|
||||
if isinstance(data, DeclarativeMeta) or hasattr(data, "_sa_instance_state"):
|
||||
raise TypeError(
|
||||
"Critical Error: Passing SQLAlchemy Model instances that cause thread safety issues is not allowed."
|
||||
)
|
||||
388
dify/api/core/app/apps/base_app_runner.py
Normal file
388
dify/api/core/app/apps/base_app_runner.py
Normal file
@@ -0,0 +1,388 @@
|
||||
import logging
|
||||
import time
|
||||
from collections.abc import Generator, Mapping, Sequence
|
||||
from typing import TYPE_CHECKING, Any, Union
|
||||
|
||||
from core.app.app_config.entities import ExternalDataVariableEntity, PromptTemplateEntity
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
from core.app.entities.app_invoke_entities import (
|
||||
AppGenerateEntity,
|
||||
EasyUIBasedAppGenerateEntity,
|
||||
InvokeFrom,
|
||||
ModelConfigWithCredentialsEntity,
|
||||
)
|
||||
from core.app.entities.queue_entities import QueueAgentMessageEvent, QueueLLMChunkEvent, QueueMessageEndEvent
|
||||
from core.app.features.annotation_reply.annotation_reply import AnnotationReplyFeature
|
||||
from core.app.features.hosting_moderation.hosting_moderation import HostingModerationFeature
|
||||
from core.external_data_tool.external_data_fetch import ExternalDataFetch
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
|
||||
from core.model_runtime.entities.message_entities import (
|
||||
AssistantPromptMessage,
|
||||
ImagePromptMessageContent,
|
||||
PromptMessage,
|
||||
)
|
||||
from core.model_runtime.entities.model_entities import ModelPropertyKey
|
||||
from core.model_runtime.errors.invoke import InvokeBadRequestError
|
||||
from core.moderation.input_moderation import InputModeration
|
||||
from core.prompt.advanced_prompt_transform import AdvancedPromptTransform
|
||||
from core.prompt.entities.advanced_prompt_entities import ChatModelMessage, CompletionModelPromptTemplate, MemoryConfig
|
||||
from core.prompt.simple_prompt_transform import ModelMode, SimplePromptTransform
|
||||
from models.model import App, AppMode, Message, MessageAnnotation
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from core.file.models import File
|
||||
|
||||
_logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AppRunner:
|
||||
def recalc_llm_max_tokens(
|
||||
self, model_config: ModelConfigWithCredentialsEntity, prompt_messages: list[PromptMessage]
|
||||
):
|
||||
# recalc max_tokens if sum(prompt_token + max_tokens) over model token limit
|
||||
model_instance = ModelInstance(
|
||||
provider_model_bundle=model_config.provider_model_bundle, model=model_config.model
|
||||
)
|
||||
|
||||
model_context_tokens = model_config.model_schema.model_properties.get(ModelPropertyKey.CONTEXT_SIZE)
|
||||
|
||||
max_tokens = 0
|
||||
for parameter_rule in model_config.model_schema.parameter_rules:
|
||||
if parameter_rule.name == "max_tokens" or (
|
||||
parameter_rule.use_template and parameter_rule.use_template == "max_tokens"
|
||||
):
|
||||
max_tokens = (
|
||||
model_config.parameters.get(parameter_rule.name)
|
||||
or model_config.parameters.get(parameter_rule.use_template or "")
|
||||
) or 0
|
||||
|
||||
if model_context_tokens is None:
|
||||
return -1
|
||||
|
||||
prompt_tokens = model_instance.get_llm_num_tokens(prompt_messages)
|
||||
|
||||
if prompt_tokens + max_tokens > model_context_tokens:
|
||||
max_tokens = max(model_context_tokens - prompt_tokens, 16)
|
||||
|
||||
for parameter_rule in model_config.model_schema.parameter_rules:
|
||||
if parameter_rule.name == "max_tokens" or (
|
||||
parameter_rule.use_template and parameter_rule.use_template == "max_tokens"
|
||||
):
|
||||
model_config.parameters[parameter_rule.name] = max_tokens
|
||||
|
||||
def organize_prompt_messages(
|
||||
self,
|
||||
app_record: App,
|
||||
model_config: ModelConfigWithCredentialsEntity,
|
||||
prompt_template_entity: PromptTemplateEntity,
|
||||
inputs: Mapping[str, str],
|
||||
files: Sequence["File"],
|
||||
query: str = "",
|
||||
context: str | None = None,
|
||||
memory: TokenBufferMemory | None = None,
|
||||
image_detail_config: ImagePromptMessageContent.DETAIL | None = None,
|
||||
) -> tuple[list[PromptMessage], list[str] | None]:
|
||||
"""
|
||||
Organize prompt messages
|
||||
:param context:
|
||||
:param app_record: app record
|
||||
:param model_config: model config entity
|
||||
:param prompt_template_entity: prompt template entity
|
||||
:param inputs: inputs
|
||||
:param files: files
|
||||
:param query: query
|
||||
:param memory: memory
|
||||
:param image_detail_config: the image quality config
|
||||
:return:
|
||||
"""
|
||||
# get prompt without memory and context
|
||||
if prompt_template_entity.prompt_type == PromptTemplateEntity.PromptType.SIMPLE:
|
||||
prompt_transform: Union[SimplePromptTransform, AdvancedPromptTransform]
|
||||
prompt_transform = SimplePromptTransform()
|
||||
prompt_messages, stop = prompt_transform.get_prompt(
|
||||
app_mode=AppMode.value_of(app_record.mode),
|
||||
prompt_template_entity=prompt_template_entity,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
files=files,
|
||||
context=context,
|
||||
memory=memory,
|
||||
model_config=model_config,
|
||||
image_detail_config=image_detail_config,
|
||||
)
|
||||
else:
|
||||
memory_config = MemoryConfig(window=MemoryConfig.WindowConfig(enabled=False))
|
||||
|
||||
model_mode = ModelMode(model_config.mode)
|
||||
prompt_template: Union[CompletionModelPromptTemplate, list[ChatModelMessage]]
|
||||
if model_mode == ModelMode.COMPLETION:
|
||||
advanced_completion_prompt_template = prompt_template_entity.advanced_completion_prompt_template
|
||||
if not advanced_completion_prompt_template:
|
||||
raise InvokeBadRequestError("Advanced completion prompt template is required.")
|
||||
prompt_template = CompletionModelPromptTemplate(text=advanced_completion_prompt_template.prompt)
|
||||
|
||||
if advanced_completion_prompt_template.role_prefix:
|
||||
memory_config.role_prefix = MemoryConfig.RolePrefix(
|
||||
user=advanced_completion_prompt_template.role_prefix.user,
|
||||
assistant=advanced_completion_prompt_template.role_prefix.assistant,
|
||||
)
|
||||
else:
|
||||
if not prompt_template_entity.advanced_chat_prompt_template:
|
||||
raise InvokeBadRequestError("Advanced chat prompt template is required.")
|
||||
prompt_template = []
|
||||
for message in prompt_template_entity.advanced_chat_prompt_template.messages:
|
||||
prompt_template.append(ChatModelMessage(text=message.text, role=message.role))
|
||||
|
||||
prompt_transform = AdvancedPromptTransform()
|
||||
prompt_messages = prompt_transform.get_prompt(
|
||||
prompt_template=prompt_template,
|
||||
inputs=inputs,
|
||||
query=query or "",
|
||||
files=files,
|
||||
context=context,
|
||||
memory_config=memory_config,
|
||||
memory=memory,
|
||||
model_config=model_config,
|
||||
image_detail_config=image_detail_config,
|
||||
)
|
||||
stop = model_config.stop
|
||||
|
||||
return prompt_messages, stop
|
||||
|
||||
def direct_output(
|
||||
self,
|
||||
queue_manager: AppQueueManager,
|
||||
app_generate_entity: EasyUIBasedAppGenerateEntity,
|
||||
prompt_messages: list,
|
||||
text: str,
|
||||
stream: bool,
|
||||
usage: LLMUsage | None = None,
|
||||
):
|
||||
"""
|
||||
Direct output
|
||||
:param queue_manager: application queue manager
|
||||
:param app_generate_entity: app generate entity
|
||||
:param prompt_messages: prompt messages
|
||||
:param text: text
|
||||
:param stream: stream
|
||||
:param usage: usage
|
||||
:return:
|
||||
"""
|
||||
if stream:
|
||||
index = 0
|
||||
for token in text:
|
||||
chunk = LLMResultChunk(
|
||||
model=app_generate_entity.model_conf.model,
|
||||
prompt_messages=prompt_messages,
|
||||
delta=LLMResultChunkDelta(index=index, message=AssistantPromptMessage(content=token)),
|
||||
)
|
||||
|
||||
queue_manager.publish(QueueLLMChunkEvent(chunk=chunk), PublishFrom.APPLICATION_MANAGER)
|
||||
index += 1
|
||||
time.sleep(0.01)
|
||||
|
||||
queue_manager.publish(
|
||||
QueueMessageEndEvent(
|
||||
llm_result=LLMResult(
|
||||
model=app_generate_entity.model_conf.model,
|
||||
prompt_messages=prompt_messages,
|
||||
message=AssistantPromptMessage(content=text),
|
||||
usage=usage or LLMUsage.empty_usage(),
|
||||
),
|
||||
),
|
||||
PublishFrom.APPLICATION_MANAGER,
|
||||
)
|
||||
|
||||
def _handle_invoke_result(
|
||||
self,
|
||||
invoke_result: Union[LLMResult, Generator[Any, None, None]],
|
||||
queue_manager: AppQueueManager,
|
||||
stream: bool,
|
||||
agent: bool = False,
|
||||
):
|
||||
"""
|
||||
Handle invoke result
|
||||
:param invoke_result: invoke result
|
||||
:param queue_manager: application queue manager
|
||||
:param stream: stream
|
||||
:param agent: agent
|
||||
:return:
|
||||
"""
|
||||
if not stream and isinstance(invoke_result, LLMResult):
|
||||
self._handle_invoke_result_direct(invoke_result=invoke_result, queue_manager=queue_manager, agent=agent)
|
||||
elif stream and isinstance(invoke_result, Generator):
|
||||
self._handle_invoke_result_stream(invoke_result=invoke_result, queue_manager=queue_manager, agent=agent)
|
||||
else:
|
||||
raise NotImplementedError(f"unsupported invoke result type: {type(invoke_result)}")
|
||||
|
||||
def _handle_invoke_result_direct(self, invoke_result: LLMResult, queue_manager: AppQueueManager, agent: bool):
|
||||
"""
|
||||
Handle invoke result direct
|
||||
:param invoke_result: invoke result
|
||||
:param queue_manager: application queue manager
|
||||
:param agent: agent
|
||||
:return:
|
||||
"""
|
||||
queue_manager.publish(
|
||||
QueueMessageEndEvent(
|
||||
llm_result=invoke_result,
|
||||
),
|
||||
PublishFrom.APPLICATION_MANAGER,
|
||||
)
|
||||
|
||||
def _handle_invoke_result_stream(
|
||||
self, invoke_result: Generator[LLMResultChunk, None, None], queue_manager: AppQueueManager, agent: bool
|
||||
):
|
||||
"""
|
||||
Handle invoke result
|
||||
:param invoke_result: invoke result
|
||||
:param queue_manager: application queue manager
|
||||
:param agent: agent
|
||||
:return:
|
||||
"""
|
||||
model: str = ""
|
||||
prompt_messages: list[PromptMessage] = []
|
||||
text = ""
|
||||
usage = None
|
||||
for result in invoke_result:
|
||||
if not agent:
|
||||
queue_manager.publish(QueueLLMChunkEvent(chunk=result), PublishFrom.APPLICATION_MANAGER)
|
||||
else:
|
||||
queue_manager.publish(QueueAgentMessageEvent(chunk=result), PublishFrom.APPLICATION_MANAGER)
|
||||
|
||||
message = result.delta.message
|
||||
if isinstance(message.content, str):
|
||||
text += message.content
|
||||
elif isinstance(message.content, list):
|
||||
for content in message.content:
|
||||
if not isinstance(content, str):
|
||||
# TODO(QuantumGhost): Add multimodal output support for easy ui.
|
||||
_logger.warning("received multimodal output, type=%s", type(content))
|
||||
text += content.data
|
||||
else:
|
||||
text += content # failback to str
|
||||
|
||||
if not model:
|
||||
model = result.model
|
||||
|
||||
if not prompt_messages:
|
||||
prompt_messages = list(result.prompt_messages)
|
||||
|
||||
if result.delta.usage:
|
||||
usage = result.delta.usage
|
||||
|
||||
if usage is None:
|
||||
usage = LLMUsage.empty_usage()
|
||||
|
||||
llm_result = LLMResult(
|
||||
model=model, prompt_messages=prompt_messages, message=AssistantPromptMessage(content=text), usage=usage
|
||||
)
|
||||
|
||||
queue_manager.publish(
|
||||
QueueMessageEndEvent(
|
||||
llm_result=llm_result,
|
||||
),
|
||||
PublishFrom.APPLICATION_MANAGER,
|
||||
)
|
||||
|
||||
def moderation_for_inputs(
|
||||
self,
|
||||
*,
|
||||
app_id: str,
|
||||
tenant_id: str,
|
||||
app_generate_entity: AppGenerateEntity,
|
||||
inputs: Mapping[str, Any],
|
||||
query: str | None = None,
|
||||
message_id: str,
|
||||
) -> tuple[bool, Mapping[str, Any], str]:
|
||||
"""
|
||||
Process sensitive_word_avoidance.
|
||||
:param app_id: app id
|
||||
:param tenant_id: tenant id
|
||||
:param app_generate_entity: app generate entity
|
||||
:param inputs: inputs
|
||||
:param query: query
|
||||
:param message_id: message id
|
||||
:return:
|
||||
"""
|
||||
moderation_feature = InputModeration()
|
||||
return moderation_feature.check(
|
||||
app_id=app_id,
|
||||
tenant_id=tenant_id,
|
||||
app_config=app_generate_entity.app_config,
|
||||
inputs=dict(inputs),
|
||||
query=query or "",
|
||||
message_id=message_id,
|
||||
trace_manager=app_generate_entity.trace_manager,
|
||||
)
|
||||
|
||||
def check_hosting_moderation(
|
||||
self,
|
||||
application_generate_entity: EasyUIBasedAppGenerateEntity,
|
||||
queue_manager: AppQueueManager,
|
||||
prompt_messages: list[PromptMessage],
|
||||
) -> bool:
|
||||
"""
|
||||
Check hosting moderation
|
||||
:param application_generate_entity: application generate entity
|
||||
:param queue_manager: queue manager
|
||||
:param prompt_messages: prompt messages
|
||||
:return:
|
||||
"""
|
||||
hosting_moderation_feature = HostingModerationFeature()
|
||||
moderation_result = hosting_moderation_feature.check(
|
||||
application_generate_entity=application_generate_entity, prompt_messages=prompt_messages
|
||||
)
|
||||
|
||||
if moderation_result:
|
||||
self.direct_output(
|
||||
queue_manager=queue_manager,
|
||||
app_generate_entity=application_generate_entity,
|
||||
prompt_messages=prompt_messages,
|
||||
text="I apologize for any confusion, but I'm an AI assistant to be helpful, harmless, and honest.",
|
||||
stream=application_generate_entity.stream,
|
||||
)
|
||||
|
||||
return moderation_result
|
||||
|
||||
def fill_in_inputs_from_external_data_tools(
|
||||
self,
|
||||
tenant_id: str,
|
||||
app_id: str,
|
||||
external_data_tools: list[ExternalDataVariableEntity],
|
||||
inputs: Mapping[str, Any],
|
||||
query: str,
|
||||
) -> Mapping[str, Any]:
|
||||
"""
|
||||
Fill in variable inputs from external data tools if exists.
|
||||
|
||||
:param tenant_id: workspace id
|
||||
:param app_id: app id
|
||||
:param external_data_tools: external data tools configs
|
||||
:param inputs: the inputs
|
||||
:param query: the query
|
||||
:return: the filled inputs
|
||||
"""
|
||||
external_data_fetch_feature = ExternalDataFetch()
|
||||
return external_data_fetch_feature.fetch(
|
||||
tenant_id=tenant_id, app_id=app_id, external_data_tools=external_data_tools, inputs=inputs, query=query
|
||||
)
|
||||
|
||||
def query_app_annotations_to_reply(
|
||||
self, app_record: App, message: Message, query: str, user_id: str, invoke_from: InvokeFrom
|
||||
) -> MessageAnnotation | None:
|
||||
"""
|
||||
Query app annotations to reply
|
||||
:param app_record: app record
|
||||
:param message: message
|
||||
:param query: query
|
||||
:param user_id: user id
|
||||
:param invoke_from: invoke from
|
||||
:return:
|
||||
"""
|
||||
annotation_reply_feature = AnnotationReplyFeature()
|
||||
return annotation_reply_feature.query(
|
||||
app_record=app_record, message=message, query=query, user_id=user_id, invoke_from=invoke_from
|
||||
)
|
||||
0
dify/api/core/app/apps/chat/__init__.py
Normal file
0
dify/api/core/app/apps/chat/__init__.py
Normal file
148
dify/api/core/app/apps/chat/app_config_manager.py
Normal file
148
dify/api/core/app/apps/chat/app_config_manager.py
Normal file
@@ -0,0 +1,148 @@
|
||||
from core.app.app_config.base_app_config_manager import BaseAppConfigManager
|
||||
from core.app.app_config.common.sensitive_word_avoidance.manager import SensitiveWordAvoidanceConfigManager
|
||||
from core.app.app_config.easy_ui_based_app.dataset.manager import DatasetConfigManager
|
||||
from core.app.app_config.easy_ui_based_app.model_config.manager import ModelConfigManager
|
||||
from core.app.app_config.easy_ui_based_app.prompt_template.manager import PromptTemplateConfigManager
|
||||
from core.app.app_config.easy_ui_based_app.variables.manager import BasicVariablesConfigManager
|
||||
from core.app.app_config.entities import EasyUIBasedAppConfig, EasyUIBasedAppModelConfigFrom
|
||||
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
|
||||
from core.app.app_config.features.opening_statement.manager import OpeningStatementConfigManager
|
||||
from core.app.app_config.features.retrieval_resource.manager import RetrievalResourceConfigManager
|
||||
from core.app.app_config.features.speech_to_text.manager import SpeechToTextConfigManager
|
||||
from core.app.app_config.features.suggested_questions_after_answer.manager import (
|
||||
SuggestedQuestionsAfterAnswerConfigManager,
|
||||
)
|
||||
from core.app.app_config.features.text_to_speech.manager import TextToSpeechConfigManager
|
||||
from models.model import App, AppMode, AppModelConfig, Conversation
|
||||
|
||||
|
||||
class ChatAppConfig(EasyUIBasedAppConfig):
|
||||
"""
|
||||
Chatbot App Config Entity.
|
||||
"""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class ChatAppConfigManager(BaseAppConfigManager):
|
||||
@classmethod
|
||||
def get_app_config(
|
||||
cls,
|
||||
app_model: App,
|
||||
app_model_config: AppModelConfig,
|
||||
conversation: Conversation | None = None,
|
||||
override_config_dict: dict | None = None,
|
||||
) -> ChatAppConfig:
|
||||
"""
|
||||
Convert app model config to chat app config
|
||||
:param app_model: app model
|
||||
:param app_model_config: app model config
|
||||
:param conversation: conversation
|
||||
:param override_config_dict: app model config dict
|
||||
:return:
|
||||
"""
|
||||
if override_config_dict:
|
||||
config_from = EasyUIBasedAppModelConfigFrom.ARGS
|
||||
elif conversation:
|
||||
config_from = EasyUIBasedAppModelConfigFrom.CONVERSATION_SPECIFIC_CONFIG
|
||||
else:
|
||||
config_from = EasyUIBasedAppModelConfigFrom.APP_LATEST_CONFIG
|
||||
|
||||
if config_from != EasyUIBasedAppModelConfigFrom.ARGS:
|
||||
app_model_config_dict = app_model_config.to_dict()
|
||||
config_dict = app_model_config_dict.copy()
|
||||
else:
|
||||
if not override_config_dict:
|
||||
raise Exception("override_config_dict is required when config_from is ARGS")
|
||||
|
||||
config_dict = override_config_dict
|
||||
|
||||
app_mode = AppMode.value_of(app_model.mode)
|
||||
app_config = ChatAppConfig(
|
||||
tenant_id=app_model.tenant_id,
|
||||
app_id=app_model.id,
|
||||
app_mode=app_mode,
|
||||
app_model_config_from=config_from,
|
||||
app_model_config_id=app_model_config.id,
|
||||
app_model_config_dict=config_dict,
|
||||
model=ModelConfigManager.convert(config=config_dict),
|
||||
prompt_template=PromptTemplateConfigManager.convert(config=config_dict),
|
||||
sensitive_word_avoidance=SensitiveWordAvoidanceConfigManager.convert(config=config_dict),
|
||||
dataset=DatasetConfigManager.convert(config=config_dict),
|
||||
additional_features=cls.convert_features(config_dict, app_mode),
|
||||
)
|
||||
|
||||
app_config.variables, app_config.external_data_variables = BasicVariablesConfigManager.convert(
|
||||
config=config_dict
|
||||
)
|
||||
|
||||
return app_config
|
||||
|
||||
@classmethod
|
||||
def config_validate(cls, tenant_id: str, config: dict):
|
||||
"""
|
||||
Validate for chat app model config
|
||||
|
||||
:param tenant_id: tenant id
|
||||
:param config: app model config args
|
||||
"""
|
||||
app_mode = AppMode.CHAT
|
||||
|
||||
related_config_keys = []
|
||||
|
||||
# model
|
||||
config, current_related_config_keys = ModelConfigManager.validate_and_set_defaults(tenant_id, config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# user_input_form
|
||||
config, current_related_config_keys = BasicVariablesConfigManager.validate_and_set_defaults(tenant_id, config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# file upload validation
|
||||
config, current_related_config_keys = FileUploadConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# prompt
|
||||
config, current_related_config_keys = PromptTemplateConfigManager.validate_and_set_defaults(app_mode, config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# dataset_query_variable
|
||||
config, current_related_config_keys = DatasetConfigManager.validate_and_set_defaults(
|
||||
tenant_id, app_mode, config
|
||||
)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# opening_statement
|
||||
config, current_related_config_keys = OpeningStatementConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# suggested_questions_after_answer
|
||||
config, current_related_config_keys = SuggestedQuestionsAfterAnswerConfigManager.validate_and_set_defaults(
|
||||
config
|
||||
)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# speech_to_text
|
||||
config, current_related_config_keys = SpeechToTextConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# text_to_speech
|
||||
config, current_related_config_keys = TextToSpeechConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# return retriever resource
|
||||
config, current_related_config_keys = RetrievalResourceConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# moderation validation
|
||||
config, current_related_config_keys = SensitiveWordAvoidanceConfigManager.validate_and_set_defaults(
|
||||
tenant_id, config
|
||||
)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
related_config_keys = list(set(related_config_keys))
|
||||
|
||||
# Filter out extra parameters
|
||||
filtered_config = {key: config.get(key) for key in related_config_keys}
|
||||
|
||||
return filtered_config
|
||||
255
dify/api/core/app/apps/chat/app_generator.py
Normal file
255
dify/api/core/app/apps/chat/app_generator.py
Normal file
@@ -0,0 +1,255 @@
|
||||
import logging
|
||||
import threading
|
||||
import uuid
|
||||
from collections.abc import Generator, Mapping
|
||||
from typing import Any, Literal, Union, overload
|
||||
|
||||
from flask import Flask, copy_current_request_context, current_app
|
||||
from pydantic import ValidationError
|
||||
|
||||
from configs import dify_config
|
||||
from constants import UUID_NIL
|
||||
from core.app.app_config.easy_ui_based_app.model_config.converter import ModelConfigConverter
|
||||
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
from core.app.apps.chat.app_config_manager import ChatAppConfigManager
|
||||
from core.app.apps.chat.app_runner import ChatAppRunner
|
||||
from core.app.apps.chat.generate_response_converter import ChatAppGenerateResponseConverter
|
||||
from core.app.apps.exc import GenerateTaskStoppedError
|
||||
from core.app.apps.message_based_app_generator import MessageBasedAppGenerator
|
||||
from core.app.apps.message_based_app_queue_manager import MessageBasedAppQueueManager
|
||||
from core.app.entities.app_invoke_entities import ChatAppGenerateEntity, InvokeFrom
|
||||
from core.model_runtime.errors.invoke import InvokeAuthorizationError
|
||||
from core.ops.ops_trace_manager import TraceQueueManager
|
||||
from extensions.ext_database import db
|
||||
from factories import file_factory
|
||||
from models import Account
|
||||
from models.model import App, EndUser
|
||||
from services.conversation_service import ConversationService
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ChatAppGenerator(MessageBasedAppGenerator):
|
||||
@overload
|
||||
def generate(
|
||||
self,
|
||||
app_model: App,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: Literal[True],
|
||||
) -> Generator[Mapping | str, None, None]: ...
|
||||
|
||||
@overload
|
||||
def generate(
|
||||
self,
|
||||
app_model: App,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: Literal[False],
|
||||
) -> Mapping[str, Any]: ...
|
||||
|
||||
@overload
|
||||
def generate(
|
||||
self,
|
||||
app_model: App,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: bool,
|
||||
) -> Union[Mapping[str, Any], Generator[Mapping[str, Any] | str, None, None]]: ...
|
||||
|
||||
def generate(
|
||||
self,
|
||||
app_model: App,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: bool = True,
|
||||
) -> Union[Mapping[str, Any], Generator[Mapping[str, Any] | str, None, None]]:
|
||||
"""
|
||||
Generate App response.
|
||||
|
||||
:param app_model: App
|
||||
:param user: account or end user
|
||||
:param args: request args
|
||||
:param invoke_from: invoke from source
|
||||
:param streaming: is stream
|
||||
"""
|
||||
if not args.get("query"):
|
||||
raise ValueError("query is required")
|
||||
|
||||
query = args["query"]
|
||||
if not isinstance(query, str):
|
||||
raise ValueError("query must be a string")
|
||||
|
||||
query = query.replace("\x00", "")
|
||||
inputs = args["inputs"]
|
||||
|
||||
extras = {"auto_generate_conversation_name": args.get("auto_generate_name", True)}
|
||||
|
||||
# get conversation
|
||||
conversation = None
|
||||
conversation_id = args.get("conversation_id")
|
||||
if conversation_id:
|
||||
conversation = ConversationService.get_conversation(
|
||||
app_model=app_model, conversation_id=conversation_id, user=user
|
||||
)
|
||||
# get app model config
|
||||
app_model_config = self._get_app_model_config(app_model=app_model, conversation=conversation)
|
||||
|
||||
# validate override model config
|
||||
override_model_config_dict = None
|
||||
if args.get("model_config"):
|
||||
if invoke_from != InvokeFrom.DEBUGGER:
|
||||
raise ValueError("Only in App debug mode can override model config")
|
||||
|
||||
# validate config
|
||||
override_model_config_dict = ChatAppConfigManager.config_validate(
|
||||
tenant_id=app_model.tenant_id, config=args.get("model_config", {})
|
||||
)
|
||||
|
||||
# always enable retriever resource in debugger mode
|
||||
override_model_config_dict["retriever_resource"] = {"enabled": True}
|
||||
|
||||
# parse files
|
||||
# TODO(QuantumGhost): Move file parsing logic to the API controller layer
|
||||
# for better separation of concerns.
|
||||
#
|
||||
# For implementation reference, see the `_parse_file` function and
|
||||
# `DraftWorkflowNodeRunApi` class which handle this properly.
|
||||
files = args["files"] if args.get("files") else []
|
||||
file_extra_config = FileUploadConfigManager.convert(override_model_config_dict or app_model_config.to_dict())
|
||||
if file_extra_config:
|
||||
file_objs = file_factory.build_from_mappings(
|
||||
mappings=files,
|
||||
tenant_id=app_model.tenant_id,
|
||||
config=file_extra_config,
|
||||
)
|
||||
else:
|
||||
file_objs = []
|
||||
|
||||
# convert to app config
|
||||
app_config = ChatAppConfigManager.get_app_config(
|
||||
app_model=app_model,
|
||||
app_model_config=app_model_config,
|
||||
conversation=conversation,
|
||||
override_config_dict=override_model_config_dict,
|
||||
)
|
||||
|
||||
# get tracing instance
|
||||
trace_manager = TraceQueueManager(
|
||||
app_id=app_model.id, user_id=user.id if isinstance(user, Account) else user.session_id
|
||||
)
|
||||
|
||||
# init application generate entity
|
||||
application_generate_entity = ChatAppGenerateEntity(
|
||||
task_id=str(uuid.uuid4()),
|
||||
app_config=app_config,
|
||||
model_conf=ModelConfigConverter.convert(app_config),
|
||||
file_upload_config=file_extra_config,
|
||||
conversation_id=conversation.id if conversation else None,
|
||||
inputs=self._prepare_user_inputs(
|
||||
user_inputs=inputs, variables=app_config.variables, tenant_id=app_model.tenant_id
|
||||
),
|
||||
query=query,
|
||||
files=list(file_objs),
|
||||
parent_message_id=args.get("parent_message_id") if invoke_from != InvokeFrom.SERVICE_API else UUID_NIL,
|
||||
user_id=user.id,
|
||||
invoke_from=invoke_from,
|
||||
extras=extras,
|
||||
trace_manager=trace_manager,
|
||||
stream=streaming,
|
||||
)
|
||||
|
||||
# init generate records
|
||||
(conversation, message) = self._init_generate_records(application_generate_entity, conversation)
|
||||
|
||||
# init queue manager
|
||||
queue_manager = MessageBasedAppQueueManager(
|
||||
task_id=application_generate_entity.task_id,
|
||||
user_id=application_generate_entity.user_id,
|
||||
invoke_from=application_generate_entity.invoke_from,
|
||||
conversation_id=conversation.id,
|
||||
app_mode=conversation.mode,
|
||||
message_id=message.id,
|
||||
)
|
||||
|
||||
# new thread with request context
|
||||
@copy_current_request_context
|
||||
def worker_with_context():
|
||||
return self._generate_worker(
|
||||
flask_app=current_app._get_current_object(), # type: ignore
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
conversation_id=conversation.id,
|
||||
message_id=message.id,
|
||||
)
|
||||
|
||||
worker_thread = threading.Thread(target=worker_with_context)
|
||||
|
||||
worker_thread.start()
|
||||
|
||||
# return response or stream generator
|
||||
response = self._handle_response(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
conversation=conversation,
|
||||
message=message,
|
||||
user=user,
|
||||
stream=streaming,
|
||||
)
|
||||
|
||||
return ChatAppGenerateResponseConverter.convert(response=response, invoke_from=invoke_from)
|
||||
|
||||
def _generate_worker(
|
||||
self,
|
||||
flask_app: Flask,
|
||||
application_generate_entity: ChatAppGenerateEntity,
|
||||
queue_manager: AppQueueManager,
|
||||
conversation_id: str,
|
||||
message_id: str,
|
||||
):
|
||||
"""
|
||||
Generate worker in a new thread.
|
||||
:param flask_app: Flask app
|
||||
:param application_generate_entity: application generate entity
|
||||
:param queue_manager: queue manager
|
||||
:param conversation_id: conversation ID
|
||||
:param message_id: message ID
|
||||
:return:
|
||||
"""
|
||||
with flask_app.app_context():
|
||||
try:
|
||||
# get conversation and message
|
||||
conversation = self._get_conversation(conversation_id)
|
||||
message = self._get_message(message_id)
|
||||
|
||||
# chatbot app
|
||||
runner = ChatAppRunner()
|
||||
runner.run(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
conversation=conversation,
|
||||
message=message,
|
||||
)
|
||||
except GenerateTaskStoppedError:
|
||||
pass
|
||||
except InvokeAuthorizationError:
|
||||
queue_manager.publish_error(
|
||||
InvokeAuthorizationError("Incorrect API key provided"), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
except ValidationError as e:
|
||||
logger.exception("Validation Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
except ValueError as e:
|
||||
if dify_config.DEBUG:
|
||||
logger.exception("Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
except Exception as e:
|
||||
logger.exception("Unknown Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
finally:
|
||||
db.session.close()
|
||||
223
dify/api/core/app/apps/chat/app_runner.py
Normal file
223
dify/api/core/app/apps/chat/app_runner.py
Normal file
@@ -0,0 +1,223 @@
|
||||
import logging
|
||||
from typing import cast
|
||||
|
||||
from sqlalchemy import select
|
||||
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
from core.app.apps.base_app_runner import AppRunner
|
||||
from core.app.apps.chat.app_config_manager import ChatAppConfig
|
||||
from core.app.entities.app_invoke_entities import (
|
||||
ChatAppGenerateEntity,
|
||||
)
|
||||
from core.app.entities.queue_entities import QueueAnnotationReplyEvent
|
||||
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.message_entities import ImagePromptMessageContent
|
||||
from core.moderation.base import ModerationError
|
||||
from core.rag.retrieval.dataset_retrieval import DatasetRetrieval
|
||||
from extensions.ext_database import db
|
||||
from models.model import App, Conversation, Message
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ChatAppRunner(AppRunner):
|
||||
"""
|
||||
Chat Application Runner
|
||||
"""
|
||||
|
||||
def run(
|
||||
self,
|
||||
application_generate_entity: ChatAppGenerateEntity,
|
||||
queue_manager: AppQueueManager,
|
||||
conversation: Conversation,
|
||||
message: Message,
|
||||
):
|
||||
"""
|
||||
Run application
|
||||
:param application_generate_entity: application generate entity
|
||||
:param queue_manager: application queue manager
|
||||
:param conversation: conversation
|
||||
:param message: message
|
||||
:return:
|
||||
"""
|
||||
app_config = application_generate_entity.app_config
|
||||
app_config = cast(ChatAppConfig, app_config)
|
||||
stmt = select(App).where(App.id == app_config.app_id)
|
||||
app_record = db.session.scalar(stmt)
|
||||
if not app_record:
|
||||
raise ValueError("App not found")
|
||||
|
||||
inputs = application_generate_entity.inputs
|
||||
query = application_generate_entity.query
|
||||
files = application_generate_entity.files
|
||||
|
||||
image_detail_config = (
|
||||
application_generate_entity.file_upload_config.image_config.detail
|
||||
if (
|
||||
application_generate_entity.file_upload_config
|
||||
and application_generate_entity.file_upload_config.image_config
|
||||
)
|
||||
else None
|
||||
)
|
||||
image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
|
||||
|
||||
memory = None
|
||||
if application_generate_entity.conversation_id:
|
||||
# get memory of conversation (read-only)
|
||||
model_instance = ModelInstance(
|
||||
provider_model_bundle=application_generate_entity.model_conf.provider_model_bundle,
|
||||
model=application_generate_entity.model_conf.model,
|
||||
)
|
||||
|
||||
memory = TokenBufferMemory(conversation=conversation, model_instance=model_instance)
|
||||
|
||||
# organize all inputs and template to prompt messages
|
||||
# Include: prompt template, inputs, query(optional), files(optional)
|
||||
# memory(optional)
|
||||
prompt_messages, stop = self.organize_prompt_messages(
|
||||
app_record=app_record,
|
||||
model_config=application_generate_entity.model_conf,
|
||||
prompt_template_entity=app_config.prompt_template,
|
||||
inputs=inputs,
|
||||
files=files,
|
||||
query=query,
|
||||
memory=memory,
|
||||
image_detail_config=image_detail_config,
|
||||
)
|
||||
|
||||
# moderation
|
||||
try:
|
||||
# process sensitive_word_avoidance
|
||||
_, inputs, query = self.moderation_for_inputs(
|
||||
app_id=app_record.id,
|
||||
tenant_id=app_config.tenant_id,
|
||||
app_generate_entity=application_generate_entity,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
message_id=message.id,
|
||||
)
|
||||
except ModerationError as e:
|
||||
self.direct_output(
|
||||
queue_manager=queue_manager,
|
||||
app_generate_entity=application_generate_entity,
|
||||
prompt_messages=prompt_messages,
|
||||
text=str(e),
|
||||
stream=application_generate_entity.stream,
|
||||
)
|
||||
return
|
||||
|
||||
if query:
|
||||
# annotation reply
|
||||
annotation_reply = self.query_app_annotations_to_reply(
|
||||
app_record=app_record,
|
||||
message=message,
|
||||
query=query,
|
||||
user_id=application_generate_entity.user_id,
|
||||
invoke_from=application_generate_entity.invoke_from,
|
||||
)
|
||||
|
||||
if annotation_reply:
|
||||
queue_manager.publish(
|
||||
QueueAnnotationReplyEvent(message_annotation_id=annotation_reply.id),
|
||||
PublishFrom.APPLICATION_MANAGER,
|
||||
)
|
||||
|
||||
self.direct_output(
|
||||
queue_manager=queue_manager,
|
||||
app_generate_entity=application_generate_entity,
|
||||
prompt_messages=prompt_messages,
|
||||
text=annotation_reply.content,
|
||||
stream=application_generate_entity.stream,
|
||||
)
|
||||
return
|
||||
|
||||
# fill in variable inputs from external data tools if exists
|
||||
external_data_tools = app_config.external_data_variables
|
||||
if external_data_tools:
|
||||
inputs = self.fill_in_inputs_from_external_data_tools(
|
||||
tenant_id=app_record.tenant_id,
|
||||
app_id=app_record.id,
|
||||
external_data_tools=external_data_tools,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
)
|
||||
|
||||
# get context from datasets
|
||||
context = None
|
||||
if app_config.dataset and app_config.dataset.dataset_ids:
|
||||
hit_callback = DatasetIndexToolCallbackHandler(
|
||||
queue_manager,
|
||||
app_record.id,
|
||||
message.id,
|
||||
application_generate_entity.user_id,
|
||||
application_generate_entity.invoke_from,
|
||||
)
|
||||
|
||||
dataset_retrieval = DatasetRetrieval(application_generate_entity)
|
||||
context = dataset_retrieval.retrieve(
|
||||
app_id=app_record.id,
|
||||
user_id=application_generate_entity.user_id,
|
||||
tenant_id=app_record.tenant_id,
|
||||
model_config=application_generate_entity.model_conf,
|
||||
config=app_config.dataset,
|
||||
query=query,
|
||||
invoke_from=application_generate_entity.invoke_from,
|
||||
show_retrieve_source=(
|
||||
app_config.additional_features.show_retrieve_source if app_config.additional_features else False
|
||||
),
|
||||
hit_callback=hit_callback,
|
||||
memory=memory,
|
||||
message_id=message.id,
|
||||
inputs=inputs,
|
||||
)
|
||||
|
||||
# reorganize all inputs and template to prompt messages
|
||||
# Include: prompt template, inputs, query(optional), files(optional)
|
||||
# memory(optional), external data, dataset context(optional)
|
||||
prompt_messages, stop = self.organize_prompt_messages(
|
||||
app_record=app_record,
|
||||
model_config=application_generate_entity.model_conf,
|
||||
prompt_template_entity=app_config.prompt_template,
|
||||
inputs=inputs,
|
||||
files=files,
|
||||
query=query,
|
||||
context=context,
|
||||
memory=memory,
|
||||
image_detail_config=image_detail_config,
|
||||
)
|
||||
|
||||
# check hosting moderation
|
||||
hosting_moderation_result = self.check_hosting_moderation(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
prompt_messages=prompt_messages,
|
||||
)
|
||||
|
||||
if hosting_moderation_result:
|
||||
return
|
||||
|
||||
# Re-calculate the max tokens if sum(prompt_token + max_tokens) over model token limit
|
||||
self.recalc_llm_max_tokens(model_config=application_generate_entity.model_conf, prompt_messages=prompt_messages)
|
||||
|
||||
# Invoke model
|
||||
model_instance = ModelInstance(
|
||||
provider_model_bundle=application_generate_entity.model_conf.provider_model_bundle,
|
||||
model=application_generate_entity.model_conf.model,
|
||||
)
|
||||
|
||||
db.session.close()
|
||||
|
||||
invoke_result = model_instance.invoke_llm(
|
||||
prompt_messages=prompt_messages,
|
||||
model_parameters=application_generate_entity.model_conf.parameters,
|
||||
stop=stop,
|
||||
stream=application_generate_entity.stream,
|
||||
user=application_generate_entity.user_id,
|
||||
)
|
||||
|
||||
# handle invoke result
|
||||
self._handle_invoke_result(
|
||||
invoke_result=invoke_result, queue_manager=queue_manager, stream=application_generate_entity.stream
|
||||
)
|
||||
122
dify/api/core/app/apps/chat/generate_response_converter.py
Normal file
122
dify/api/core/app/apps/chat/generate_response_converter.py
Normal file
@@ -0,0 +1,122 @@
|
||||
from collections.abc import Generator
|
||||
from typing import cast
|
||||
|
||||
from core.app.apps.base_app_generate_response_converter import AppGenerateResponseConverter
|
||||
from core.app.entities.task_entities import (
|
||||
AppStreamResponse,
|
||||
ChatbotAppBlockingResponse,
|
||||
ChatbotAppStreamResponse,
|
||||
ErrorStreamResponse,
|
||||
MessageEndStreamResponse,
|
||||
PingStreamResponse,
|
||||
)
|
||||
|
||||
|
||||
class ChatAppGenerateResponseConverter(AppGenerateResponseConverter):
|
||||
_blocking_response_type = ChatbotAppBlockingResponse
|
||||
|
||||
@classmethod
|
||||
def convert_blocking_full_response(cls, blocking_response: ChatbotAppBlockingResponse): # type: ignore[override]
|
||||
"""
|
||||
Convert blocking full response.
|
||||
:param blocking_response: blocking response
|
||||
:return:
|
||||
"""
|
||||
response = {
|
||||
"event": "message",
|
||||
"task_id": blocking_response.task_id,
|
||||
"id": blocking_response.data.id,
|
||||
"message_id": blocking_response.data.message_id,
|
||||
"conversation_id": blocking_response.data.conversation_id,
|
||||
"mode": blocking_response.data.mode,
|
||||
"answer": blocking_response.data.answer,
|
||||
"metadata": blocking_response.data.metadata,
|
||||
"created_at": blocking_response.data.created_at,
|
||||
}
|
||||
|
||||
return response
|
||||
|
||||
@classmethod
|
||||
def convert_blocking_simple_response(cls, blocking_response: ChatbotAppBlockingResponse): # type: ignore[override]
|
||||
"""
|
||||
Convert blocking simple response.
|
||||
:param blocking_response: blocking response
|
||||
:return:
|
||||
"""
|
||||
response = cls.convert_blocking_full_response(blocking_response)
|
||||
|
||||
metadata = response.get("metadata", {})
|
||||
if isinstance(metadata, dict):
|
||||
response["metadata"] = cls._get_simple_metadata(metadata)
|
||||
else:
|
||||
response["metadata"] = {}
|
||||
|
||||
return response
|
||||
|
||||
@classmethod
|
||||
def convert_stream_full_response(
|
||||
cls, stream_response: Generator[AppStreamResponse, None, None]
|
||||
) -> Generator[dict | str, None, None]:
|
||||
"""
|
||||
Convert stream full response.
|
||||
:param stream_response: stream response
|
||||
:return:
|
||||
"""
|
||||
for chunk in stream_response:
|
||||
chunk = cast(ChatbotAppStreamResponse, chunk)
|
||||
sub_stream_response = chunk.stream_response
|
||||
|
||||
if isinstance(sub_stream_response, PingStreamResponse):
|
||||
yield "ping"
|
||||
continue
|
||||
|
||||
response_chunk = {
|
||||
"event": sub_stream_response.event.value,
|
||||
"conversation_id": chunk.conversation_id,
|
||||
"message_id": chunk.message_id,
|
||||
"created_at": chunk.created_at,
|
||||
}
|
||||
|
||||
if isinstance(sub_stream_response, ErrorStreamResponse):
|
||||
data = cls._error_to_stream_response(sub_stream_response.err)
|
||||
response_chunk.update(data)
|
||||
else:
|
||||
response_chunk.update(sub_stream_response.model_dump(mode="json"))
|
||||
yield response_chunk
|
||||
|
||||
@classmethod
|
||||
def convert_stream_simple_response(
|
||||
cls, stream_response: Generator[AppStreamResponse, None, None]
|
||||
) -> Generator[dict | str, None, None]:
|
||||
"""
|
||||
Convert stream simple response.
|
||||
:param stream_response: stream response
|
||||
:return:
|
||||
"""
|
||||
for chunk in stream_response:
|
||||
chunk = cast(ChatbotAppStreamResponse, chunk)
|
||||
sub_stream_response = chunk.stream_response
|
||||
|
||||
if isinstance(sub_stream_response, PingStreamResponse):
|
||||
yield "ping"
|
||||
continue
|
||||
|
||||
response_chunk = {
|
||||
"event": sub_stream_response.event.value,
|
||||
"conversation_id": chunk.conversation_id,
|
||||
"message_id": chunk.message_id,
|
||||
"created_at": chunk.created_at,
|
||||
}
|
||||
|
||||
if isinstance(sub_stream_response, MessageEndStreamResponse):
|
||||
sub_stream_response_dict = sub_stream_response.model_dump(mode="json")
|
||||
metadata = sub_stream_response_dict.get("metadata", {})
|
||||
sub_stream_response_dict["metadata"] = cls._get_simple_metadata(metadata)
|
||||
response_chunk.update(sub_stream_response_dict)
|
||||
if isinstance(sub_stream_response, ErrorStreamResponse):
|
||||
data = cls._error_to_stream_response(sub_stream_response.err)
|
||||
response_chunk.update(data)
|
||||
else:
|
||||
response_chunk.update(sub_stream_response.model_dump(mode="json"))
|
||||
|
||||
yield response_chunk
|
||||
0
dify/api/core/app/apps/common/__init__.py
Normal file
0
dify/api/core/app/apps/common/__init__.py
Normal file
55
dify/api/core/app/apps/common/graph_runtime_state_support.py
Normal file
55
dify/api/core/app/apps/common/graph_runtime_state_support.py
Normal file
@@ -0,0 +1,55 @@
|
||||
"""Shared helpers for managing GraphRuntimeState across task pipelines."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from core.workflow.runtime import GraphRuntimeState
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from core.app.task_pipeline.based_generate_task_pipeline import BasedGenerateTaskPipeline
|
||||
|
||||
|
||||
class GraphRuntimeStateSupport:
|
||||
"""
|
||||
Mixin that centralises common GraphRuntimeState access patterns used by task pipelines.
|
||||
|
||||
Subclasses are expected to provide:
|
||||
* `_base_task_pipeline` – exposing the queue manager with an optional cached runtime state.
|
||||
* `_graph_runtime_state` attribute used as the local cache for the runtime state.
|
||||
"""
|
||||
|
||||
_base_task_pipeline: BasedGenerateTaskPipeline
|
||||
_graph_runtime_state: GraphRuntimeState | None = None
|
||||
|
||||
def _ensure_graph_runtime_initialized(
|
||||
self,
|
||||
graph_runtime_state: GraphRuntimeState | None = None,
|
||||
) -> GraphRuntimeState:
|
||||
"""Validate and return the active graph runtime state."""
|
||||
return self._resolve_graph_runtime_state(graph_runtime_state)
|
||||
|
||||
def _extract_workflow_run_id(self, graph_runtime_state: GraphRuntimeState) -> str:
|
||||
system_variables = graph_runtime_state.variable_pool.system_variables
|
||||
if not system_variables or not system_variables.workflow_execution_id:
|
||||
raise ValueError("workflow_execution_id missing from runtime state")
|
||||
return str(system_variables.workflow_execution_id)
|
||||
|
||||
def _resolve_graph_runtime_state(
|
||||
self,
|
||||
graph_runtime_state: GraphRuntimeState | None = None,
|
||||
) -> GraphRuntimeState:
|
||||
"""Return the cached runtime state or bootstrap it from the queue manager."""
|
||||
if graph_runtime_state is not None:
|
||||
self._graph_runtime_state = graph_runtime_state
|
||||
return graph_runtime_state
|
||||
|
||||
if self._graph_runtime_state is None:
|
||||
candidate = self._base_task_pipeline.queue_manager.graph_runtime_state
|
||||
if candidate is not None:
|
||||
self._graph_runtime_state = candidate
|
||||
|
||||
if self._graph_runtime_state is None:
|
||||
raise ValueError("graph runtime state not initialized.")
|
||||
|
||||
return self._graph_runtime_state
|
||||
677
dify/api/core/app/apps/common/workflow_response_converter.py
Normal file
677
dify/api/core/app/apps/common/workflow_response_converter.py
Normal file
@@ -0,0 +1,677 @@
|
||||
import time
|
||||
from collections.abc import Mapping, Sequence
|
||||
from dataclasses import dataclass
|
||||
from datetime import datetime
|
||||
from typing import Any, NewType, Union
|
||||
|
||||
from core.app.entities.app_invoke_entities import AdvancedChatAppGenerateEntity, InvokeFrom, WorkflowAppGenerateEntity
|
||||
from core.app.entities.queue_entities import (
|
||||
QueueAgentLogEvent,
|
||||
QueueIterationCompletedEvent,
|
||||
QueueIterationNextEvent,
|
||||
QueueIterationStartEvent,
|
||||
QueueLoopCompletedEvent,
|
||||
QueueLoopNextEvent,
|
||||
QueueLoopStartEvent,
|
||||
QueueNodeExceptionEvent,
|
||||
QueueNodeFailedEvent,
|
||||
QueueNodeRetryEvent,
|
||||
QueueNodeStartedEvent,
|
||||
QueueNodeSucceededEvent,
|
||||
)
|
||||
from core.app.entities.task_entities import (
|
||||
AgentLogStreamResponse,
|
||||
IterationNodeCompletedStreamResponse,
|
||||
IterationNodeNextStreamResponse,
|
||||
IterationNodeStartStreamResponse,
|
||||
LoopNodeCompletedStreamResponse,
|
||||
LoopNodeNextStreamResponse,
|
||||
LoopNodeStartStreamResponse,
|
||||
NodeFinishStreamResponse,
|
||||
NodeRetryStreamResponse,
|
||||
NodeStartStreamResponse,
|
||||
WorkflowFinishStreamResponse,
|
||||
WorkflowStartStreamResponse,
|
||||
)
|
||||
from core.file import FILE_MODEL_IDENTITY, File
|
||||
from core.plugin.impl.datasource import PluginDatasourceManager
|
||||
from core.tools.entities.tool_entities import ToolProviderType
|
||||
from core.tools.tool_manager import ToolManager
|
||||
from core.trigger.trigger_manager import TriggerManager
|
||||
from core.variables.segments import ArrayFileSegment, FileSegment, Segment
|
||||
from core.workflow.enums import (
|
||||
NodeType,
|
||||
SystemVariableKey,
|
||||
WorkflowExecutionStatus,
|
||||
WorkflowNodeExecutionMetadataKey,
|
||||
WorkflowNodeExecutionStatus,
|
||||
)
|
||||
from core.workflow.runtime import GraphRuntimeState
|
||||
from core.workflow.system_variable import SystemVariable
|
||||
from core.workflow.workflow_entry import WorkflowEntry
|
||||
from core.workflow.workflow_type_encoder import WorkflowRuntimeTypeConverter
|
||||
from libs.datetime_utils import naive_utc_now
|
||||
from models import Account, EndUser
|
||||
from services.variable_truncator import BaseTruncator, DummyVariableTruncator, VariableTruncator
|
||||
|
||||
NodeExecutionId = NewType("NodeExecutionId", str)
|
||||
|
||||
|
||||
@dataclass(slots=True)
|
||||
class _NodeSnapshot:
|
||||
"""In-memory cache for node metadata between start and completion events."""
|
||||
|
||||
title: str
|
||||
index: int
|
||||
start_at: datetime
|
||||
iteration_id: str = ""
|
||||
"""Empty string means the node is not executing inside an iteration."""
|
||||
loop_id: str = ""
|
||||
"""Empty string means the node is not executing inside a loop."""
|
||||
|
||||
|
||||
class WorkflowResponseConverter:
|
||||
_truncator: BaseTruncator
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
application_generate_entity: Union[AdvancedChatAppGenerateEntity, WorkflowAppGenerateEntity],
|
||||
user: Union[Account, EndUser],
|
||||
system_variables: SystemVariable,
|
||||
):
|
||||
self._application_generate_entity = application_generate_entity
|
||||
self._user = user
|
||||
self._system_variables = system_variables
|
||||
self._workflow_inputs = self._prepare_workflow_inputs()
|
||||
|
||||
# Disable truncation for SERVICE_API calls to keep backward compatibility.
|
||||
if application_generate_entity.invoke_from == InvokeFrom.SERVICE_API:
|
||||
self._truncator = DummyVariableTruncator()
|
||||
else:
|
||||
self._truncator = VariableTruncator.default()
|
||||
|
||||
self._node_snapshots: dict[NodeExecutionId, _NodeSnapshot] = {}
|
||||
self._workflow_execution_id: str | None = None
|
||||
self._workflow_started_at: datetime | None = None
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
# Workflow lifecycle helpers
|
||||
# ------------------------------------------------------------------
|
||||
def _prepare_workflow_inputs(self) -> Mapping[str, Any]:
|
||||
inputs = dict(self._application_generate_entity.inputs)
|
||||
for field_name, value in self._system_variables.to_dict().items():
|
||||
# TODO(@future-refactor): store system variables separately from user inputs so we don't
|
||||
# need to flatten `sys.*` entries into the input payload just for rerun/export tooling.
|
||||
if field_name == SystemVariableKey.CONVERSATION_ID:
|
||||
# Conversation IDs are session-scoped; omitting them keeps workflow inputs
|
||||
# reusable without pinning new runs to a prior conversation.
|
||||
continue
|
||||
inputs[f"sys.{field_name}"] = value
|
||||
handled = WorkflowEntry.handle_special_values(inputs)
|
||||
return dict(handled or {})
|
||||
|
||||
def _ensure_workflow_run_id(self, workflow_run_id: str | None = None) -> str:
|
||||
"""Return the memoized workflow run id, optionally seeding it during start events."""
|
||||
if workflow_run_id is not None:
|
||||
self._workflow_execution_id = workflow_run_id
|
||||
if not self._workflow_execution_id:
|
||||
raise ValueError("workflow_run_id missing before streaming workflow events")
|
||||
return self._workflow_execution_id
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
# Node snapshot helpers
|
||||
# ------------------------------------------------------------------
|
||||
def _store_snapshot(self, event: QueueNodeStartedEvent) -> _NodeSnapshot:
|
||||
snapshot = _NodeSnapshot(
|
||||
title=event.node_title,
|
||||
index=event.node_run_index,
|
||||
start_at=event.start_at,
|
||||
iteration_id=event.in_iteration_id or "",
|
||||
loop_id=event.in_loop_id or "",
|
||||
)
|
||||
node_execution_id = NodeExecutionId(event.node_execution_id)
|
||||
self._node_snapshots[node_execution_id] = snapshot
|
||||
return snapshot
|
||||
|
||||
def _get_snapshot(self, node_execution_id: str) -> _NodeSnapshot | None:
|
||||
return self._node_snapshots.get(NodeExecutionId(node_execution_id))
|
||||
|
||||
def _pop_snapshot(self, node_execution_id: str) -> _NodeSnapshot | None:
|
||||
return self._node_snapshots.pop(NodeExecutionId(node_execution_id), None)
|
||||
|
||||
@staticmethod
|
||||
def _merge_metadata(
|
||||
base_metadata: Mapping[WorkflowNodeExecutionMetadataKey, Any] | None,
|
||||
snapshot: _NodeSnapshot | None,
|
||||
) -> Mapping[WorkflowNodeExecutionMetadataKey, Any] | None:
|
||||
if not base_metadata and not snapshot:
|
||||
return base_metadata
|
||||
|
||||
merged: dict[WorkflowNodeExecutionMetadataKey, Any] = {}
|
||||
if base_metadata:
|
||||
merged.update(base_metadata)
|
||||
|
||||
if snapshot:
|
||||
if snapshot.iteration_id:
|
||||
merged[WorkflowNodeExecutionMetadataKey.ITERATION_ID] = snapshot.iteration_id
|
||||
if snapshot.loop_id:
|
||||
merged[WorkflowNodeExecutionMetadataKey.LOOP_ID] = snapshot.loop_id
|
||||
|
||||
return merged or None
|
||||
|
||||
def _truncate_mapping(
|
||||
self,
|
||||
mapping: Mapping[str, Any] | None,
|
||||
) -> tuple[Mapping[str, Any] | None, bool]:
|
||||
if mapping is None:
|
||||
return None, False
|
||||
if not mapping:
|
||||
return {}, False
|
||||
|
||||
normalized = WorkflowEntry.handle_special_values(dict(mapping))
|
||||
if normalized is None:
|
||||
return None, False
|
||||
|
||||
truncated, is_truncated = self._truncator.truncate_variable_mapping(dict(normalized))
|
||||
return truncated, is_truncated
|
||||
|
||||
@staticmethod
|
||||
def _encode_outputs(outputs: Mapping[str, Any] | None) -> Mapping[str, Any] | None:
|
||||
if outputs is None:
|
||||
return None
|
||||
converter = WorkflowRuntimeTypeConverter()
|
||||
return converter.to_json_encodable(outputs)
|
||||
|
||||
def workflow_start_to_stream_response(
|
||||
self,
|
||||
*,
|
||||
task_id: str,
|
||||
workflow_run_id: str,
|
||||
workflow_id: str,
|
||||
) -> WorkflowStartStreamResponse:
|
||||
run_id = self._ensure_workflow_run_id(workflow_run_id)
|
||||
started_at = naive_utc_now()
|
||||
self._workflow_started_at = started_at
|
||||
|
||||
return WorkflowStartStreamResponse(
|
||||
task_id=task_id,
|
||||
workflow_run_id=run_id,
|
||||
data=WorkflowStartStreamResponse.Data(
|
||||
id=run_id,
|
||||
workflow_id=workflow_id,
|
||||
inputs=self._workflow_inputs,
|
||||
created_at=int(started_at.timestamp()),
|
||||
),
|
||||
)
|
||||
|
||||
def workflow_finish_to_stream_response(
|
||||
self,
|
||||
*,
|
||||
task_id: str,
|
||||
workflow_id: str,
|
||||
status: WorkflowExecutionStatus,
|
||||
graph_runtime_state: GraphRuntimeState,
|
||||
error: str | None = None,
|
||||
exceptions_count: int = 0,
|
||||
) -> WorkflowFinishStreamResponse:
|
||||
run_id = self._ensure_workflow_run_id()
|
||||
started_at = self._workflow_started_at
|
||||
if started_at is None:
|
||||
raise ValueError(
|
||||
"workflow_finish_to_stream_response called before workflow_start_to_stream_response",
|
||||
)
|
||||
|
||||
finished_at = naive_utc_now()
|
||||
elapsed_time = (finished_at - started_at).total_seconds()
|
||||
|
||||
outputs_mapping = graph_runtime_state.outputs or {}
|
||||
encoded_outputs = WorkflowRuntimeTypeConverter().to_json_encodable(outputs_mapping)
|
||||
|
||||
created_by: Mapping[str, object] | None
|
||||
user = self._user
|
||||
if isinstance(user, Account):
|
||||
created_by = {
|
||||
"id": user.id,
|
||||
"name": user.name,
|
||||
"email": user.email,
|
||||
}
|
||||
else:
|
||||
created_by = {
|
||||
"id": user.id,
|
||||
"user": user.session_id,
|
||||
}
|
||||
|
||||
return WorkflowFinishStreamResponse(
|
||||
task_id=task_id,
|
||||
workflow_run_id=run_id,
|
||||
data=WorkflowFinishStreamResponse.Data(
|
||||
id=run_id,
|
||||
workflow_id=workflow_id,
|
||||
status=status.value,
|
||||
outputs=encoded_outputs,
|
||||
error=error,
|
||||
elapsed_time=elapsed_time,
|
||||
total_tokens=graph_runtime_state.total_tokens,
|
||||
total_steps=graph_runtime_state.node_run_steps,
|
||||
created_by=created_by,
|
||||
created_at=int(started_at.timestamp()),
|
||||
finished_at=int(finished_at.timestamp()),
|
||||
files=self.fetch_files_from_node_outputs(outputs_mapping),
|
||||
exceptions_count=exceptions_count,
|
||||
),
|
||||
)
|
||||
|
||||
def workflow_node_start_to_stream_response(
|
||||
self,
|
||||
*,
|
||||
event: QueueNodeStartedEvent,
|
||||
task_id: str,
|
||||
) -> NodeStartStreamResponse | None:
|
||||
if event.node_type in {NodeType.ITERATION, NodeType.LOOP}:
|
||||
return None
|
||||
run_id = self._ensure_workflow_run_id()
|
||||
snapshot = self._store_snapshot(event)
|
||||
|
||||
response = NodeStartStreamResponse(
|
||||
task_id=task_id,
|
||||
workflow_run_id=run_id,
|
||||
data=NodeStartStreamResponse.Data(
|
||||
id=event.node_execution_id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type,
|
||||
title=snapshot.title,
|
||||
index=snapshot.index,
|
||||
created_at=int(snapshot.start_at.timestamp()),
|
||||
iteration_id=event.in_iteration_id,
|
||||
loop_id=event.in_loop_id,
|
||||
agent_strategy=event.agent_strategy,
|
||||
),
|
||||
)
|
||||
|
||||
if event.node_type == NodeType.TOOL:
|
||||
response.data.extras["icon"] = ToolManager.get_tool_icon(
|
||||
tenant_id=self._application_generate_entity.app_config.tenant_id,
|
||||
provider_type=ToolProviderType(event.provider_type),
|
||||
provider_id=event.provider_id,
|
||||
)
|
||||
elif event.node_type == NodeType.DATASOURCE:
|
||||
manager = PluginDatasourceManager()
|
||||
provider_entity = manager.fetch_datasource_provider(
|
||||
self._application_generate_entity.app_config.tenant_id,
|
||||
event.provider_id,
|
||||
)
|
||||
response.data.extras["icon"] = provider_entity.declaration.identity.generate_datasource_icon_url(
|
||||
self._application_generate_entity.app_config.tenant_id
|
||||
)
|
||||
elif event.node_type == NodeType.TRIGGER_PLUGIN:
|
||||
response.data.extras["icon"] = TriggerManager.get_trigger_plugin_icon(
|
||||
self._application_generate_entity.app_config.tenant_id,
|
||||
event.provider_id,
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
def workflow_node_finish_to_stream_response(
|
||||
self,
|
||||
*,
|
||||
event: QueueNodeSucceededEvent | QueueNodeFailedEvent | QueueNodeExceptionEvent,
|
||||
task_id: str,
|
||||
) -> NodeFinishStreamResponse | None:
|
||||
if event.node_type in {NodeType.ITERATION, NodeType.LOOP}:
|
||||
return None
|
||||
run_id = self._ensure_workflow_run_id()
|
||||
snapshot = self._pop_snapshot(event.node_execution_id)
|
||||
|
||||
start_at = snapshot.start_at if snapshot else event.start_at
|
||||
finished_at = naive_utc_now()
|
||||
elapsed_time = (finished_at - start_at).total_seconds()
|
||||
|
||||
inputs, inputs_truncated = self._truncate_mapping(event.inputs)
|
||||
process_data, process_data_truncated = self._truncate_mapping(event.process_data)
|
||||
encoded_outputs = self._encode_outputs(event.outputs)
|
||||
outputs, outputs_truncated = self._truncate_mapping(encoded_outputs)
|
||||
metadata = self._merge_metadata(event.execution_metadata, snapshot)
|
||||
|
||||
if isinstance(event, QueueNodeSucceededEvent):
|
||||
status = WorkflowNodeExecutionStatus.SUCCEEDED.value
|
||||
error_message = event.error
|
||||
elif isinstance(event, QueueNodeFailedEvent):
|
||||
status = WorkflowNodeExecutionStatus.FAILED.value
|
||||
error_message = event.error
|
||||
else:
|
||||
status = WorkflowNodeExecutionStatus.EXCEPTION.value
|
||||
error_message = event.error
|
||||
|
||||
return NodeFinishStreamResponse(
|
||||
task_id=task_id,
|
||||
workflow_run_id=run_id,
|
||||
data=NodeFinishStreamResponse.Data(
|
||||
id=event.node_execution_id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type,
|
||||
index=snapshot.index if snapshot else 0,
|
||||
title=snapshot.title if snapshot else "",
|
||||
inputs=inputs,
|
||||
inputs_truncated=inputs_truncated,
|
||||
process_data=process_data,
|
||||
process_data_truncated=process_data_truncated,
|
||||
outputs=outputs,
|
||||
outputs_truncated=outputs_truncated,
|
||||
status=status,
|
||||
error=error_message,
|
||||
elapsed_time=elapsed_time,
|
||||
execution_metadata=metadata,
|
||||
created_at=int(start_at.timestamp()),
|
||||
finished_at=int(finished_at.timestamp()),
|
||||
files=self.fetch_files_from_node_outputs(event.outputs or {}),
|
||||
iteration_id=event.in_iteration_id,
|
||||
loop_id=event.in_loop_id,
|
||||
),
|
||||
)
|
||||
|
||||
def workflow_node_retry_to_stream_response(
|
||||
self,
|
||||
*,
|
||||
event: QueueNodeRetryEvent,
|
||||
task_id: str,
|
||||
) -> NodeRetryStreamResponse | None:
|
||||
if event.node_type in {NodeType.ITERATION, NodeType.LOOP}:
|
||||
return None
|
||||
run_id = self._ensure_workflow_run_id()
|
||||
|
||||
snapshot = self._get_snapshot(event.node_execution_id)
|
||||
if snapshot is None:
|
||||
raise AssertionError("node retry event arrived without a stored snapshot")
|
||||
finished_at = naive_utc_now()
|
||||
elapsed_time = (finished_at - event.start_at).total_seconds()
|
||||
|
||||
inputs, inputs_truncated = self._truncate_mapping(event.inputs)
|
||||
process_data, process_data_truncated = self._truncate_mapping(event.process_data)
|
||||
encoded_outputs = self._encode_outputs(event.outputs)
|
||||
outputs, outputs_truncated = self._truncate_mapping(encoded_outputs)
|
||||
metadata = self._merge_metadata(event.execution_metadata, snapshot)
|
||||
|
||||
return NodeRetryStreamResponse(
|
||||
task_id=task_id,
|
||||
workflow_run_id=run_id,
|
||||
data=NodeRetryStreamResponse.Data(
|
||||
id=event.node_execution_id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type,
|
||||
index=snapshot.index,
|
||||
title=snapshot.title,
|
||||
inputs=inputs,
|
||||
inputs_truncated=inputs_truncated,
|
||||
process_data=process_data,
|
||||
process_data_truncated=process_data_truncated,
|
||||
outputs=outputs,
|
||||
outputs_truncated=outputs_truncated,
|
||||
status=WorkflowNodeExecutionStatus.RETRY.value,
|
||||
error=event.error,
|
||||
elapsed_time=elapsed_time,
|
||||
execution_metadata=metadata,
|
||||
created_at=int(snapshot.start_at.timestamp()),
|
||||
finished_at=int(finished_at.timestamp()),
|
||||
files=self.fetch_files_from_node_outputs(event.outputs or {}),
|
||||
iteration_id=event.in_iteration_id,
|
||||
loop_id=event.in_loop_id,
|
||||
retry_index=event.retry_index,
|
||||
),
|
||||
)
|
||||
|
||||
def workflow_iteration_start_to_stream_response(
|
||||
self,
|
||||
*,
|
||||
task_id: str,
|
||||
workflow_execution_id: str,
|
||||
event: QueueIterationStartEvent,
|
||||
) -> IterationNodeStartStreamResponse:
|
||||
new_inputs, truncated = self._truncator.truncate_variable_mapping(event.inputs or {})
|
||||
return IterationNodeStartStreamResponse(
|
||||
task_id=task_id,
|
||||
workflow_run_id=workflow_execution_id,
|
||||
data=IterationNodeStartStreamResponse.Data(
|
||||
id=event.node_id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type.value,
|
||||
title=event.node_title,
|
||||
created_at=int(time.time()),
|
||||
extras={},
|
||||
inputs=new_inputs,
|
||||
inputs_truncated=truncated,
|
||||
metadata=event.metadata or {},
|
||||
),
|
||||
)
|
||||
|
||||
def workflow_iteration_next_to_stream_response(
|
||||
self,
|
||||
*,
|
||||
task_id: str,
|
||||
workflow_execution_id: str,
|
||||
event: QueueIterationNextEvent,
|
||||
) -> IterationNodeNextStreamResponse:
|
||||
return IterationNodeNextStreamResponse(
|
||||
task_id=task_id,
|
||||
workflow_run_id=workflow_execution_id,
|
||||
data=IterationNodeNextStreamResponse.Data(
|
||||
id=event.node_id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type.value,
|
||||
title=event.node_title,
|
||||
index=event.index,
|
||||
created_at=int(time.time()),
|
||||
extras={},
|
||||
),
|
||||
)
|
||||
|
||||
def workflow_iteration_completed_to_stream_response(
|
||||
self,
|
||||
*,
|
||||
task_id: str,
|
||||
workflow_execution_id: str,
|
||||
event: QueueIterationCompletedEvent,
|
||||
) -> IterationNodeCompletedStreamResponse:
|
||||
json_converter = WorkflowRuntimeTypeConverter()
|
||||
|
||||
new_inputs, inputs_truncated = self._truncator.truncate_variable_mapping(event.inputs or {})
|
||||
new_outputs, outputs_truncated = self._truncator.truncate_variable_mapping(
|
||||
json_converter.to_json_encodable(event.outputs) or {}
|
||||
)
|
||||
return IterationNodeCompletedStreamResponse(
|
||||
task_id=task_id,
|
||||
workflow_run_id=workflow_execution_id,
|
||||
data=IterationNodeCompletedStreamResponse.Data(
|
||||
id=event.node_id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type.value,
|
||||
title=event.node_title,
|
||||
outputs=new_outputs,
|
||||
outputs_truncated=outputs_truncated,
|
||||
created_at=int(time.time()),
|
||||
extras={},
|
||||
inputs=new_inputs,
|
||||
inputs_truncated=inputs_truncated,
|
||||
status=WorkflowNodeExecutionStatus.SUCCEEDED
|
||||
if event.error is None
|
||||
else WorkflowNodeExecutionStatus.FAILED,
|
||||
error=None,
|
||||
elapsed_time=(naive_utc_now() - event.start_at).total_seconds(),
|
||||
total_tokens=(lambda x: x if isinstance(x, int) else 0)(event.metadata.get("total_tokens", 0)),
|
||||
execution_metadata=event.metadata,
|
||||
finished_at=int(time.time()),
|
||||
steps=event.steps,
|
||||
),
|
||||
)
|
||||
|
||||
def workflow_loop_start_to_stream_response(
|
||||
self, *, task_id: str, workflow_execution_id: str, event: QueueLoopStartEvent
|
||||
) -> LoopNodeStartStreamResponse:
|
||||
new_inputs, truncated = self._truncator.truncate_variable_mapping(event.inputs or {})
|
||||
return LoopNodeStartStreamResponse(
|
||||
task_id=task_id,
|
||||
workflow_run_id=workflow_execution_id,
|
||||
data=LoopNodeStartStreamResponse.Data(
|
||||
id=event.node_id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type.value,
|
||||
title=event.node_title,
|
||||
created_at=int(time.time()),
|
||||
extras={},
|
||||
inputs=new_inputs,
|
||||
inputs_truncated=truncated,
|
||||
metadata=event.metadata or {},
|
||||
),
|
||||
)
|
||||
|
||||
def workflow_loop_next_to_stream_response(
|
||||
self,
|
||||
*,
|
||||
task_id: str,
|
||||
workflow_execution_id: str,
|
||||
event: QueueLoopNextEvent,
|
||||
) -> LoopNodeNextStreamResponse:
|
||||
return LoopNodeNextStreamResponse(
|
||||
task_id=task_id,
|
||||
workflow_run_id=workflow_execution_id,
|
||||
data=LoopNodeNextStreamResponse.Data(
|
||||
id=event.node_id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type.value,
|
||||
title=event.node_title,
|
||||
index=event.index,
|
||||
# The `pre_loop_output` field is not utilized by the frontend.
|
||||
# Previously, it was assigned the value of `event.output`.
|
||||
pre_loop_output={},
|
||||
created_at=int(time.time()),
|
||||
extras={},
|
||||
),
|
||||
)
|
||||
|
||||
def workflow_loop_completed_to_stream_response(
|
||||
self,
|
||||
*,
|
||||
task_id: str,
|
||||
workflow_execution_id: str,
|
||||
event: QueueLoopCompletedEvent,
|
||||
) -> LoopNodeCompletedStreamResponse:
|
||||
json_converter = WorkflowRuntimeTypeConverter()
|
||||
new_inputs, inputs_truncated = self._truncator.truncate_variable_mapping(event.inputs or {})
|
||||
new_outputs, outputs_truncated = self._truncator.truncate_variable_mapping(
|
||||
json_converter.to_json_encodable(event.outputs) or {}
|
||||
)
|
||||
return LoopNodeCompletedStreamResponse(
|
||||
task_id=task_id,
|
||||
workflow_run_id=workflow_execution_id,
|
||||
data=LoopNodeCompletedStreamResponse.Data(
|
||||
id=event.node_id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type.value,
|
||||
title=event.node_title,
|
||||
outputs=new_outputs,
|
||||
outputs_truncated=outputs_truncated,
|
||||
created_at=int(time.time()),
|
||||
extras={},
|
||||
inputs=new_inputs,
|
||||
inputs_truncated=inputs_truncated,
|
||||
status=WorkflowNodeExecutionStatus.SUCCEEDED
|
||||
if event.error is None
|
||||
else WorkflowNodeExecutionStatus.FAILED,
|
||||
error=None,
|
||||
elapsed_time=(naive_utc_now() - event.start_at).total_seconds(),
|
||||
total_tokens=(lambda x: x if isinstance(x, int) else 0)(event.metadata.get("total_tokens", 0)),
|
||||
execution_metadata=event.metadata,
|
||||
finished_at=int(time.time()),
|
||||
steps=event.steps,
|
||||
),
|
||||
)
|
||||
|
||||
def fetch_files_from_node_outputs(self, outputs_dict: Mapping[str, Any] | None) -> Sequence[Mapping[str, Any]]:
|
||||
"""
|
||||
Fetch files from node outputs
|
||||
:param outputs_dict: node outputs dict
|
||||
:return:
|
||||
"""
|
||||
if not outputs_dict:
|
||||
return []
|
||||
|
||||
files = [self._fetch_files_from_variable_value(output_value) for output_value in outputs_dict.values()]
|
||||
# Remove None
|
||||
files = [file for file in files if file]
|
||||
# Flatten list
|
||||
# Flatten the list of sequences into a single list of mappings
|
||||
flattened_files = [file for sublist in files if sublist for file in sublist]
|
||||
|
||||
# Convert to tuple to match Sequence type
|
||||
return tuple(flattened_files)
|
||||
|
||||
@classmethod
|
||||
def _fetch_files_from_variable_value(cls, value: Union[dict, list, Segment]) -> Sequence[Mapping[str, Any]]:
|
||||
"""
|
||||
Fetch files from variable value
|
||||
:param value: variable value
|
||||
:return:
|
||||
"""
|
||||
if not value:
|
||||
return []
|
||||
|
||||
files: list[Mapping[str, Any]] = []
|
||||
if isinstance(value, FileSegment):
|
||||
files.append(value.value.to_dict())
|
||||
elif isinstance(value, ArrayFileSegment):
|
||||
files.extend([i.to_dict() for i in value.value])
|
||||
elif isinstance(value, File):
|
||||
files.append(value.to_dict())
|
||||
elif isinstance(value, list):
|
||||
for item in value:
|
||||
file = cls._get_file_var_from_value(item)
|
||||
if file:
|
||||
files.append(file)
|
||||
elif isinstance(
|
||||
value,
|
||||
dict,
|
||||
):
|
||||
file = cls._get_file_var_from_value(value)
|
||||
if file:
|
||||
files.append(file)
|
||||
|
||||
return files
|
||||
|
||||
@classmethod
|
||||
def _get_file_var_from_value(cls, value: Union[dict, list]) -> Mapping[str, Any] | None:
|
||||
"""
|
||||
Get file var from value
|
||||
:param value: variable value
|
||||
:return:
|
||||
"""
|
||||
if not value:
|
||||
return None
|
||||
|
||||
if isinstance(value, dict) and value.get("dify_model_identity") == FILE_MODEL_IDENTITY:
|
||||
return value
|
||||
elif isinstance(value, File):
|
||||
return value.to_dict()
|
||||
|
||||
return None
|
||||
|
||||
def handle_agent_log(self, task_id: str, event: QueueAgentLogEvent) -> AgentLogStreamResponse:
|
||||
"""
|
||||
Handle agent log
|
||||
:param task_id: task id
|
||||
:param event: agent log event
|
||||
:return:
|
||||
"""
|
||||
return AgentLogStreamResponse(
|
||||
task_id=task_id,
|
||||
data=AgentLogStreamResponse.Data(
|
||||
node_execution_id=event.node_execution_id,
|
||||
id=event.id,
|
||||
parent_id=event.parent_id,
|
||||
label=event.label,
|
||||
error=event.error,
|
||||
status=event.status,
|
||||
data=event.data,
|
||||
metadata=event.metadata,
|
||||
node_id=event.node_id,
|
||||
),
|
||||
)
|
||||
0
dify/api/core/app/apps/completion/__init__.py
Normal file
0
dify/api/core/app/apps/completion/__init__.py
Normal file
119
dify/api/core/app/apps/completion/app_config_manager.py
Normal file
119
dify/api/core/app/apps/completion/app_config_manager.py
Normal file
@@ -0,0 +1,119 @@
|
||||
from core.app.app_config.base_app_config_manager import BaseAppConfigManager
|
||||
from core.app.app_config.common.sensitive_word_avoidance.manager import SensitiveWordAvoidanceConfigManager
|
||||
from core.app.app_config.easy_ui_based_app.dataset.manager import DatasetConfigManager
|
||||
from core.app.app_config.easy_ui_based_app.model_config.manager import ModelConfigManager
|
||||
from core.app.app_config.easy_ui_based_app.prompt_template.manager import PromptTemplateConfigManager
|
||||
from core.app.app_config.easy_ui_based_app.variables.manager import BasicVariablesConfigManager
|
||||
from core.app.app_config.entities import EasyUIBasedAppConfig, EasyUIBasedAppModelConfigFrom
|
||||
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
|
||||
from core.app.app_config.features.more_like_this.manager import MoreLikeThisConfigManager
|
||||
from core.app.app_config.features.text_to_speech.manager import TextToSpeechConfigManager
|
||||
from models.model import App, AppMode, AppModelConfig
|
||||
|
||||
|
||||
class CompletionAppConfig(EasyUIBasedAppConfig):
|
||||
"""
|
||||
Completion App Config Entity.
|
||||
"""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class CompletionAppConfigManager(BaseAppConfigManager):
|
||||
@classmethod
|
||||
def get_app_config(
|
||||
cls, app_model: App, app_model_config: AppModelConfig, override_config_dict: dict | None = None
|
||||
) -> CompletionAppConfig:
|
||||
"""
|
||||
Convert app model config to completion app config
|
||||
:param app_model: app model
|
||||
:param app_model_config: app model config
|
||||
:param override_config_dict: app model config dict
|
||||
:return:
|
||||
"""
|
||||
if override_config_dict:
|
||||
config_from = EasyUIBasedAppModelConfigFrom.ARGS
|
||||
else:
|
||||
config_from = EasyUIBasedAppModelConfigFrom.APP_LATEST_CONFIG
|
||||
|
||||
if config_from != EasyUIBasedAppModelConfigFrom.ARGS:
|
||||
app_model_config_dict = app_model_config.to_dict()
|
||||
config_dict = app_model_config_dict.copy()
|
||||
else:
|
||||
config_dict = override_config_dict or {}
|
||||
|
||||
app_mode = AppMode.value_of(app_model.mode)
|
||||
app_config = CompletionAppConfig(
|
||||
tenant_id=app_model.tenant_id,
|
||||
app_id=app_model.id,
|
||||
app_mode=app_mode,
|
||||
app_model_config_from=config_from,
|
||||
app_model_config_id=app_model_config.id,
|
||||
app_model_config_dict=config_dict,
|
||||
model=ModelConfigManager.convert(config=config_dict),
|
||||
prompt_template=PromptTemplateConfigManager.convert(config=config_dict),
|
||||
sensitive_word_avoidance=SensitiveWordAvoidanceConfigManager.convert(config=config_dict),
|
||||
dataset=DatasetConfigManager.convert(config=config_dict),
|
||||
additional_features=cls.convert_features(config_dict, app_mode),
|
||||
)
|
||||
|
||||
app_config.variables, app_config.external_data_variables = BasicVariablesConfigManager.convert(
|
||||
config=config_dict
|
||||
)
|
||||
|
||||
return app_config
|
||||
|
||||
@classmethod
|
||||
def config_validate(cls, tenant_id: str, config: dict):
|
||||
"""
|
||||
Validate for completion app model config
|
||||
|
||||
:param tenant_id: tenant id
|
||||
:param config: app model config args
|
||||
"""
|
||||
app_mode = AppMode.COMPLETION
|
||||
|
||||
related_config_keys = []
|
||||
|
||||
# model
|
||||
config, current_related_config_keys = ModelConfigManager.validate_and_set_defaults(tenant_id, config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# user_input_form
|
||||
config, current_related_config_keys = BasicVariablesConfigManager.validate_and_set_defaults(tenant_id, config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# file upload validation
|
||||
config, current_related_config_keys = FileUploadConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# prompt
|
||||
config, current_related_config_keys = PromptTemplateConfigManager.validate_and_set_defaults(app_mode, config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# dataset_query_variable
|
||||
config, current_related_config_keys = DatasetConfigManager.validate_and_set_defaults(
|
||||
tenant_id, app_mode, config
|
||||
)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# text_to_speech
|
||||
config, current_related_config_keys = TextToSpeechConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# more_like_this
|
||||
config, current_related_config_keys = MoreLikeThisConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# moderation validation
|
||||
config, current_related_config_keys = SensitiveWordAvoidanceConfigManager.validate_and_set_defaults(
|
||||
tenant_id, config
|
||||
)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
related_config_keys = list(set(related_config_keys))
|
||||
|
||||
# Filter out extra parameters
|
||||
filtered_config = {key: config.get(key) for key in related_config_keys}
|
||||
|
||||
return filtered_config
|
||||
350
dify/api/core/app/apps/completion/app_generator.py
Normal file
350
dify/api/core/app/apps/completion/app_generator.py
Normal file
@@ -0,0 +1,350 @@
|
||||
import logging
|
||||
import threading
|
||||
import uuid
|
||||
from collections.abc import Generator, Mapping
|
||||
from typing import Any, Literal, Union, overload
|
||||
|
||||
from flask import Flask, copy_current_request_context, current_app
|
||||
from pydantic import ValidationError
|
||||
from sqlalchemy import select
|
||||
|
||||
from configs import dify_config
|
||||
from core.app.app_config.easy_ui_based_app.model_config.converter import ModelConfigConverter
|
||||
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
from core.app.apps.completion.app_config_manager import CompletionAppConfigManager
|
||||
from core.app.apps.completion.app_runner import CompletionAppRunner
|
||||
from core.app.apps.completion.generate_response_converter import CompletionAppGenerateResponseConverter
|
||||
from core.app.apps.exc import GenerateTaskStoppedError
|
||||
from core.app.apps.message_based_app_generator import MessageBasedAppGenerator
|
||||
from core.app.apps.message_based_app_queue_manager import MessageBasedAppQueueManager
|
||||
from core.app.entities.app_invoke_entities import CompletionAppGenerateEntity, InvokeFrom
|
||||
from core.model_runtime.errors.invoke import InvokeAuthorizationError
|
||||
from core.ops.ops_trace_manager import TraceQueueManager
|
||||
from extensions.ext_database import db
|
||||
from factories import file_factory
|
||||
from models import Account, App, EndUser, Message
|
||||
from services.errors.app import MoreLikeThisDisabledError
|
||||
from services.errors.message import MessageNotExistsError
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class CompletionAppGenerator(MessageBasedAppGenerator):
|
||||
@overload
|
||||
def generate(
|
||||
self,
|
||||
app_model: App,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: Literal[True],
|
||||
) -> Generator[str | Mapping[str, Any], None, None]: ...
|
||||
|
||||
@overload
|
||||
def generate(
|
||||
self,
|
||||
app_model: App,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: Literal[False],
|
||||
) -> Mapping[str, Any]: ...
|
||||
|
||||
@overload
|
||||
def generate(
|
||||
self,
|
||||
app_model: App,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: bool = False,
|
||||
) -> Union[Mapping[str, Any], Generator[str | Mapping[str, Any], None, None]]: ...
|
||||
|
||||
def generate(
|
||||
self,
|
||||
app_model: App,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: bool = True,
|
||||
) -> Union[Mapping[str, Any], Generator[str | Mapping[str, Any], None, None]]:
|
||||
"""
|
||||
Generate App response.
|
||||
|
||||
:param app_model: App
|
||||
:param user: account or end user
|
||||
:param args: request args
|
||||
:param invoke_from: invoke from source
|
||||
:param streaming: is stream
|
||||
"""
|
||||
query = args["query"]
|
||||
if not isinstance(query, str):
|
||||
raise ValueError("query must be a string")
|
||||
|
||||
query = query.replace("\x00", "")
|
||||
inputs = args["inputs"]
|
||||
|
||||
# get conversation
|
||||
conversation = None
|
||||
|
||||
# get app model config
|
||||
app_model_config = self._get_app_model_config(app_model=app_model, conversation=conversation)
|
||||
|
||||
# validate override model config
|
||||
override_model_config_dict = None
|
||||
if args.get("model_config"):
|
||||
if invoke_from != InvokeFrom.DEBUGGER:
|
||||
raise ValueError("Only in App debug mode can override model config")
|
||||
|
||||
# validate config
|
||||
override_model_config_dict = CompletionAppConfigManager.config_validate(
|
||||
tenant_id=app_model.tenant_id, config=args.get("model_config", {})
|
||||
)
|
||||
|
||||
# parse files
|
||||
# TODO(QuantumGhost): Move file parsing logic to the API controller layer
|
||||
# for better separation of concerns.
|
||||
#
|
||||
# For implementation reference, see the `_parse_file` function and
|
||||
# `DraftWorkflowNodeRunApi` class which handle this properly.
|
||||
files = args["files"] if args.get("files") else []
|
||||
file_extra_config = FileUploadConfigManager.convert(override_model_config_dict or app_model_config.to_dict())
|
||||
if file_extra_config:
|
||||
file_objs = file_factory.build_from_mappings(
|
||||
mappings=files,
|
||||
tenant_id=app_model.tenant_id,
|
||||
config=file_extra_config,
|
||||
)
|
||||
else:
|
||||
file_objs = []
|
||||
|
||||
# convert to app config
|
||||
app_config = CompletionAppConfigManager.get_app_config(
|
||||
app_model=app_model, app_model_config=app_model_config, override_config_dict=override_model_config_dict
|
||||
)
|
||||
|
||||
# get tracing instance
|
||||
trace_manager = TraceQueueManager(
|
||||
app_id=app_model.id, user_id=user.id if isinstance(user, Account) else user.session_id
|
||||
)
|
||||
|
||||
# init application generate entity
|
||||
application_generate_entity = CompletionAppGenerateEntity(
|
||||
task_id=str(uuid.uuid4()),
|
||||
app_config=app_config,
|
||||
model_conf=ModelConfigConverter.convert(app_config),
|
||||
file_upload_config=file_extra_config,
|
||||
inputs=self._prepare_user_inputs(
|
||||
user_inputs=inputs, variables=app_config.variables, tenant_id=app_model.tenant_id
|
||||
),
|
||||
query=query,
|
||||
files=list(file_objs),
|
||||
user_id=user.id,
|
||||
stream=streaming,
|
||||
invoke_from=invoke_from,
|
||||
extras={},
|
||||
trace_manager=trace_manager,
|
||||
)
|
||||
|
||||
# init generate records
|
||||
(conversation, message) = self._init_generate_records(application_generate_entity)
|
||||
|
||||
# init queue manager
|
||||
queue_manager = MessageBasedAppQueueManager(
|
||||
task_id=application_generate_entity.task_id,
|
||||
user_id=application_generate_entity.user_id,
|
||||
invoke_from=application_generate_entity.invoke_from,
|
||||
conversation_id=conversation.id,
|
||||
app_mode=conversation.mode,
|
||||
message_id=message.id,
|
||||
)
|
||||
|
||||
# new thread with request context
|
||||
@copy_current_request_context
|
||||
def worker_with_context():
|
||||
return self._generate_worker(
|
||||
flask_app=current_app._get_current_object(), # type: ignore
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
message_id=message.id,
|
||||
)
|
||||
|
||||
worker_thread = threading.Thread(target=worker_with_context)
|
||||
|
||||
worker_thread.start()
|
||||
|
||||
# return response or stream generator
|
||||
response = self._handle_response(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
conversation=conversation,
|
||||
message=message,
|
||||
user=user,
|
||||
stream=streaming,
|
||||
)
|
||||
|
||||
return CompletionAppGenerateResponseConverter.convert(response=response, invoke_from=invoke_from)
|
||||
|
||||
def _generate_worker(
|
||||
self,
|
||||
flask_app: Flask,
|
||||
application_generate_entity: CompletionAppGenerateEntity,
|
||||
queue_manager: AppQueueManager,
|
||||
message_id: str,
|
||||
):
|
||||
"""
|
||||
Generate worker in a new thread.
|
||||
:param flask_app: Flask app
|
||||
:param application_generate_entity: application generate entity
|
||||
:param queue_manager: queue manager
|
||||
:param message_id: message ID
|
||||
:return:
|
||||
"""
|
||||
with flask_app.app_context():
|
||||
try:
|
||||
# get message
|
||||
message = self._get_message(message_id)
|
||||
|
||||
# chatbot app
|
||||
runner = CompletionAppRunner()
|
||||
runner.run(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
message=message,
|
||||
)
|
||||
except GenerateTaskStoppedError:
|
||||
pass
|
||||
except InvokeAuthorizationError:
|
||||
queue_manager.publish_error(
|
||||
InvokeAuthorizationError("Incorrect API key provided"), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
except ValidationError as e:
|
||||
logger.exception("Validation Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
except ValueError as e:
|
||||
if dify_config.DEBUG:
|
||||
logger.exception("Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
except Exception as e:
|
||||
logger.exception("Unknown Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
finally:
|
||||
db.session.close()
|
||||
|
||||
def generate_more_like_this(
|
||||
self,
|
||||
app_model: App,
|
||||
message_id: str,
|
||||
user: Union[Account, EndUser],
|
||||
invoke_from: InvokeFrom,
|
||||
stream: bool = True,
|
||||
) -> Union[Mapping, Generator[Mapping | str, None, None]]:
|
||||
"""
|
||||
Generate App response.
|
||||
|
||||
:param app_model: App
|
||||
:param message_id: message ID
|
||||
:param user: account or end user
|
||||
:param invoke_from: invoke from source
|
||||
:param stream: is stream
|
||||
"""
|
||||
stmt = select(Message).where(
|
||||
Message.id == message_id,
|
||||
Message.app_id == app_model.id,
|
||||
Message.from_source == ("api" if isinstance(user, EndUser) else "console"),
|
||||
Message.from_end_user_id == (user.id if isinstance(user, EndUser) else None),
|
||||
Message.from_account_id == (user.id if isinstance(user, Account) else None),
|
||||
)
|
||||
message = db.session.scalar(stmt)
|
||||
|
||||
if not message:
|
||||
raise MessageNotExistsError()
|
||||
|
||||
current_app_model_config = app_model.app_model_config
|
||||
if not current_app_model_config:
|
||||
raise MoreLikeThisDisabledError()
|
||||
|
||||
more_like_this = current_app_model_config.more_like_this_dict
|
||||
|
||||
if not current_app_model_config.more_like_this or more_like_this.get("enabled", False) is False:
|
||||
raise MoreLikeThisDisabledError()
|
||||
|
||||
app_model_config = message.app_model_config
|
||||
if not app_model_config:
|
||||
raise ValueError("Message app_model_config is None")
|
||||
override_model_config_dict = app_model_config.to_dict()
|
||||
model_dict = override_model_config_dict["model"]
|
||||
completion_params = model_dict.get("completion_params")
|
||||
completion_params["temperature"] = 0.9
|
||||
model_dict["completion_params"] = completion_params
|
||||
override_model_config_dict["model"] = model_dict
|
||||
|
||||
# parse files
|
||||
file_extra_config = FileUploadConfigManager.convert(override_model_config_dict)
|
||||
if file_extra_config:
|
||||
file_objs = file_factory.build_from_mappings(
|
||||
mappings=message.message_files,
|
||||
tenant_id=app_model.tenant_id,
|
||||
config=file_extra_config,
|
||||
)
|
||||
else:
|
||||
file_objs = []
|
||||
|
||||
# convert to app config
|
||||
app_config = CompletionAppConfigManager.get_app_config(
|
||||
app_model=app_model, app_model_config=app_model_config, override_config_dict=override_model_config_dict
|
||||
)
|
||||
|
||||
# init application generate entity
|
||||
application_generate_entity = CompletionAppGenerateEntity(
|
||||
task_id=str(uuid.uuid4()),
|
||||
app_config=app_config,
|
||||
model_conf=ModelConfigConverter.convert(app_config),
|
||||
inputs=message.inputs,
|
||||
query=message.query,
|
||||
files=list(file_objs),
|
||||
user_id=user.id,
|
||||
stream=stream,
|
||||
invoke_from=invoke_from,
|
||||
extras={},
|
||||
)
|
||||
|
||||
# init generate records
|
||||
(conversation, message) = self._init_generate_records(application_generate_entity)
|
||||
|
||||
# init queue manager
|
||||
queue_manager = MessageBasedAppQueueManager(
|
||||
task_id=application_generate_entity.task_id,
|
||||
user_id=application_generate_entity.user_id,
|
||||
invoke_from=application_generate_entity.invoke_from,
|
||||
conversation_id=conversation.id,
|
||||
app_mode=conversation.mode,
|
||||
message_id=message.id,
|
||||
)
|
||||
|
||||
# new thread with request context
|
||||
@copy_current_request_context
|
||||
def worker_with_context():
|
||||
return self._generate_worker(
|
||||
flask_app=current_app._get_current_object(), # type: ignore
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
message_id=message.id,
|
||||
)
|
||||
|
||||
worker_thread = threading.Thread(target=worker_with_context)
|
||||
|
||||
worker_thread.start()
|
||||
|
||||
# return response or stream generator
|
||||
response = self._handle_response(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
conversation=conversation,
|
||||
message=message,
|
||||
user=user,
|
||||
stream=stream,
|
||||
)
|
||||
|
||||
return CompletionAppGenerateResponseConverter.convert(response=response, invoke_from=invoke_from)
|
||||
181
dify/api/core/app/apps/completion/app_runner.py
Normal file
181
dify/api/core/app/apps/completion/app_runner.py
Normal file
@@ -0,0 +1,181 @@
|
||||
import logging
|
||||
from typing import cast
|
||||
|
||||
from sqlalchemy import select
|
||||
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager
|
||||
from core.app.apps.base_app_runner import AppRunner
|
||||
from core.app.apps.completion.app_config_manager import CompletionAppConfig
|
||||
from core.app.entities.app_invoke_entities import (
|
||||
CompletionAppGenerateEntity,
|
||||
)
|
||||
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.message_entities import ImagePromptMessageContent
|
||||
from core.moderation.base import ModerationError
|
||||
from core.rag.retrieval.dataset_retrieval import DatasetRetrieval
|
||||
from extensions.ext_database import db
|
||||
from models.model import App, Message
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class CompletionAppRunner(AppRunner):
|
||||
"""
|
||||
Completion Application Runner
|
||||
"""
|
||||
|
||||
def run(
|
||||
self, application_generate_entity: CompletionAppGenerateEntity, queue_manager: AppQueueManager, message: Message
|
||||
):
|
||||
"""
|
||||
Run application
|
||||
:param application_generate_entity: application generate entity
|
||||
:param queue_manager: application queue manager
|
||||
:param message: message
|
||||
:return:
|
||||
"""
|
||||
app_config = application_generate_entity.app_config
|
||||
app_config = cast(CompletionAppConfig, app_config)
|
||||
stmt = select(App).where(App.id == app_config.app_id)
|
||||
app_record = db.session.scalar(stmt)
|
||||
if not app_record:
|
||||
raise ValueError("App not found")
|
||||
|
||||
inputs = application_generate_entity.inputs
|
||||
query = application_generate_entity.query
|
||||
files = application_generate_entity.files
|
||||
|
||||
image_detail_config = (
|
||||
application_generate_entity.file_upload_config.image_config.detail
|
||||
if (
|
||||
application_generate_entity.file_upload_config
|
||||
and application_generate_entity.file_upload_config.image_config
|
||||
)
|
||||
else None
|
||||
)
|
||||
image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
|
||||
|
||||
# organize all inputs and template to prompt messages
|
||||
# Include: prompt template, inputs, query(optional), files(optional)
|
||||
prompt_messages, stop = self.organize_prompt_messages(
|
||||
app_record=app_record,
|
||||
model_config=application_generate_entity.model_conf,
|
||||
prompt_template_entity=app_config.prompt_template,
|
||||
inputs=inputs,
|
||||
files=files,
|
||||
query=query,
|
||||
image_detail_config=image_detail_config,
|
||||
)
|
||||
|
||||
# moderation
|
||||
try:
|
||||
# process sensitive_word_avoidance
|
||||
_, inputs, query = self.moderation_for_inputs(
|
||||
app_id=app_record.id,
|
||||
tenant_id=app_config.tenant_id,
|
||||
app_generate_entity=application_generate_entity,
|
||||
inputs=inputs,
|
||||
query=query or "",
|
||||
message_id=message.id,
|
||||
)
|
||||
except ModerationError as e:
|
||||
self.direct_output(
|
||||
queue_manager=queue_manager,
|
||||
app_generate_entity=application_generate_entity,
|
||||
prompt_messages=prompt_messages,
|
||||
text=str(e),
|
||||
stream=application_generate_entity.stream,
|
||||
)
|
||||
return
|
||||
|
||||
# fill in variable inputs from external data tools if exists
|
||||
external_data_tools = app_config.external_data_variables
|
||||
if external_data_tools:
|
||||
inputs = self.fill_in_inputs_from_external_data_tools(
|
||||
tenant_id=app_record.tenant_id,
|
||||
app_id=app_record.id,
|
||||
external_data_tools=external_data_tools,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
)
|
||||
|
||||
# get context from datasets
|
||||
context = None
|
||||
if app_config.dataset and app_config.dataset.dataset_ids:
|
||||
hit_callback = DatasetIndexToolCallbackHandler(
|
||||
queue_manager,
|
||||
app_record.id,
|
||||
message.id,
|
||||
application_generate_entity.user_id,
|
||||
application_generate_entity.invoke_from,
|
||||
)
|
||||
|
||||
dataset_config = app_config.dataset
|
||||
if dataset_config and dataset_config.retrieve_config.query_variable:
|
||||
query = inputs.get(dataset_config.retrieve_config.query_variable, "")
|
||||
|
||||
dataset_retrieval = DatasetRetrieval(application_generate_entity)
|
||||
context = dataset_retrieval.retrieve(
|
||||
app_id=app_record.id,
|
||||
user_id=application_generate_entity.user_id,
|
||||
tenant_id=app_record.tenant_id,
|
||||
model_config=application_generate_entity.model_conf,
|
||||
config=dataset_config,
|
||||
query=query or "",
|
||||
invoke_from=application_generate_entity.invoke_from,
|
||||
show_retrieve_source=app_config.additional_features.show_retrieve_source
|
||||
if app_config.additional_features
|
||||
else False,
|
||||
hit_callback=hit_callback,
|
||||
message_id=message.id,
|
||||
inputs=inputs,
|
||||
)
|
||||
|
||||
# reorganize all inputs and template to prompt messages
|
||||
# Include: prompt template, inputs, query(optional), files(optional)
|
||||
# memory(optional), external data, dataset context(optional)
|
||||
prompt_messages, stop = self.organize_prompt_messages(
|
||||
app_record=app_record,
|
||||
model_config=application_generate_entity.model_conf,
|
||||
prompt_template_entity=app_config.prompt_template,
|
||||
inputs=inputs,
|
||||
files=files,
|
||||
query=query,
|
||||
context=context,
|
||||
image_detail_config=image_detail_config,
|
||||
)
|
||||
|
||||
# check hosting moderation
|
||||
hosting_moderation_result = self.check_hosting_moderation(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
prompt_messages=prompt_messages,
|
||||
)
|
||||
|
||||
if hosting_moderation_result:
|
||||
return
|
||||
|
||||
# Re-calculate the max tokens if sum(prompt_token + max_tokens) over model token limit
|
||||
self.recalc_llm_max_tokens(model_config=application_generate_entity.model_conf, prompt_messages=prompt_messages)
|
||||
|
||||
# Invoke model
|
||||
model_instance = ModelInstance(
|
||||
provider_model_bundle=application_generate_entity.model_conf.provider_model_bundle,
|
||||
model=application_generate_entity.model_conf.model,
|
||||
)
|
||||
|
||||
db.session.close()
|
||||
|
||||
invoke_result = model_instance.invoke_llm(
|
||||
prompt_messages=prompt_messages,
|
||||
model_parameters=application_generate_entity.model_conf.parameters,
|
||||
stop=stop,
|
||||
stream=application_generate_entity.stream,
|
||||
user=application_generate_entity.user_id,
|
||||
)
|
||||
|
||||
# handle invoke result
|
||||
self._handle_invoke_result(
|
||||
invoke_result=invoke_result, queue_manager=queue_manager, stream=application_generate_entity.stream
|
||||
)
|
||||
121
dify/api/core/app/apps/completion/generate_response_converter.py
Normal file
121
dify/api/core/app/apps/completion/generate_response_converter.py
Normal file
@@ -0,0 +1,121 @@
|
||||
from collections.abc import Generator
|
||||
from typing import cast
|
||||
|
||||
from core.app.apps.base_app_generate_response_converter import AppGenerateResponseConverter
|
||||
from core.app.entities.task_entities import (
|
||||
AppStreamResponse,
|
||||
CompletionAppBlockingResponse,
|
||||
CompletionAppStreamResponse,
|
||||
ErrorStreamResponse,
|
||||
MessageEndStreamResponse,
|
||||
PingStreamResponse,
|
||||
)
|
||||
|
||||
|
||||
class CompletionAppGenerateResponseConverter(AppGenerateResponseConverter):
|
||||
_blocking_response_type = CompletionAppBlockingResponse
|
||||
|
||||
@classmethod
|
||||
def convert_blocking_full_response(cls, blocking_response: CompletionAppBlockingResponse): # type: ignore[override]
|
||||
"""
|
||||
Convert blocking full response.
|
||||
:param blocking_response: blocking response
|
||||
:return:
|
||||
"""
|
||||
response = {
|
||||
"event": "message",
|
||||
"task_id": blocking_response.task_id,
|
||||
"id": blocking_response.data.id,
|
||||
"message_id": blocking_response.data.message_id,
|
||||
"mode": blocking_response.data.mode,
|
||||
"answer": blocking_response.data.answer,
|
||||
"metadata": blocking_response.data.metadata,
|
||||
"created_at": blocking_response.data.created_at,
|
||||
}
|
||||
|
||||
return response
|
||||
|
||||
@classmethod
|
||||
def convert_blocking_simple_response(cls, blocking_response: CompletionAppBlockingResponse): # type: ignore[override]
|
||||
"""
|
||||
Convert blocking simple response.
|
||||
:param blocking_response: blocking response
|
||||
:return:
|
||||
"""
|
||||
response = cls.convert_blocking_full_response(blocking_response)
|
||||
|
||||
metadata = response.get("metadata", {})
|
||||
if isinstance(metadata, dict):
|
||||
response["metadata"] = cls._get_simple_metadata(metadata)
|
||||
else:
|
||||
response["metadata"] = {}
|
||||
|
||||
return response
|
||||
|
||||
@classmethod
|
||||
def convert_stream_full_response(
|
||||
cls, stream_response: Generator[AppStreamResponse, None, None]
|
||||
) -> Generator[dict | str, None, None]:
|
||||
"""
|
||||
Convert stream full response.
|
||||
:param stream_response: stream response
|
||||
:return:
|
||||
"""
|
||||
for chunk in stream_response:
|
||||
chunk = cast(CompletionAppStreamResponse, chunk)
|
||||
sub_stream_response = chunk.stream_response
|
||||
|
||||
if isinstance(sub_stream_response, PingStreamResponse):
|
||||
yield "ping"
|
||||
continue
|
||||
|
||||
response_chunk = {
|
||||
"event": sub_stream_response.event.value,
|
||||
"message_id": chunk.message_id,
|
||||
"created_at": chunk.created_at,
|
||||
}
|
||||
|
||||
if isinstance(sub_stream_response, ErrorStreamResponse):
|
||||
data = cls._error_to_stream_response(sub_stream_response.err)
|
||||
response_chunk.update(data)
|
||||
else:
|
||||
response_chunk.update(sub_stream_response.model_dump(mode="json"))
|
||||
yield response_chunk
|
||||
|
||||
@classmethod
|
||||
def convert_stream_simple_response(
|
||||
cls, stream_response: Generator[AppStreamResponse, None, None]
|
||||
) -> Generator[dict | str, None, None]:
|
||||
"""
|
||||
Convert stream simple response.
|
||||
:param stream_response: stream response
|
||||
:return:
|
||||
"""
|
||||
for chunk in stream_response:
|
||||
chunk = cast(CompletionAppStreamResponse, chunk)
|
||||
sub_stream_response = chunk.stream_response
|
||||
|
||||
if isinstance(sub_stream_response, PingStreamResponse):
|
||||
yield "ping"
|
||||
continue
|
||||
|
||||
response_chunk = {
|
||||
"event": sub_stream_response.event.value,
|
||||
"message_id": chunk.message_id,
|
||||
"created_at": chunk.created_at,
|
||||
}
|
||||
|
||||
if isinstance(sub_stream_response, MessageEndStreamResponse):
|
||||
sub_stream_response_dict = sub_stream_response.model_dump(mode="json")
|
||||
metadata = sub_stream_response_dict.get("metadata", {})
|
||||
if not isinstance(metadata, dict):
|
||||
metadata = {}
|
||||
sub_stream_response_dict["metadata"] = cls._get_simple_metadata(metadata)
|
||||
response_chunk.update(sub_stream_response_dict)
|
||||
elif isinstance(sub_stream_response, ErrorStreamResponse):
|
||||
data = cls._error_to_stream_response(sub_stream_response.err)
|
||||
response_chunk.update(data)
|
||||
else:
|
||||
response_chunk.update(sub_stream_response.model_dump(mode="json"))
|
||||
|
||||
yield response_chunk
|
||||
2
dify/api/core/app/apps/exc.py
Normal file
2
dify/api/core/app/apps/exc.py
Normal file
@@ -0,0 +1,2 @@
|
||||
class GenerateTaskStoppedError(Exception):
|
||||
pass
|
||||
279
dify/api/core/app/apps/message_based_app_generator.py
Normal file
279
dify/api/core/app/apps/message_based_app_generator.py
Normal file
@@ -0,0 +1,279 @@
|
||||
import json
|
||||
import logging
|
||||
from collections.abc import Generator
|
||||
from typing import Union, cast
|
||||
|
||||
from sqlalchemy import select
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from core.app.app_config.entities import EasyUIBasedAppConfig, EasyUIBasedAppModelConfigFrom
|
||||
from core.app.apps.base_app_generator import BaseAppGenerator
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager
|
||||
from core.app.apps.exc import GenerateTaskStoppedError
|
||||
from core.app.entities.app_invoke_entities import (
|
||||
AdvancedChatAppGenerateEntity,
|
||||
AgentChatAppGenerateEntity,
|
||||
AppGenerateEntity,
|
||||
ChatAppGenerateEntity,
|
||||
CompletionAppGenerateEntity,
|
||||
InvokeFrom,
|
||||
)
|
||||
from core.app.entities.task_entities import (
|
||||
ChatbotAppBlockingResponse,
|
||||
ChatbotAppStreamResponse,
|
||||
CompletionAppBlockingResponse,
|
||||
CompletionAppStreamResponse,
|
||||
)
|
||||
from core.app.task_pipeline.easy_ui_based_generate_task_pipeline import EasyUIBasedGenerateTaskPipeline
|
||||
from core.prompt.utils.prompt_template_parser import PromptTemplateParser
|
||||
from extensions.ext_database import db
|
||||
from libs.datetime_utils import naive_utc_now
|
||||
from models import Account
|
||||
from models.enums import CreatorUserRole
|
||||
from models.model import App, AppMode, AppModelConfig, Conversation, EndUser, Message, MessageFile
|
||||
from services.errors.app_model_config import AppModelConfigBrokenError
|
||||
from services.errors.conversation import ConversationNotExistsError
|
||||
from services.errors.message import MessageNotExistsError
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class MessageBasedAppGenerator(BaseAppGenerator):
|
||||
def _handle_response(
|
||||
self,
|
||||
application_generate_entity: Union[
|
||||
ChatAppGenerateEntity,
|
||||
CompletionAppGenerateEntity,
|
||||
AgentChatAppGenerateEntity,
|
||||
],
|
||||
queue_manager: AppQueueManager,
|
||||
conversation: Conversation,
|
||||
message: Message,
|
||||
user: Union[Account, EndUser],
|
||||
stream: bool = False,
|
||||
) -> Union[
|
||||
ChatbotAppBlockingResponse,
|
||||
CompletionAppBlockingResponse,
|
||||
Generator[Union[ChatbotAppStreamResponse, CompletionAppStreamResponse], None, None],
|
||||
]:
|
||||
"""
|
||||
Handle response.
|
||||
:param application_generate_entity: application generate entity
|
||||
:param queue_manager: queue manager
|
||||
:param conversation: conversation
|
||||
:param message: message
|
||||
:param user: user
|
||||
:param stream: is stream
|
||||
:return:
|
||||
"""
|
||||
# init generate task pipeline
|
||||
generate_task_pipeline = EasyUIBasedGenerateTaskPipeline(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
conversation=conversation,
|
||||
message=message,
|
||||
stream=stream,
|
||||
)
|
||||
|
||||
try:
|
||||
return generate_task_pipeline.process()
|
||||
except ValueError as e:
|
||||
if len(e.args) > 0 and e.args[0] == "I/O operation on closed file.": # ignore this error
|
||||
raise GenerateTaskStoppedError()
|
||||
else:
|
||||
logger.exception("Failed to handle response, conversation_id: %s", conversation.id)
|
||||
raise e
|
||||
|
||||
def _get_app_model_config(self, app_model: App, conversation: Conversation | None = None) -> AppModelConfig:
|
||||
if conversation:
|
||||
stmt = select(AppModelConfig).where(
|
||||
AppModelConfig.id == conversation.app_model_config_id, AppModelConfig.app_id == app_model.id
|
||||
)
|
||||
app_model_config = db.session.scalar(stmt)
|
||||
|
||||
if not app_model_config:
|
||||
raise AppModelConfigBrokenError()
|
||||
else:
|
||||
if app_model.app_model_config_id is None:
|
||||
raise AppModelConfigBrokenError()
|
||||
|
||||
app_model_config = app_model.app_model_config
|
||||
|
||||
if not app_model_config:
|
||||
raise AppModelConfigBrokenError()
|
||||
|
||||
return app_model_config
|
||||
|
||||
def _init_generate_records(
|
||||
self,
|
||||
application_generate_entity: Union[
|
||||
ChatAppGenerateEntity,
|
||||
CompletionAppGenerateEntity,
|
||||
AgentChatAppGenerateEntity,
|
||||
AdvancedChatAppGenerateEntity,
|
||||
],
|
||||
conversation: Conversation | None = None,
|
||||
) -> tuple[Conversation, Message]:
|
||||
"""
|
||||
Initialize generate records
|
||||
:param application_generate_entity: application generate entity
|
||||
:conversation conversation
|
||||
:return:
|
||||
"""
|
||||
app_config: EasyUIBasedAppConfig = cast(EasyUIBasedAppConfig, application_generate_entity.app_config)
|
||||
|
||||
# get from source
|
||||
end_user_id = None
|
||||
account_id = None
|
||||
if application_generate_entity.invoke_from in {InvokeFrom.WEB_APP, InvokeFrom.SERVICE_API}:
|
||||
from_source = "api"
|
||||
end_user_id = application_generate_entity.user_id
|
||||
else:
|
||||
from_source = "console"
|
||||
account_id = application_generate_entity.user_id
|
||||
|
||||
if isinstance(application_generate_entity, AdvancedChatAppGenerateEntity):
|
||||
app_model_config_id = None
|
||||
override_model_configs = None
|
||||
model_provider = None
|
||||
model_id = None
|
||||
else:
|
||||
app_model_config_id = app_config.app_model_config_id
|
||||
model_provider = application_generate_entity.model_conf.provider
|
||||
model_id = application_generate_entity.model_conf.model
|
||||
override_model_configs = None
|
||||
if app_config.app_model_config_from == EasyUIBasedAppModelConfigFrom.ARGS and app_config.app_mode in {
|
||||
AppMode.AGENT_CHAT,
|
||||
AppMode.CHAT,
|
||||
AppMode.COMPLETION,
|
||||
}:
|
||||
override_model_configs = app_config.app_model_config_dict
|
||||
|
||||
# get conversation introduction
|
||||
introduction = self._get_conversation_introduction(application_generate_entity)
|
||||
|
||||
# get conversation name
|
||||
query = application_generate_entity.query or "New conversation"
|
||||
conversation_name = (query[:20] + "…") if len(query) > 20 else query
|
||||
|
||||
if not conversation:
|
||||
conversation = Conversation(
|
||||
app_id=app_config.app_id,
|
||||
app_model_config_id=app_model_config_id,
|
||||
model_provider=model_provider,
|
||||
model_id=model_id,
|
||||
override_model_configs=json.dumps(override_model_configs) if override_model_configs else None,
|
||||
mode=app_config.app_mode.value,
|
||||
name=conversation_name,
|
||||
inputs=application_generate_entity.inputs,
|
||||
introduction=introduction,
|
||||
system_instruction="",
|
||||
system_instruction_tokens=0,
|
||||
status="normal",
|
||||
invoke_from=application_generate_entity.invoke_from.value,
|
||||
from_source=from_source,
|
||||
from_end_user_id=end_user_id,
|
||||
from_account_id=account_id,
|
||||
)
|
||||
|
||||
db.session.add(conversation)
|
||||
db.session.commit()
|
||||
db.session.refresh(conversation)
|
||||
else:
|
||||
conversation.updated_at = naive_utc_now()
|
||||
db.session.commit()
|
||||
|
||||
message = Message(
|
||||
app_id=app_config.app_id,
|
||||
model_provider=model_provider,
|
||||
model_id=model_id,
|
||||
override_model_configs=json.dumps(override_model_configs) if override_model_configs else None,
|
||||
conversation_id=conversation.id,
|
||||
inputs=application_generate_entity.inputs,
|
||||
query=application_generate_entity.query,
|
||||
message="",
|
||||
message_tokens=0,
|
||||
message_unit_price=0,
|
||||
message_price_unit=0,
|
||||
answer="",
|
||||
answer_tokens=0,
|
||||
answer_unit_price=0,
|
||||
answer_price_unit=0,
|
||||
parent_message_id=getattr(application_generate_entity, "parent_message_id", None),
|
||||
provider_response_latency=0,
|
||||
total_price=0,
|
||||
currency="USD",
|
||||
invoke_from=application_generate_entity.invoke_from.value,
|
||||
from_source=from_source,
|
||||
from_end_user_id=end_user_id,
|
||||
from_account_id=account_id,
|
||||
app_mode=app_config.app_mode,
|
||||
)
|
||||
|
||||
db.session.add(message)
|
||||
db.session.commit()
|
||||
db.session.refresh(message)
|
||||
|
||||
for file in application_generate_entity.files:
|
||||
message_file = MessageFile(
|
||||
message_id=message.id,
|
||||
type=file.type,
|
||||
transfer_method=file.transfer_method,
|
||||
belongs_to="user",
|
||||
url=file.remote_url,
|
||||
upload_file_id=file.related_id,
|
||||
created_by_role=(CreatorUserRole.ACCOUNT if account_id else CreatorUserRole.END_USER),
|
||||
created_by=account_id or end_user_id or "",
|
||||
)
|
||||
db.session.add(message_file)
|
||||
db.session.commit()
|
||||
|
||||
return conversation, message
|
||||
|
||||
def _get_conversation_introduction(self, application_generate_entity: AppGenerateEntity) -> str:
|
||||
"""
|
||||
Get conversation introduction
|
||||
:param application_generate_entity: application generate entity
|
||||
:return: conversation introduction
|
||||
"""
|
||||
app_config = application_generate_entity.app_config
|
||||
introduction = app_config.additional_features.opening_statement
|
||||
|
||||
if introduction:
|
||||
try:
|
||||
inputs = application_generate_entity.inputs
|
||||
prompt_template = PromptTemplateParser(template=introduction)
|
||||
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
|
||||
introduction = prompt_template.format(prompt_inputs)
|
||||
except KeyError:
|
||||
pass
|
||||
|
||||
return introduction or ""
|
||||
|
||||
def _get_conversation(self, conversation_id: str) -> Conversation:
|
||||
"""
|
||||
Get conversation by conversation id
|
||||
:param conversation_id: conversation id
|
||||
:return: conversation
|
||||
"""
|
||||
with Session(db.engine, expire_on_commit=False) as session:
|
||||
conversation = session.scalar(select(Conversation).where(Conversation.id == conversation_id))
|
||||
|
||||
if not conversation:
|
||||
raise ConversationNotExistsError("Conversation not exists")
|
||||
|
||||
return conversation
|
||||
|
||||
def _get_message(self, message_id: str) -> Message:
|
||||
"""
|
||||
Get message by message id
|
||||
:param message_id: message id
|
||||
:return: message
|
||||
"""
|
||||
with Session(db.engine, expire_on_commit=False) as session:
|
||||
message = session.scalar(select(Message).where(Message.id == message_id))
|
||||
|
||||
if message is None:
|
||||
raise MessageNotExistsError("Message not exists")
|
||||
|
||||
return message
|
||||
47
dify/api/core/app/apps/message_based_app_queue_manager.py
Normal file
47
dify/api/core/app/apps/message_based_app_queue_manager.py
Normal file
@@ -0,0 +1,47 @@
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
from core.app.apps.exc import GenerateTaskStoppedError
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom
|
||||
from core.app.entities.queue_entities import (
|
||||
AppQueueEvent,
|
||||
MessageQueueMessage,
|
||||
QueueAdvancedChatMessageEndEvent,
|
||||
QueueErrorEvent,
|
||||
QueueMessageEndEvent,
|
||||
QueueStopEvent,
|
||||
)
|
||||
|
||||
|
||||
class MessageBasedAppQueueManager(AppQueueManager):
|
||||
def __init__(
|
||||
self, task_id: str, user_id: str, invoke_from: InvokeFrom, conversation_id: str, app_mode: str, message_id: str
|
||||
):
|
||||
super().__init__(task_id, user_id, invoke_from)
|
||||
|
||||
self._conversation_id = str(conversation_id)
|
||||
self._app_mode = app_mode
|
||||
self._message_id = str(message_id)
|
||||
|
||||
def _publish(self, event: AppQueueEvent, pub_from: PublishFrom):
|
||||
"""
|
||||
Publish event to queue
|
||||
:param event:
|
||||
:param pub_from:
|
||||
:return:
|
||||
"""
|
||||
message = MessageQueueMessage(
|
||||
task_id=self._task_id,
|
||||
message_id=self._message_id,
|
||||
conversation_id=self._conversation_id,
|
||||
app_mode=self._app_mode,
|
||||
event=event,
|
||||
)
|
||||
|
||||
self._q.put(message)
|
||||
|
||||
if isinstance(
|
||||
event, QueueStopEvent | QueueErrorEvent | QueueMessageEndEvent | QueueAdvancedChatMessageEndEvent
|
||||
):
|
||||
self.stop_listen()
|
||||
|
||||
if pub_from == PublishFrom.APPLICATION_MANAGER and self._is_stopped():
|
||||
raise GenerateTaskStoppedError()
|
||||
0
dify/api/core/app/apps/pipeline/__init__.py
Normal file
0
dify/api/core/app/apps/pipeline/__init__.py
Normal file
@@ -0,0 +1,95 @@
|
||||
from collections.abc import Generator
|
||||
from typing import cast
|
||||
|
||||
from core.app.apps.base_app_generate_response_converter import AppGenerateResponseConverter
|
||||
from core.app.entities.task_entities import (
|
||||
AppStreamResponse,
|
||||
ErrorStreamResponse,
|
||||
NodeFinishStreamResponse,
|
||||
NodeStartStreamResponse,
|
||||
PingStreamResponse,
|
||||
WorkflowAppBlockingResponse,
|
||||
WorkflowAppStreamResponse,
|
||||
)
|
||||
|
||||
|
||||
class WorkflowAppGenerateResponseConverter(AppGenerateResponseConverter):
|
||||
_blocking_response_type = WorkflowAppBlockingResponse
|
||||
|
||||
@classmethod
|
||||
def convert_blocking_full_response(cls, blocking_response: WorkflowAppBlockingResponse) -> dict: # type: ignore[override]
|
||||
"""
|
||||
Convert blocking full response.
|
||||
:param blocking_response: blocking response
|
||||
:return:
|
||||
"""
|
||||
return dict(blocking_response.model_dump())
|
||||
|
||||
@classmethod
|
||||
def convert_blocking_simple_response(cls, blocking_response: WorkflowAppBlockingResponse) -> dict: # type: ignore[override]
|
||||
"""
|
||||
Convert blocking simple response.
|
||||
:param blocking_response: blocking response
|
||||
:return:
|
||||
"""
|
||||
return cls.convert_blocking_full_response(blocking_response)
|
||||
|
||||
@classmethod
|
||||
def convert_stream_full_response(
|
||||
cls, stream_response: Generator[AppStreamResponse, None, None]
|
||||
) -> Generator[dict | str, None, None]:
|
||||
"""
|
||||
Convert stream full response.
|
||||
:param stream_response: stream response
|
||||
:return:
|
||||
"""
|
||||
for chunk in stream_response:
|
||||
chunk = cast(WorkflowAppStreamResponse, chunk)
|
||||
sub_stream_response = chunk.stream_response
|
||||
|
||||
if isinstance(sub_stream_response, PingStreamResponse):
|
||||
yield "ping"
|
||||
continue
|
||||
|
||||
response_chunk = {
|
||||
"event": sub_stream_response.event.value,
|
||||
"workflow_run_id": chunk.workflow_run_id,
|
||||
}
|
||||
|
||||
if isinstance(sub_stream_response, ErrorStreamResponse):
|
||||
data = cls._error_to_stream_response(sub_stream_response.err)
|
||||
response_chunk.update(cast(dict, data))
|
||||
else:
|
||||
response_chunk.update(sub_stream_response.model_dump())
|
||||
yield response_chunk
|
||||
|
||||
@classmethod
|
||||
def convert_stream_simple_response(
|
||||
cls, stream_response: Generator[AppStreamResponse, None, None]
|
||||
) -> Generator[dict | str, None, None]:
|
||||
"""
|
||||
Convert stream simple response.
|
||||
:param stream_response: stream response
|
||||
:return:
|
||||
"""
|
||||
for chunk in stream_response:
|
||||
chunk = cast(WorkflowAppStreamResponse, chunk)
|
||||
sub_stream_response = chunk.stream_response
|
||||
|
||||
if isinstance(sub_stream_response, PingStreamResponse):
|
||||
yield "ping"
|
||||
continue
|
||||
|
||||
response_chunk = {
|
||||
"event": sub_stream_response.event.value,
|
||||
"workflow_run_id": chunk.workflow_run_id,
|
||||
}
|
||||
|
||||
if isinstance(sub_stream_response, ErrorStreamResponse):
|
||||
data = cls._error_to_stream_response(sub_stream_response.err)
|
||||
response_chunk.update(cast(dict, data))
|
||||
elif isinstance(sub_stream_response, NodeStartStreamResponse | NodeFinishStreamResponse):
|
||||
response_chunk.update(cast(dict, sub_stream_response.to_ignore_detail_dict()))
|
||||
else:
|
||||
response_chunk.update(sub_stream_response.model_dump())
|
||||
yield response_chunk
|
||||
66
dify/api/core/app/apps/pipeline/pipeline_config_manager.py
Normal file
66
dify/api/core/app/apps/pipeline/pipeline_config_manager.py
Normal file
@@ -0,0 +1,66 @@
|
||||
from core.app.app_config.base_app_config_manager import BaseAppConfigManager
|
||||
from core.app.app_config.common.sensitive_word_avoidance.manager import SensitiveWordAvoidanceConfigManager
|
||||
from core.app.app_config.entities import RagPipelineVariableEntity, WorkflowUIBasedAppConfig
|
||||
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
|
||||
from core.app.app_config.features.text_to_speech.manager import TextToSpeechConfigManager
|
||||
from core.app.app_config.workflow_ui_based_app.variables.manager import WorkflowVariablesConfigManager
|
||||
from models.dataset import Pipeline
|
||||
from models.model import AppMode
|
||||
from models.workflow import Workflow
|
||||
|
||||
|
||||
class PipelineConfig(WorkflowUIBasedAppConfig):
|
||||
"""
|
||||
Pipeline Config Entity.
|
||||
"""
|
||||
|
||||
rag_pipeline_variables: list[RagPipelineVariableEntity] = []
|
||||
pass
|
||||
|
||||
|
||||
class PipelineConfigManager(BaseAppConfigManager):
|
||||
@classmethod
|
||||
def get_pipeline_config(cls, pipeline: Pipeline, workflow: Workflow, start_node_id: str) -> PipelineConfig:
|
||||
pipeline_config = PipelineConfig(
|
||||
tenant_id=pipeline.tenant_id,
|
||||
app_id=pipeline.id,
|
||||
app_mode=AppMode.RAG_PIPELINE,
|
||||
workflow_id=workflow.id,
|
||||
rag_pipeline_variables=WorkflowVariablesConfigManager.convert_rag_pipeline_variable(
|
||||
workflow=workflow, start_node_id=start_node_id
|
||||
),
|
||||
)
|
||||
|
||||
return pipeline_config
|
||||
|
||||
@classmethod
|
||||
def config_validate(cls, tenant_id: str, config: dict, only_structure_validate: bool = False) -> dict:
|
||||
"""
|
||||
Validate for pipeline config
|
||||
|
||||
:param tenant_id: tenant id
|
||||
:param config: app model config args
|
||||
:param only_structure_validate: only validate the structure of the config
|
||||
"""
|
||||
related_config_keys = []
|
||||
|
||||
# file upload validation
|
||||
config, current_related_config_keys = FileUploadConfigManager.validate_and_set_defaults(config=config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# text_to_speech
|
||||
config, current_related_config_keys = TextToSpeechConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# moderation validation
|
||||
config, current_related_config_keys = SensitiveWordAvoidanceConfigManager.validate_and_set_defaults(
|
||||
tenant_id=tenant_id, config=config, only_structure_validate=only_structure_validate
|
||||
)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
related_config_keys = list(set(related_config_keys))
|
||||
|
||||
# Filter out extra parameters
|
||||
filtered_config = {key: config.get(key) for key in related_config_keys}
|
||||
|
||||
return filtered_config
|
||||
824
dify/api/core/app/apps/pipeline/pipeline_generator.py
Normal file
824
dify/api/core/app/apps/pipeline/pipeline_generator.py
Normal file
@@ -0,0 +1,824 @@
|
||||
import contextvars
|
||||
import datetime
|
||||
import json
|
||||
import logging
|
||||
import secrets
|
||||
import threading
|
||||
import time
|
||||
import uuid
|
||||
from collections.abc import Generator, Mapping
|
||||
from typing import Any, Literal, Union, cast, overload
|
||||
|
||||
from flask import Flask, current_app
|
||||
from pydantic import ValidationError
|
||||
from sqlalchemy import select
|
||||
from sqlalchemy.orm import Session, sessionmaker
|
||||
|
||||
import contexts
|
||||
from configs import dify_config
|
||||
from core.app.apps.base_app_generator import BaseAppGenerator
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
from core.app.apps.exc import GenerateTaskStoppedError
|
||||
from core.app.apps.pipeline.pipeline_config_manager import PipelineConfigManager
|
||||
from core.app.apps.pipeline.pipeline_queue_manager import PipelineQueueManager
|
||||
from core.app.apps.pipeline.pipeline_runner import PipelineRunner
|
||||
from core.app.apps.workflow.generate_response_converter import WorkflowAppGenerateResponseConverter
|
||||
from core.app.apps.workflow.generate_task_pipeline import WorkflowAppGenerateTaskPipeline
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom, RagPipelineGenerateEntity
|
||||
from core.app.entities.rag_pipeline_invoke_entities import RagPipelineInvokeEntity
|
||||
from core.app.entities.task_entities import WorkflowAppBlockingResponse, WorkflowAppStreamResponse
|
||||
from core.datasource.entities.datasource_entities import (
|
||||
DatasourceProviderType,
|
||||
OnlineDriveBrowseFilesRequest,
|
||||
)
|
||||
from core.datasource.online_drive.online_drive_plugin import OnlineDriveDatasourcePlugin
|
||||
from core.entities.knowledge_entities import PipelineDataset, PipelineDocument
|
||||
from core.model_runtime.errors.invoke import InvokeAuthorizationError
|
||||
from core.rag.index_processor.constant.built_in_field import BuiltInField
|
||||
from core.repositories.factory import DifyCoreRepositoryFactory
|
||||
from core.workflow.repositories.draft_variable_repository import DraftVariableSaverFactory
|
||||
from core.workflow.repositories.workflow_execution_repository import WorkflowExecutionRepository
|
||||
from core.workflow.repositories.workflow_node_execution_repository import WorkflowNodeExecutionRepository
|
||||
from core.workflow.variable_loader import DUMMY_VARIABLE_LOADER, VariableLoader
|
||||
from extensions.ext_database import db
|
||||
from libs.flask_utils import preserve_flask_contexts
|
||||
from models import Account, EndUser, Workflow, WorkflowNodeExecutionTriggeredFrom
|
||||
from models.dataset import Document, DocumentPipelineExecutionLog, Pipeline
|
||||
from models.enums import WorkflowRunTriggeredFrom
|
||||
from models.model import AppMode
|
||||
from services.datasource_provider_service import DatasourceProviderService
|
||||
from services.rag_pipeline.rag_pipeline_task_proxy import RagPipelineTaskProxy
|
||||
from services.workflow_draft_variable_service import DraftVarLoader, WorkflowDraftVariableService
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class PipelineGenerator(BaseAppGenerator):
|
||||
@overload
|
||||
def generate(
|
||||
self,
|
||||
*,
|
||||
pipeline: Pipeline,
|
||||
workflow: Workflow,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: Literal[True],
|
||||
call_depth: int,
|
||||
workflow_thread_pool_id: str | None,
|
||||
is_retry: bool = False,
|
||||
) -> Generator[Mapping | str, None, None]: ...
|
||||
|
||||
@overload
|
||||
def generate(
|
||||
self,
|
||||
*,
|
||||
pipeline: Pipeline,
|
||||
workflow: Workflow,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: Literal[False],
|
||||
call_depth: int,
|
||||
workflow_thread_pool_id: str | None,
|
||||
is_retry: bool = False,
|
||||
) -> Mapping[str, Any]: ...
|
||||
|
||||
@overload
|
||||
def generate(
|
||||
self,
|
||||
*,
|
||||
pipeline: Pipeline,
|
||||
workflow: Workflow,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: bool,
|
||||
call_depth: int,
|
||||
workflow_thread_pool_id: str | None,
|
||||
is_retry: bool = False,
|
||||
) -> Union[Mapping[str, Any], Generator[Mapping | str, None, None]]: ...
|
||||
|
||||
def generate(
|
||||
self,
|
||||
*,
|
||||
pipeline: Pipeline,
|
||||
workflow: Workflow,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: bool = True,
|
||||
call_depth: int = 0,
|
||||
workflow_thread_pool_id: str | None = None,
|
||||
is_retry: bool = False,
|
||||
) -> Union[Mapping[str, Any], Generator[Mapping | str, None, None], None]:
|
||||
# Add null check for dataset
|
||||
|
||||
with Session(db.engine, expire_on_commit=False) as session:
|
||||
dataset = pipeline.retrieve_dataset(session)
|
||||
if not dataset:
|
||||
raise ValueError("Pipeline dataset is required")
|
||||
inputs: Mapping[str, Any] = args["inputs"]
|
||||
start_node_id: str = args["start_node_id"]
|
||||
datasource_type: str = args["datasource_type"]
|
||||
datasource_info_list: list[Mapping[str, Any]] = self._format_datasource_info_list(
|
||||
datasource_type, args["datasource_info_list"], pipeline, workflow, start_node_id, user
|
||||
)
|
||||
batch = time.strftime("%Y%m%d%H%M%S") + str(secrets.randbelow(900000) + 100000)
|
||||
# convert to app config
|
||||
pipeline_config = PipelineConfigManager.get_pipeline_config(
|
||||
pipeline=pipeline, workflow=workflow, start_node_id=start_node_id
|
||||
)
|
||||
documents: list[Document] = []
|
||||
if invoke_from == InvokeFrom.PUBLISHED and not is_retry and not args.get("original_document_id"):
|
||||
from services.dataset_service import DocumentService
|
||||
|
||||
for datasource_info in datasource_info_list:
|
||||
position = DocumentService.get_documents_position(dataset.id)
|
||||
document = self._build_document(
|
||||
tenant_id=pipeline.tenant_id,
|
||||
dataset_id=dataset.id,
|
||||
built_in_field_enabled=dataset.built_in_field_enabled,
|
||||
datasource_type=datasource_type,
|
||||
datasource_info=datasource_info,
|
||||
created_from="rag-pipeline",
|
||||
position=position,
|
||||
account=user,
|
||||
batch=batch,
|
||||
document_form=dataset.chunk_structure,
|
||||
)
|
||||
db.session.add(document)
|
||||
documents.append(document)
|
||||
db.session.commit()
|
||||
|
||||
# run in child thread
|
||||
rag_pipeline_invoke_entities = []
|
||||
for i, datasource_info in enumerate(datasource_info_list):
|
||||
workflow_run_id = str(uuid.uuid4())
|
||||
document_id = args.get("original_document_id") or None
|
||||
if invoke_from == InvokeFrom.PUBLISHED and not is_retry:
|
||||
document_id = document_id or documents[i].id
|
||||
document_pipeline_execution_log = DocumentPipelineExecutionLog(
|
||||
document_id=document_id,
|
||||
datasource_type=datasource_type,
|
||||
datasource_info=json.dumps(datasource_info),
|
||||
datasource_node_id=start_node_id,
|
||||
input_data=dict(inputs),
|
||||
pipeline_id=pipeline.id,
|
||||
created_by=user.id,
|
||||
)
|
||||
db.session.add(document_pipeline_execution_log)
|
||||
db.session.commit()
|
||||
application_generate_entity = RagPipelineGenerateEntity(
|
||||
task_id=str(uuid.uuid4()),
|
||||
app_config=pipeline_config,
|
||||
pipeline_config=pipeline_config,
|
||||
datasource_type=datasource_type,
|
||||
datasource_info=datasource_info,
|
||||
dataset_id=dataset.id,
|
||||
original_document_id=args.get("original_document_id"),
|
||||
start_node_id=start_node_id,
|
||||
batch=batch,
|
||||
document_id=document_id,
|
||||
inputs=self._prepare_user_inputs(
|
||||
user_inputs=inputs,
|
||||
variables=pipeline_config.rag_pipeline_variables,
|
||||
tenant_id=pipeline.tenant_id,
|
||||
strict_type_validation=True if invoke_from == InvokeFrom.SERVICE_API else False,
|
||||
),
|
||||
files=[],
|
||||
user_id=user.id,
|
||||
stream=streaming,
|
||||
invoke_from=invoke_from,
|
||||
call_depth=call_depth,
|
||||
workflow_execution_id=workflow_run_id,
|
||||
)
|
||||
|
||||
contexts.plugin_tool_providers.set({})
|
||||
contexts.plugin_tool_providers_lock.set(threading.Lock())
|
||||
if invoke_from == InvokeFrom.DEBUGGER:
|
||||
workflow_triggered_from = WorkflowRunTriggeredFrom.RAG_PIPELINE_DEBUGGING
|
||||
else:
|
||||
workflow_triggered_from = WorkflowRunTriggeredFrom.RAG_PIPELINE_RUN
|
||||
# Create workflow node execution repository
|
||||
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
|
||||
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
|
||||
session_factory=session_factory,
|
||||
user=user,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
triggered_from=workflow_triggered_from,
|
||||
)
|
||||
|
||||
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
|
||||
session_factory=session_factory,
|
||||
user=user,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
triggered_from=WorkflowNodeExecutionTriggeredFrom.RAG_PIPELINE_RUN,
|
||||
)
|
||||
if invoke_from == InvokeFrom.DEBUGGER or is_retry:
|
||||
return self._generate(
|
||||
flask_app=current_app._get_current_object(), # type: ignore
|
||||
context=contextvars.copy_context(),
|
||||
pipeline=pipeline,
|
||||
workflow_id=workflow.id,
|
||||
user=user,
|
||||
application_generate_entity=application_generate_entity,
|
||||
invoke_from=invoke_from,
|
||||
workflow_execution_repository=workflow_execution_repository,
|
||||
workflow_node_execution_repository=workflow_node_execution_repository,
|
||||
streaming=streaming,
|
||||
workflow_thread_pool_id=workflow_thread_pool_id,
|
||||
)
|
||||
else:
|
||||
rag_pipeline_invoke_entities.append(
|
||||
RagPipelineInvokeEntity(
|
||||
pipeline_id=pipeline.id,
|
||||
user_id=user.id,
|
||||
tenant_id=pipeline.tenant_id,
|
||||
workflow_id=workflow.id,
|
||||
streaming=streaming,
|
||||
workflow_execution_id=workflow_run_id,
|
||||
workflow_thread_pool_id=workflow_thread_pool_id,
|
||||
application_generate_entity=application_generate_entity.model_dump(),
|
||||
)
|
||||
)
|
||||
|
||||
if rag_pipeline_invoke_entities:
|
||||
RagPipelineTaskProxy(dataset.tenant_id, user.id, rag_pipeline_invoke_entities).delay()
|
||||
# return batch, dataset, documents
|
||||
return {
|
||||
"batch": batch,
|
||||
"dataset": PipelineDataset(
|
||||
id=dataset.id,
|
||||
name=dataset.name,
|
||||
description=dataset.description,
|
||||
chunk_structure=dataset.chunk_structure,
|
||||
).model_dump(),
|
||||
"documents": [
|
||||
PipelineDocument(
|
||||
id=document.id,
|
||||
position=document.position,
|
||||
data_source_type=document.data_source_type,
|
||||
data_source_info=json.loads(document.data_source_info) if document.data_source_info else None,
|
||||
name=document.name,
|
||||
indexing_status=document.indexing_status,
|
||||
error=document.error,
|
||||
enabled=document.enabled,
|
||||
).model_dump()
|
||||
for document in documents
|
||||
],
|
||||
}
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
*,
|
||||
flask_app: Flask,
|
||||
context: contextvars.Context,
|
||||
pipeline: Pipeline,
|
||||
workflow_id: str,
|
||||
user: Union[Account, EndUser],
|
||||
application_generate_entity: RagPipelineGenerateEntity,
|
||||
invoke_from: InvokeFrom,
|
||||
workflow_execution_repository: WorkflowExecutionRepository,
|
||||
workflow_node_execution_repository: WorkflowNodeExecutionRepository,
|
||||
streaming: bool = True,
|
||||
variable_loader: VariableLoader = DUMMY_VARIABLE_LOADER,
|
||||
workflow_thread_pool_id: str | None = None,
|
||||
) -> Union[Mapping[str, Any], Generator[str | Mapping[str, Any], None, None]]:
|
||||
"""
|
||||
Generate App response.
|
||||
|
||||
:param pipeline: Pipeline
|
||||
:param workflow: Workflow
|
||||
:param user: account or end user
|
||||
:param application_generate_entity: application generate entity
|
||||
:param invoke_from: invoke from source
|
||||
:param workflow_execution_repository: repository for workflow execution
|
||||
:param workflow_node_execution_repository: repository for workflow node execution
|
||||
:param streaming: is stream
|
||||
:param workflow_thread_pool_id: workflow thread pool id
|
||||
"""
|
||||
with preserve_flask_contexts(flask_app, context_vars=context):
|
||||
# init queue manager
|
||||
workflow = db.session.query(Workflow).where(Workflow.id == workflow_id).first()
|
||||
if not workflow:
|
||||
raise ValueError(f"Workflow not found: {workflow_id}")
|
||||
queue_manager = PipelineQueueManager(
|
||||
task_id=application_generate_entity.task_id,
|
||||
user_id=application_generate_entity.user_id,
|
||||
invoke_from=application_generate_entity.invoke_from,
|
||||
app_mode=AppMode.RAG_PIPELINE,
|
||||
)
|
||||
context = contextvars.copy_context()
|
||||
|
||||
# new thread
|
||||
worker_thread = threading.Thread(
|
||||
target=self._generate_worker,
|
||||
kwargs={
|
||||
"flask_app": current_app._get_current_object(), # type: ignore
|
||||
"context": context,
|
||||
"queue_manager": queue_manager,
|
||||
"application_generate_entity": application_generate_entity,
|
||||
"workflow_thread_pool_id": workflow_thread_pool_id,
|
||||
"variable_loader": variable_loader,
|
||||
"workflow_execution_repository": workflow_execution_repository,
|
||||
"workflow_node_execution_repository": workflow_node_execution_repository,
|
||||
},
|
||||
)
|
||||
|
||||
worker_thread.start()
|
||||
|
||||
draft_var_saver_factory = self._get_draft_var_saver_factory(
|
||||
invoke_from,
|
||||
user,
|
||||
)
|
||||
# return response or stream generator
|
||||
response = self._handle_response(
|
||||
application_generate_entity=application_generate_entity,
|
||||
workflow=workflow,
|
||||
queue_manager=queue_manager,
|
||||
user=user,
|
||||
stream=streaming,
|
||||
draft_var_saver_factory=draft_var_saver_factory,
|
||||
)
|
||||
|
||||
return WorkflowAppGenerateResponseConverter.convert(response=response, invoke_from=invoke_from)
|
||||
|
||||
def single_iteration_generate(
|
||||
self,
|
||||
pipeline: Pipeline,
|
||||
workflow: Workflow,
|
||||
node_id: str,
|
||||
user: Account | EndUser,
|
||||
args: Mapping[str, Any],
|
||||
streaming: bool = True,
|
||||
) -> Mapping[str, Any] | Generator[str | Mapping[str, Any], None, None]:
|
||||
"""
|
||||
Generate App response.
|
||||
|
||||
:param app_model: App
|
||||
:param workflow: Workflow
|
||||
:param node_id: the node id
|
||||
:param user: account or end user
|
||||
:param args: request args
|
||||
:param streaming: is streamed
|
||||
"""
|
||||
if not node_id:
|
||||
raise ValueError("node_id is required")
|
||||
|
||||
if args.get("inputs") is None:
|
||||
raise ValueError("inputs is required")
|
||||
|
||||
# convert to app config
|
||||
pipeline_config = PipelineConfigManager.get_pipeline_config(
|
||||
pipeline=pipeline, workflow=workflow, start_node_id=args.get("start_node_id", "shared")
|
||||
)
|
||||
|
||||
with Session(db.engine) as session:
|
||||
dataset = pipeline.retrieve_dataset(session)
|
||||
if not dataset:
|
||||
raise ValueError("Pipeline dataset is required")
|
||||
|
||||
# init application generate entity - use RagPipelineGenerateEntity instead
|
||||
application_generate_entity = RagPipelineGenerateEntity(
|
||||
task_id=str(uuid.uuid4()),
|
||||
app_config=pipeline_config,
|
||||
pipeline_config=pipeline_config,
|
||||
datasource_type=args.get("datasource_type", ""),
|
||||
datasource_info=args.get("datasource_info", {}),
|
||||
dataset_id=dataset.id,
|
||||
batch=args.get("batch", ""),
|
||||
document_id=args.get("document_id"),
|
||||
inputs={},
|
||||
files=[],
|
||||
user_id=user.id,
|
||||
stream=streaming,
|
||||
invoke_from=InvokeFrom.DEBUGGER,
|
||||
call_depth=0,
|
||||
workflow_execution_id=str(uuid.uuid4()),
|
||||
single_iteration_run=RagPipelineGenerateEntity.SingleIterationRunEntity(
|
||||
node_id=node_id, inputs=args["inputs"]
|
||||
),
|
||||
)
|
||||
contexts.plugin_tool_providers.set({})
|
||||
contexts.plugin_tool_providers_lock.set(threading.Lock())
|
||||
# Create workflow node execution repository
|
||||
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
|
||||
|
||||
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
|
||||
session_factory=session_factory,
|
||||
user=user,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
triggered_from=WorkflowRunTriggeredFrom.RAG_PIPELINE_DEBUGGING,
|
||||
)
|
||||
|
||||
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
|
||||
session_factory=session_factory,
|
||||
user=user,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
triggered_from=WorkflowNodeExecutionTriggeredFrom.SINGLE_STEP,
|
||||
)
|
||||
draft_var_srv = WorkflowDraftVariableService(db.session())
|
||||
draft_var_srv.prefill_conversation_variable_default_values(workflow)
|
||||
var_loader = DraftVarLoader(
|
||||
engine=db.engine,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
tenant_id=application_generate_entity.app_config.tenant_id,
|
||||
)
|
||||
|
||||
return self._generate(
|
||||
flask_app=current_app._get_current_object(), # type: ignore
|
||||
pipeline=pipeline,
|
||||
workflow_id=workflow.id,
|
||||
user=user,
|
||||
invoke_from=InvokeFrom.DEBUGGER,
|
||||
application_generate_entity=application_generate_entity,
|
||||
workflow_execution_repository=workflow_execution_repository,
|
||||
workflow_node_execution_repository=workflow_node_execution_repository,
|
||||
streaming=streaming,
|
||||
variable_loader=var_loader,
|
||||
context=contextvars.copy_context(),
|
||||
)
|
||||
|
||||
def single_loop_generate(
|
||||
self,
|
||||
pipeline: Pipeline,
|
||||
workflow: Workflow,
|
||||
node_id: str,
|
||||
user: Account | EndUser,
|
||||
args: Mapping[str, Any],
|
||||
streaming: bool = True,
|
||||
) -> Mapping[str, Any] | Generator[str | Mapping[str, Any], None, None]:
|
||||
"""
|
||||
Generate App response.
|
||||
|
||||
:param app_model: App
|
||||
:param workflow: Workflow
|
||||
:param node_id: the node id
|
||||
:param user: account or end user
|
||||
:param args: request args
|
||||
:param streaming: is streamed
|
||||
"""
|
||||
if not node_id:
|
||||
raise ValueError("node_id is required")
|
||||
|
||||
if args.get("inputs") is None:
|
||||
raise ValueError("inputs is required")
|
||||
|
||||
with Session(db.engine) as session:
|
||||
dataset = pipeline.retrieve_dataset(session)
|
||||
if not dataset:
|
||||
raise ValueError("Pipeline dataset is required")
|
||||
|
||||
# convert to app config
|
||||
pipeline_config = PipelineConfigManager.get_pipeline_config(
|
||||
pipeline=pipeline, workflow=workflow, start_node_id=args.get("start_node_id", "shared")
|
||||
)
|
||||
|
||||
# init application generate entity
|
||||
application_generate_entity = RagPipelineGenerateEntity(
|
||||
task_id=str(uuid.uuid4()),
|
||||
app_config=pipeline_config,
|
||||
pipeline_config=pipeline_config,
|
||||
datasource_type=args.get("datasource_type", ""),
|
||||
datasource_info=args.get("datasource_info", {}),
|
||||
batch=args.get("batch", ""),
|
||||
document_id=args.get("document_id"),
|
||||
dataset_id=dataset.id,
|
||||
inputs={},
|
||||
files=[],
|
||||
user_id=user.id,
|
||||
stream=streaming,
|
||||
invoke_from=InvokeFrom.DEBUGGER,
|
||||
extras={"auto_generate_conversation_name": False},
|
||||
single_loop_run=RagPipelineGenerateEntity.SingleLoopRunEntity(node_id=node_id, inputs=args["inputs"]),
|
||||
workflow_execution_id=str(uuid.uuid4()),
|
||||
)
|
||||
contexts.plugin_tool_providers.set({})
|
||||
contexts.plugin_tool_providers_lock.set(threading.Lock())
|
||||
|
||||
# Create workflow node execution repository
|
||||
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
|
||||
|
||||
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
|
||||
session_factory=session_factory,
|
||||
user=user,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
triggered_from=WorkflowRunTriggeredFrom.RAG_PIPELINE_DEBUGGING,
|
||||
)
|
||||
|
||||
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
|
||||
session_factory=session_factory,
|
||||
user=user,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
triggered_from=WorkflowNodeExecutionTriggeredFrom.SINGLE_STEP,
|
||||
)
|
||||
draft_var_srv = WorkflowDraftVariableService(db.session())
|
||||
draft_var_srv.prefill_conversation_variable_default_values(workflow)
|
||||
var_loader = DraftVarLoader(
|
||||
engine=db.engine,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
tenant_id=application_generate_entity.app_config.tenant_id,
|
||||
)
|
||||
|
||||
return self._generate(
|
||||
flask_app=current_app._get_current_object(), # type: ignore
|
||||
pipeline=pipeline,
|
||||
workflow_id=workflow.id,
|
||||
user=user,
|
||||
invoke_from=InvokeFrom.DEBUGGER,
|
||||
application_generate_entity=application_generate_entity,
|
||||
workflow_execution_repository=workflow_execution_repository,
|
||||
workflow_node_execution_repository=workflow_node_execution_repository,
|
||||
streaming=streaming,
|
||||
variable_loader=var_loader,
|
||||
context=contextvars.copy_context(),
|
||||
)
|
||||
|
||||
def _generate_worker(
|
||||
self,
|
||||
flask_app: Flask,
|
||||
application_generate_entity: RagPipelineGenerateEntity,
|
||||
queue_manager: AppQueueManager,
|
||||
context: contextvars.Context,
|
||||
variable_loader: VariableLoader,
|
||||
workflow_execution_repository: WorkflowExecutionRepository,
|
||||
workflow_node_execution_repository: WorkflowNodeExecutionRepository,
|
||||
workflow_thread_pool_id: str | None = None,
|
||||
) -> None:
|
||||
"""
|
||||
Generate worker in a new thread.
|
||||
:param flask_app: Flask app
|
||||
:param application_generate_entity: application generate entity
|
||||
:param queue_manager: queue manager
|
||||
:param workflow_thread_pool_id: workflow thread pool id
|
||||
:return:
|
||||
"""
|
||||
|
||||
with preserve_flask_contexts(flask_app, context_vars=context):
|
||||
try:
|
||||
with Session(db.engine, expire_on_commit=False) as session:
|
||||
workflow = session.scalar(
|
||||
select(Workflow).where(
|
||||
Workflow.tenant_id == application_generate_entity.app_config.tenant_id,
|
||||
Workflow.app_id == application_generate_entity.app_config.app_id,
|
||||
Workflow.id == application_generate_entity.app_config.workflow_id,
|
||||
)
|
||||
)
|
||||
if workflow is None:
|
||||
raise ValueError("Workflow not found")
|
||||
|
||||
# Determine system_user_id based on invocation source
|
||||
is_external_api_call = application_generate_entity.invoke_from in {
|
||||
InvokeFrom.WEB_APP,
|
||||
InvokeFrom.SERVICE_API,
|
||||
}
|
||||
|
||||
if is_external_api_call:
|
||||
# For external API calls, use end user's session ID
|
||||
end_user = session.scalar(
|
||||
select(EndUser).where(EndUser.id == application_generate_entity.user_id)
|
||||
)
|
||||
system_user_id = end_user.session_id if end_user else ""
|
||||
else:
|
||||
# For internal calls, use the original user ID
|
||||
system_user_id = application_generate_entity.user_id
|
||||
# workflow app
|
||||
runner = PipelineRunner(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
workflow_thread_pool_id=workflow_thread_pool_id,
|
||||
variable_loader=variable_loader,
|
||||
workflow=workflow,
|
||||
system_user_id=system_user_id,
|
||||
workflow_execution_repository=workflow_execution_repository,
|
||||
workflow_node_execution_repository=workflow_node_execution_repository,
|
||||
)
|
||||
|
||||
runner.run()
|
||||
except GenerateTaskStoppedError:
|
||||
pass
|
||||
except InvokeAuthorizationError:
|
||||
queue_manager.publish_error(
|
||||
InvokeAuthorizationError("Incorrect API key provided"), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
except ValidationError as e:
|
||||
logger.exception("Validation Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
except ValueError as e:
|
||||
if dify_config.DEBUG:
|
||||
logger.exception("Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
except Exception as e:
|
||||
logger.exception("Unknown Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
finally:
|
||||
db.session.close()
|
||||
|
||||
def _handle_response(
|
||||
self,
|
||||
application_generate_entity: RagPipelineGenerateEntity,
|
||||
workflow: Workflow,
|
||||
queue_manager: AppQueueManager,
|
||||
user: Union[Account, EndUser],
|
||||
draft_var_saver_factory: DraftVariableSaverFactory,
|
||||
stream: bool = False,
|
||||
) -> Union[WorkflowAppBlockingResponse, Generator[WorkflowAppStreamResponse, None, None]]:
|
||||
"""
|
||||
Handle response.
|
||||
:param application_generate_entity: application generate entity
|
||||
:param workflow: workflow
|
||||
:param queue_manager: queue manager
|
||||
:param user: account or end user
|
||||
:param stream: is stream
|
||||
:return:
|
||||
"""
|
||||
# init generate task pipeline
|
||||
generate_task_pipeline = WorkflowAppGenerateTaskPipeline(
|
||||
application_generate_entity=application_generate_entity,
|
||||
workflow=workflow,
|
||||
queue_manager=queue_manager,
|
||||
user=user,
|
||||
stream=stream,
|
||||
draft_var_saver_factory=draft_var_saver_factory,
|
||||
)
|
||||
|
||||
try:
|
||||
return generate_task_pipeline.process()
|
||||
except ValueError as e:
|
||||
if len(e.args) > 0 and e.args[0] == "I/O operation on closed file.": # ignore this error
|
||||
raise GenerateTaskStoppedError()
|
||||
else:
|
||||
logger.exception(
|
||||
"Fails to process generate task pipeline, task_id: %r",
|
||||
application_generate_entity.task_id,
|
||||
)
|
||||
raise e
|
||||
|
||||
def _build_document(
|
||||
self,
|
||||
tenant_id: str,
|
||||
dataset_id: str,
|
||||
built_in_field_enabled: bool,
|
||||
datasource_type: str,
|
||||
datasource_info: Mapping[str, Any],
|
||||
created_from: str,
|
||||
position: int,
|
||||
account: Union[Account, EndUser],
|
||||
batch: str,
|
||||
document_form: str,
|
||||
):
|
||||
if datasource_type == "local_file":
|
||||
name = datasource_info.get("name", "untitled")
|
||||
elif datasource_type == "online_document":
|
||||
name = datasource_info.get("page", {}).get("page_name", "untitled")
|
||||
elif datasource_type == "website_crawl":
|
||||
name = datasource_info.get("title", "untitled")
|
||||
elif datasource_type == "online_drive":
|
||||
name = datasource_info.get("name", "untitled")
|
||||
else:
|
||||
raise ValueError(f"Unsupported datasource type: {datasource_type}")
|
||||
|
||||
document = Document(
|
||||
tenant_id=tenant_id,
|
||||
dataset_id=dataset_id,
|
||||
position=position,
|
||||
data_source_type=datasource_type,
|
||||
data_source_info=json.dumps(datasource_info),
|
||||
batch=batch,
|
||||
name=name,
|
||||
created_from=created_from,
|
||||
created_by=account.id,
|
||||
doc_form=document_form,
|
||||
)
|
||||
doc_metadata = {}
|
||||
if built_in_field_enabled:
|
||||
doc_metadata = {
|
||||
BuiltInField.document_name: name,
|
||||
BuiltInField.uploader: account.name,
|
||||
BuiltInField.upload_date: datetime.datetime.now(datetime.UTC).strftime("%Y-%m-%d %H:%M:%S"),
|
||||
BuiltInField.last_update_date: datetime.datetime.now(datetime.UTC).strftime("%Y-%m-%d %H:%M:%S"),
|
||||
BuiltInField.source: datasource_type,
|
||||
}
|
||||
if doc_metadata:
|
||||
document.doc_metadata = doc_metadata
|
||||
return document
|
||||
|
||||
def _format_datasource_info_list(
|
||||
self,
|
||||
datasource_type: str,
|
||||
datasource_info_list: list[Mapping[str, Any]],
|
||||
pipeline: Pipeline,
|
||||
workflow: Workflow,
|
||||
start_node_id: str,
|
||||
user: Union[Account, EndUser],
|
||||
) -> list[Mapping[str, Any]]:
|
||||
"""
|
||||
Format datasource info list.
|
||||
"""
|
||||
if datasource_type == "online_drive":
|
||||
all_files: list[Mapping[str, Any]] = []
|
||||
datasource_node_data = None
|
||||
datasource_nodes = workflow.graph_dict.get("nodes", [])
|
||||
for datasource_node in datasource_nodes:
|
||||
if datasource_node.get("id") == start_node_id:
|
||||
datasource_node_data = datasource_node.get("data", {})
|
||||
break
|
||||
if not datasource_node_data:
|
||||
raise ValueError("Datasource node data not found")
|
||||
|
||||
from core.datasource.datasource_manager import DatasourceManager
|
||||
|
||||
datasource_runtime = DatasourceManager.get_datasource_runtime(
|
||||
provider_id=f"{datasource_node_data.get('plugin_id')}/{datasource_node_data.get('provider_name')}",
|
||||
datasource_name=datasource_node_data.get("datasource_name"),
|
||||
tenant_id=pipeline.tenant_id,
|
||||
datasource_type=DatasourceProviderType(datasource_type),
|
||||
)
|
||||
datasource_provider_service = DatasourceProviderService()
|
||||
credentials = datasource_provider_service.get_datasource_credentials(
|
||||
tenant_id=pipeline.tenant_id,
|
||||
provider=datasource_node_data.get("provider_name"),
|
||||
plugin_id=datasource_node_data.get("plugin_id"),
|
||||
credential_id=datasource_node_data.get("credential_id"),
|
||||
)
|
||||
if credentials:
|
||||
datasource_runtime.runtime.credentials = credentials
|
||||
datasource_runtime = cast(OnlineDriveDatasourcePlugin, datasource_runtime)
|
||||
|
||||
for datasource_info in datasource_info_list:
|
||||
if datasource_info.get("id") and datasource_info.get("type") == "folder":
|
||||
# get all files in the folder
|
||||
self._get_files_in_folder(
|
||||
datasource_runtime,
|
||||
datasource_info.get("id", ""),
|
||||
datasource_info.get("bucket", None),
|
||||
user.id,
|
||||
all_files,
|
||||
datasource_info,
|
||||
None,
|
||||
)
|
||||
else:
|
||||
all_files.append(
|
||||
{
|
||||
"id": datasource_info.get("id", ""),
|
||||
"name": datasource_info.get("name", "untitled"),
|
||||
"bucket": datasource_info.get("bucket", None),
|
||||
}
|
||||
)
|
||||
return all_files
|
||||
else:
|
||||
return datasource_info_list
|
||||
|
||||
def _get_files_in_folder(
|
||||
self,
|
||||
datasource_runtime: OnlineDriveDatasourcePlugin,
|
||||
prefix: str,
|
||||
bucket: str | None,
|
||||
user_id: str,
|
||||
all_files: list,
|
||||
datasource_info: Mapping[str, Any],
|
||||
next_page_parameters: dict | None = None,
|
||||
):
|
||||
"""
|
||||
Get files in a folder.
|
||||
"""
|
||||
result_generator = datasource_runtime.online_drive_browse_files(
|
||||
user_id=user_id,
|
||||
request=OnlineDriveBrowseFilesRequest(
|
||||
bucket=bucket,
|
||||
prefix=prefix,
|
||||
max_keys=20,
|
||||
next_page_parameters=next_page_parameters,
|
||||
),
|
||||
provider_type=datasource_runtime.datasource_provider_type(),
|
||||
)
|
||||
is_truncated = False
|
||||
for result in result_generator:
|
||||
for files in result.result:
|
||||
for file in files.files:
|
||||
if file.type == "folder":
|
||||
self._get_files_in_folder(
|
||||
datasource_runtime,
|
||||
file.id,
|
||||
bucket,
|
||||
user_id,
|
||||
all_files,
|
||||
datasource_info,
|
||||
None,
|
||||
)
|
||||
else:
|
||||
all_files.append(
|
||||
{
|
||||
"id": file.id,
|
||||
"name": file.name,
|
||||
"bucket": bucket,
|
||||
}
|
||||
)
|
||||
is_truncated = files.is_truncated
|
||||
next_page_parameters = files.next_page_parameters
|
||||
|
||||
if is_truncated:
|
||||
self._get_files_in_folder(
|
||||
datasource_runtime, prefix, bucket, user_id, all_files, datasource_info, next_page_parameters
|
||||
)
|
||||
45
dify/api/core/app/apps/pipeline/pipeline_queue_manager.py
Normal file
45
dify/api/core/app/apps/pipeline/pipeline_queue_manager.py
Normal file
@@ -0,0 +1,45 @@
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
from core.app.apps.exc import GenerateTaskStoppedError
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom
|
||||
from core.app.entities.queue_entities import (
|
||||
AppQueueEvent,
|
||||
QueueErrorEvent,
|
||||
QueueMessageEndEvent,
|
||||
QueueStopEvent,
|
||||
QueueWorkflowFailedEvent,
|
||||
QueueWorkflowPartialSuccessEvent,
|
||||
QueueWorkflowSucceededEvent,
|
||||
WorkflowQueueMessage,
|
||||
)
|
||||
|
||||
|
||||
class PipelineQueueManager(AppQueueManager):
|
||||
def __init__(self, task_id: str, user_id: str, invoke_from: InvokeFrom, app_mode: str) -> None:
|
||||
super().__init__(task_id, user_id, invoke_from)
|
||||
|
||||
self._app_mode = app_mode
|
||||
|
||||
def _publish(self, event: AppQueueEvent, pub_from: PublishFrom) -> None:
|
||||
"""
|
||||
Publish event to queue
|
||||
:param event:
|
||||
:param pub_from:
|
||||
:return:
|
||||
"""
|
||||
message = WorkflowQueueMessage(task_id=self._task_id, app_mode=self._app_mode, event=event)
|
||||
|
||||
self._q.put(message)
|
||||
|
||||
if isinstance(
|
||||
event,
|
||||
QueueStopEvent
|
||||
| QueueErrorEvent
|
||||
| QueueMessageEndEvent
|
||||
| QueueWorkflowSucceededEvent
|
||||
| QueueWorkflowFailedEvent
|
||||
| QueueWorkflowPartialSuccessEvent,
|
||||
):
|
||||
self.stop_listen()
|
||||
|
||||
if pub_from == PublishFrom.APPLICATION_MANAGER and self._is_stopped():
|
||||
raise GenerateTaskStoppedError()
|
||||
287
dify/api/core/app/apps/pipeline/pipeline_runner.py
Normal file
287
dify/api/core/app/apps/pipeline/pipeline_runner.py
Normal file
@@ -0,0 +1,287 @@
|
||||
import logging
|
||||
import time
|
||||
from typing import cast
|
||||
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager
|
||||
from core.app.apps.pipeline.pipeline_config_manager import PipelineConfig
|
||||
from core.app.apps.workflow_app_runner import WorkflowBasedAppRunner
|
||||
from core.app.entities.app_invoke_entities import (
|
||||
InvokeFrom,
|
||||
RagPipelineGenerateEntity,
|
||||
)
|
||||
from core.variables.variables import RAGPipelineVariable, RAGPipelineVariableInput
|
||||
from core.workflow.entities.graph_init_params import GraphInitParams
|
||||
from core.workflow.enums import WorkflowType
|
||||
from core.workflow.graph import Graph
|
||||
from core.workflow.graph_engine.layers.persistence import PersistenceWorkflowInfo, WorkflowPersistenceLayer
|
||||
from core.workflow.graph_events import GraphEngineEvent, GraphRunFailedEvent
|
||||
from core.workflow.nodes.node_factory import DifyNodeFactory
|
||||
from core.workflow.repositories.workflow_execution_repository import WorkflowExecutionRepository
|
||||
from core.workflow.repositories.workflow_node_execution_repository import WorkflowNodeExecutionRepository
|
||||
from core.workflow.runtime import GraphRuntimeState, VariablePool
|
||||
from core.workflow.system_variable import SystemVariable
|
||||
from core.workflow.variable_loader import VariableLoader
|
||||
from core.workflow.workflow_entry import WorkflowEntry
|
||||
from extensions.ext_database import db
|
||||
from models.dataset import Document, Pipeline
|
||||
from models.enums import UserFrom
|
||||
from models.model import EndUser
|
||||
from models.workflow import Workflow
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class PipelineRunner(WorkflowBasedAppRunner):
|
||||
"""
|
||||
Pipeline Application Runner
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
application_generate_entity: RagPipelineGenerateEntity,
|
||||
queue_manager: AppQueueManager,
|
||||
variable_loader: VariableLoader,
|
||||
workflow: Workflow,
|
||||
system_user_id: str,
|
||||
workflow_execution_repository: WorkflowExecutionRepository,
|
||||
workflow_node_execution_repository: WorkflowNodeExecutionRepository,
|
||||
workflow_thread_pool_id: str | None = None,
|
||||
) -> None:
|
||||
"""
|
||||
:param application_generate_entity: application generate entity
|
||||
:param queue_manager: application queue manager
|
||||
:param workflow_thread_pool_id: workflow thread pool id
|
||||
"""
|
||||
super().__init__(
|
||||
queue_manager=queue_manager,
|
||||
variable_loader=variable_loader,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
)
|
||||
self.application_generate_entity = application_generate_entity
|
||||
self.workflow_thread_pool_id = workflow_thread_pool_id
|
||||
self._workflow = workflow
|
||||
self._sys_user_id = system_user_id
|
||||
self._workflow_execution_repository = workflow_execution_repository
|
||||
self._workflow_node_execution_repository = workflow_node_execution_repository
|
||||
|
||||
def _get_app_id(self) -> str:
|
||||
return self.application_generate_entity.app_config.app_id
|
||||
|
||||
def run(self) -> None:
|
||||
"""
|
||||
Run application
|
||||
"""
|
||||
app_config = self.application_generate_entity.app_config
|
||||
app_config = cast(PipelineConfig, app_config)
|
||||
|
||||
user_id = None
|
||||
if self.application_generate_entity.invoke_from in {InvokeFrom.WEB_APP, InvokeFrom.SERVICE_API}:
|
||||
end_user = db.session.query(EndUser).where(EndUser.id == self.application_generate_entity.user_id).first()
|
||||
if end_user:
|
||||
user_id = end_user.session_id
|
||||
else:
|
||||
user_id = self.application_generate_entity.user_id
|
||||
|
||||
pipeline = db.session.query(Pipeline).where(Pipeline.id == app_config.app_id).first()
|
||||
if not pipeline:
|
||||
raise ValueError("Pipeline not found")
|
||||
|
||||
workflow = self.get_workflow(pipeline=pipeline, workflow_id=app_config.workflow_id)
|
||||
if not workflow:
|
||||
raise ValueError("Workflow not initialized")
|
||||
|
||||
db.session.close()
|
||||
|
||||
# if only single iteration run is requested
|
||||
if self.application_generate_entity.single_iteration_run or self.application_generate_entity.single_loop_run:
|
||||
# Handle single iteration or single loop run
|
||||
graph, variable_pool, graph_runtime_state = self._prepare_single_node_execution(
|
||||
workflow=workflow,
|
||||
single_iteration_run=self.application_generate_entity.single_iteration_run,
|
||||
single_loop_run=self.application_generate_entity.single_loop_run,
|
||||
)
|
||||
else:
|
||||
inputs = self.application_generate_entity.inputs
|
||||
files = self.application_generate_entity.files
|
||||
|
||||
# Create a variable pool.
|
||||
system_inputs = SystemVariable(
|
||||
files=files,
|
||||
user_id=user_id,
|
||||
app_id=app_config.app_id,
|
||||
workflow_id=app_config.workflow_id,
|
||||
workflow_execution_id=self.application_generate_entity.workflow_execution_id,
|
||||
document_id=self.application_generate_entity.document_id,
|
||||
original_document_id=self.application_generate_entity.original_document_id,
|
||||
batch=self.application_generate_entity.batch,
|
||||
dataset_id=self.application_generate_entity.dataset_id,
|
||||
datasource_type=self.application_generate_entity.datasource_type,
|
||||
datasource_info=self.application_generate_entity.datasource_info,
|
||||
invoke_from=self.application_generate_entity.invoke_from.value,
|
||||
)
|
||||
|
||||
rag_pipeline_variables = []
|
||||
if workflow.rag_pipeline_variables:
|
||||
for v in workflow.rag_pipeline_variables:
|
||||
rag_pipeline_variable = RAGPipelineVariable.model_validate(v)
|
||||
if (
|
||||
rag_pipeline_variable.belong_to_node_id
|
||||
in (self.application_generate_entity.start_node_id, "shared")
|
||||
) and rag_pipeline_variable.variable in inputs:
|
||||
rag_pipeline_variables.append(
|
||||
RAGPipelineVariableInput(
|
||||
variable=rag_pipeline_variable,
|
||||
value=inputs[rag_pipeline_variable.variable],
|
||||
)
|
||||
)
|
||||
|
||||
variable_pool = VariablePool(
|
||||
system_variables=system_inputs,
|
||||
user_inputs=inputs,
|
||||
environment_variables=workflow.environment_variables,
|
||||
conversation_variables=[],
|
||||
rag_pipeline_variables=rag_pipeline_variables,
|
||||
)
|
||||
graph_runtime_state = GraphRuntimeState(variable_pool=variable_pool, start_at=time.perf_counter())
|
||||
|
||||
# init graph
|
||||
graph = self._init_rag_pipeline_graph(
|
||||
graph_runtime_state=graph_runtime_state,
|
||||
start_node_id=self.application_generate_entity.start_node_id,
|
||||
workflow=workflow,
|
||||
)
|
||||
|
||||
# RUN WORKFLOW
|
||||
workflow_entry = WorkflowEntry(
|
||||
tenant_id=workflow.tenant_id,
|
||||
app_id=workflow.app_id,
|
||||
workflow_id=workflow.id,
|
||||
graph=graph,
|
||||
graph_config=workflow.graph_dict,
|
||||
user_id=self.application_generate_entity.user_id,
|
||||
user_from=(
|
||||
UserFrom.ACCOUNT
|
||||
if self.application_generate_entity.invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER}
|
||||
else UserFrom.END_USER
|
||||
),
|
||||
invoke_from=self.application_generate_entity.invoke_from,
|
||||
call_depth=self.application_generate_entity.call_depth,
|
||||
graph_runtime_state=graph_runtime_state,
|
||||
variable_pool=variable_pool,
|
||||
)
|
||||
|
||||
self._queue_manager.graph_runtime_state = graph_runtime_state
|
||||
|
||||
persistence_layer = WorkflowPersistenceLayer(
|
||||
application_generate_entity=self.application_generate_entity,
|
||||
workflow_info=PersistenceWorkflowInfo(
|
||||
workflow_id=workflow.id,
|
||||
workflow_type=WorkflowType(workflow.type),
|
||||
version=workflow.version,
|
||||
graph_data=workflow.graph_dict,
|
||||
),
|
||||
workflow_execution_repository=self._workflow_execution_repository,
|
||||
workflow_node_execution_repository=self._workflow_node_execution_repository,
|
||||
trace_manager=self.application_generate_entity.trace_manager,
|
||||
)
|
||||
|
||||
workflow_entry.graph_engine.layer(persistence_layer)
|
||||
|
||||
generator = workflow_entry.run()
|
||||
|
||||
for event in generator:
|
||||
self._update_document_status(
|
||||
event, self.application_generate_entity.document_id, self.application_generate_entity.dataset_id
|
||||
)
|
||||
self._handle_event(workflow_entry, event)
|
||||
|
||||
def get_workflow(self, pipeline: Pipeline, workflow_id: str) -> Workflow | None:
|
||||
"""
|
||||
Get workflow
|
||||
"""
|
||||
# fetch workflow by workflow_id
|
||||
workflow = (
|
||||
db.session.query(Workflow)
|
||||
.where(Workflow.tenant_id == pipeline.tenant_id, Workflow.app_id == pipeline.id, Workflow.id == workflow_id)
|
||||
.first()
|
||||
)
|
||||
|
||||
# return workflow
|
||||
return workflow
|
||||
|
||||
def _init_rag_pipeline_graph(
|
||||
self, workflow: Workflow, graph_runtime_state: GraphRuntimeState, start_node_id: str | None = None
|
||||
) -> Graph:
|
||||
"""
|
||||
Init pipeline graph
|
||||
"""
|
||||
graph_config = workflow.graph_dict
|
||||
if "nodes" not in graph_config or "edges" not in graph_config:
|
||||
raise ValueError("nodes or edges not found in workflow graph")
|
||||
|
||||
if not isinstance(graph_config.get("nodes"), list):
|
||||
raise ValueError("nodes in workflow graph must be a list")
|
||||
|
||||
if not isinstance(graph_config.get("edges"), list):
|
||||
raise ValueError("edges in workflow graph must be a list")
|
||||
# nodes = graph_config.get("nodes", [])
|
||||
# edges = graph_config.get("edges", [])
|
||||
# real_run_nodes = []
|
||||
# real_edges = []
|
||||
# exclude_node_ids = []
|
||||
# for node in nodes:
|
||||
# node_id = node.get("id")
|
||||
# node_type = node.get("data", {}).get("type", "")
|
||||
# if node_type == "datasource":
|
||||
# if start_node_id != node_id:
|
||||
# exclude_node_ids.append(node_id)
|
||||
# continue
|
||||
# real_run_nodes.append(node)
|
||||
|
||||
# for edge in edges:
|
||||
# if edge.get("source") in exclude_node_ids:
|
||||
# continue
|
||||
# real_edges.append(edge)
|
||||
# graph_config = dict(graph_config)
|
||||
# graph_config["nodes"] = real_run_nodes
|
||||
# graph_config["edges"] = real_edges
|
||||
# init graph
|
||||
# Create required parameters for Graph.init
|
||||
graph_init_params = GraphInitParams(
|
||||
tenant_id=workflow.tenant_id,
|
||||
app_id=self._app_id,
|
||||
workflow_id=workflow.id,
|
||||
graph_config=graph_config,
|
||||
user_id=self.application_generate_entity.user_id,
|
||||
user_from=UserFrom.ACCOUNT,
|
||||
invoke_from=InvokeFrom.SERVICE_API,
|
||||
call_depth=0,
|
||||
)
|
||||
|
||||
node_factory = DifyNodeFactory(
|
||||
graph_init_params=graph_init_params,
|
||||
graph_runtime_state=graph_runtime_state,
|
||||
)
|
||||
graph = Graph.init(graph_config=graph_config, node_factory=node_factory, root_node_id=start_node_id)
|
||||
|
||||
if not graph:
|
||||
raise ValueError("graph not found in workflow")
|
||||
|
||||
return graph
|
||||
|
||||
def _update_document_status(self, event: GraphEngineEvent, document_id: str | None, dataset_id: str | None) -> None:
|
||||
"""
|
||||
Update document status
|
||||
"""
|
||||
if isinstance(event, GraphRunFailedEvent):
|
||||
if document_id and dataset_id:
|
||||
document = (
|
||||
db.session.query(Document)
|
||||
.where(Document.id == document_id, Document.dataset_id == dataset_id)
|
||||
.first()
|
||||
)
|
||||
if document:
|
||||
document.indexing_status = "error"
|
||||
document.error = event.error or "Unknown error"
|
||||
db.session.add(document)
|
||||
db.session.commit()
|
||||
0
dify/api/core/app/apps/workflow/__init__.py
Normal file
0
dify/api/core/app/apps/workflow/__init__.py
Normal file
67
dify/api/core/app/apps/workflow/app_config_manager.py
Normal file
67
dify/api/core/app/apps/workflow/app_config_manager.py
Normal file
@@ -0,0 +1,67 @@
|
||||
from core.app.app_config.base_app_config_manager import BaseAppConfigManager
|
||||
from core.app.app_config.common.sensitive_word_avoidance.manager import SensitiveWordAvoidanceConfigManager
|
||||
from core.app.app_config.entities import WorkflowUIBasedAppConfig
|
||||
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
|
||||
from core.app.app_config.features.text_to_speech.manager import TextToSpeechConfigManager
|
||||
from core.app.app_config.workflow_ui_based_app.variables.manager import WorkflowVariablesConfigManager
|
||||
from models.model import App, AppMode
|
||||
from models.workflow import Workflow
|
||||
|
||||
|
||||
class WorkflowAppConfig(WorkflowUIBasedAppConfig):
|
||||
"""
|
||||
Workflow App Config Entity.
|
||||
"""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class WorkflowAppConfigManager(BaseAppConfigManager):
|
||||
@classmethod
|
||||
def get_app_config(cls, app_model: App, workflow: Workflow) -> WorkflowAppConfig:
|
||||
features_dict = workflow.features_dict
|
||||
|
||||
app_mode = AppMode.value_of(app_model.mode)
|
||||
app_config = WorkflowAppConfig(
|
||||
tenant_id=app_model.tenant_id,
|
||||
app_id=app_model.id,
|
||||
app_mode=app_mode,
|
||||
workflow_id=workflow.id,
|
||||
sensitive_word_avoidance=SensitiveWordAvoidanceConfigManager.convert(config=features_dict),
|
||||
variables=WorkflowVariablesConfigManager.convert(workflow=workflow),
|
||||
additional_features=cls.convert_features(features_dict, app_mode),
|
||||
)
|
||||
|
||||
return app_config
|
||||
|
||||
@classmethod
|
||||
def config_validate(cls, tenant_id: str, config: dict, only_structure_validate: bool = False):
|
||||
"""
|
||||
Validate for workflow app model config
|
||||
|
||||
:param tenant_id: tenant id
|
||||
:param config: app model config args
|
||||
:param only_structure_validate: only validate the structure of the config
|
||||
"""
|
||||
related_config_keys = []
|
||||
|
||||
# file upload validation
|
||||
config, current_related_config_keys = FileUploadConfigManager.validate_and_set_defaults(config=config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# text_to_speech
|
||||
config, current_related_config_keys = TextToSpeechConfigManager.validate_and_set_defaults(config)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
# moderation validation
|
||||
config, current_related_config_keys = SensitiveWordAvoidanceConfigManager.validate_and_set_defaults(
|
||||
tenant_id=tenant_id, config=config, only_structure_validate=only_structure_validate
|
||||
)
|
||||
related_config_keys.extend(current_related_config_keys)
|
||||
|
||||
related_config_keys = list(set(related_config_keys))
|
||||
|
||||
# Filter out extra parameters
|
||||
filtered_config = {key: config.get(key) for key in related_config_keys}
|
||||
|
||||
return filtered_config
|
||||
574
dify/api/core/app/apps/workflow/app_generator.py
Normal file
574
dify/api/core/app/apps/workflow/app_generator.py
Normal file
@@ -0,0 +1,574 @@
|
||||
import contextvars
|
||||
import logging
|
||||
import threading
|
||||
import uuid
|
||||
from collections.abc import Generator, Mapping, Sequence
|
||||
from typing import Any, Literal, Union, overload
|
||||
|
||||
from flask import Flask, current_app
|
||||
from pydantic import ValidationError
|
||||
from sqlalchemy import select
|
||||
from sqlalchemy.orm import Session, sessionmaker
|
||||
|
||||
import contexts
|
||||
from configs import dify_config
|
||||
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
|
||||
from core.app.apps.base_app_generator import BaseAppGenerator
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
from core.app.apps.exc import GenerateTaskStoppedError
|
||||
from core.app.apps.workflow.app_config_manager import WorkflowAppConfigManager
|
||||
from core.app.apps.workflow.app_queue_manager import WorkflowAppQueueManager
|
||||
from core.app.apps.workflow.app_runner import WorkflowAppRunner
|
||||
from core.app.apps.workflow.generate_response_converter import WorkflowAppGenerateResponseConverter
|
||||
from core.app.apps.workflow.generate_task_pipeline import WorkflowAppGenerateTaskPipeline
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom, WorkflowAppGenerateEntity
|
||||
from core.app.entities.task_entities import WorkflowAppBlockingResponse, WorkflowAppStreamResponse
|
||||
from core.helper.trace_id_helper import extract_external_trace_id_from_args
|
||||
from core.model_runtime.errors.invoke import InvokeAuthorizationError
|
||||
from core.ops.ops_trace_manager import TraceQueueManager
|
||||
from core.repositories import DifyCoreRepositoryFactory
|
||||
from core.workflow.graph_engine.layers.base import GraphEngineLayer
|
||||
from core.workflow.repositories.draft_variable_repository import DraftVariableSaverFactory
|
||||
from core.workflow.repositories.workflow_execution_repository import WorkflowExecutionRepository
|
||||
from core.workflow.repositories.workflow_node_execution_repository import WorkflowNodeExecutionRepository
|
||||
from core.workflow.variable_loader import DUMMY_VARIABLE_LOADER, VariableLoader
|
||||
from extensions.ext_database import db
|
||||
from factories import file_factory
|
||||
from libs.flask_utils import preserve_flask_contexts
|
||||
from models import Account, App, EndUser, Workflow, WorkflowNodeExecutionTriggeredFrom
|
||||
from models.enums import WorkflowRunTriggeredFrom
|
||||
from services.workflow_draft_variable_service import DraftVarLoader, WorkflowDraftVariableService
|
||||
|
||||
SKIP_PREPARE_USER_INPUTS_KEY = "_skip_prepare_user_inputs"
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class WorkflowAppGenerator(BaseAppGenerator):
|
||||
@staticmethod
|
||||
def _should_prepare_user_inputs(args: Mapping[str, Any]) -> bool:
|
||||
return not bool(args.get(SKIP_PREPARE_USER_INPUTS_KEY))
|
||||
|
||||
@overload
|
||||
def generate(
|
||||
self,
|
||||
*,
|
||||
app_model: App,
|
||||
workflow: Workflow,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: Literal[True],
|
||||
call_depth: int,
|
||||
triggered_from: WorkflowRunTriggeredFrom | None = None,
|
||||
root_node_id: str | None = None,
|
||||
graph_engine_layers: Sequence[GraphEngineLayer] = (),
|
||||
) -> Generator[Mapping[str, Any] | str, None, None]: ...
|
||||
|
||||
@overload
|
||||
def generate(
|
||||
self,
|
||||
*,
|
||||
app_model: App,
|
||||
workflow: Workflow,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: Literal[False],
|
||||
call_depth: int,
|
||||
triggered_from: WorkflowRunTriggeredFrom | None = None,
|
||||
root_node_id: str | None = None,
|
||||
graph_engine_layers: Sequence[GraphEngineLayer] = (),
|
||||
) -> Mapping[str, Any]: ...
|
||||
|
||||
@overload
|
||||
def generate(
|
||||
self,
|
||||
*,
|
||||
app_model: App,
|
||||
workflow: Workflow,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: bool,
|
||||
call_depth: int,
|
||||
triggered_from: WorkflowRunTriggeredFrom | None = None,
|
||||
root_node_id: str | None = None,
|
||||
graph_engine_layers: Sequence[GraphEngineLayer] = (),
|
||||
) -> Union[Mapping[str, Any], Generator[Mapping[str, Any] | str, None, None]]: ...
|
||||
|
||||
def generate(
|
||||
self,
|
||||
*,
|
||||
app_model: App,
|
||||
workflow: Workflow,
|
||||
user: Union[Account, EndUser],
|
||||
args: Mapping[str, Any],
|
||||
invoke_from: InvokeFrom,
|
||||
streaming: bool = True,
|
||||
call_depth: int = 0,
|
||||
triggered_from: WorkflowRunTriggeredFrom | None = None,
|
||||
root_node_id: str | None = None,
|
||||
graph_engine_layers: Sequence[GraphEngineLayer] = (),
|
||||
) -> Union[Mapping[str, Any], Generator[Mapping[str, Any] | str, None, None]]:
|
||||
files: Sequence[Mapping[str, Any]] = args.get("files") or []
|
||||
|
||||
# parse files
|
||||
# TODO(QuantumGhost): Move file parsing logic to the API controller layer
|
||||
# for better separation of concerns.
|
||||
#
|
||||
# For implementation reference, see the `_parse_file` function and
|
||||
# `DraftWorkflowNodeRunApi` class which handle this properly.
|
||||
file_extra_config = FileUploadConfigManager.convert(workflow.features_dict, is_vision=False)
|
||||
system_files = file_factory.build_from_mappings(
|
||||
mappings=files,
|
||||
tenant_id=app_model.tenant_id,
|
||||
config=file_extra_config,
|
||||
strict_type_validation=True if invoke_from == InvokeFrom.SERVICE_API else False,
|
||||
)
|
||||
|
||||
# convert to app config
|
||||
app_config = WorkflowAppConfigManager.get_app_config(
|
||||
app_model=app_model,
|
||||
workflow=workflow,
|
||||
)
|
||||
|
||||
# get tracing instance
|
||||
trace_manager = TraceQueueManager(
|
||||
app_id=app_model.id,
|
||||
user_id=user.id if isinstance(user, Account) else user.session_id,
|
||||
)
|
||||
|
||||
inputs: Mapping[str, Any] = args["inputs"]
|
||||
|
||||
extras = {
|
||||
**extract_external_trace_id_from_args(args),
|
||||
}
|
||||
workflow_run_id = str(uuid.uuid4())
|
||||
# FIXME (Yeuoly): we need to remove the SKIP_PREPARE_USER_INPUTS_KEY from the args
|
||||
# trigger shouldn't prepare user inputs
|
||||
if self._should_prepare_user_inputs(args):
|
||||
inputs = self._prepare_user_inputs(
|
||||
user_inputs=inputs,
|
||||
variables=app_config.variables,
|
||||
tenant_id=app_model.tenant_id,
|
||||
strict_type_validation=True if invoke_from == InvokeFrom.SERVICE_API else False,
|
||||
)
|
||||
# init application generate entity
|
||||
application_generate_entity = WorkflowAppGenerateEntity(
|
||||
task_id=str(uuid.uuid4()),
|
||||
app_config=app_config,
|
||||
file_upload_config=file_extra_config,
|
||||
inputs=inputs,
|
||||
files=list(system_files),
|
||||
user_id=user.id,
|
||||
stream=streaming,
|
||||
invoke_from=invoke_from,
|
||||
call_depth=call_depth,
|
||||
trace_manager=trace_manager,
|
||||
workflow_execution_id=workflow_run_id,
|
||||
extras=extras,
|
||||
)
|
||||
|
||||
contexts.plugin_tool_providers.set({})
|
||||
contexts.plugin_tool_providers_lock.set(threading.Lock())
|
||||
|
||||
# Create repositories
|
||||
#
|
||||
# Create session factory
|
||||
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
|
||||
# Create workflow execution(aka workflow run) repository
|
||||
if triggered_from is not None:
|
||||
# Use explicitly provided triggered_from (for async triggers)
|
||||
workflow_triggered_from = triggered_from
|
||||
elif invoke_from == InvokeFrom.DEBUGGER:
|
||||
workflow_triggered_from = WorkflowRunTriggeredFrom.DEBUGGING
|
||||
else:
|
||||
workflow_triggered_from = WorkflowRunTriggeredFrom.APP_RUN
|
||||
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
|
||||
session_factory=session_factory,
|
||||
user=user,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
triggered_from=workflow_triggered_from,
|
||||
)
|
||||
# Create workflow node execution repository
|
||||
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
|
||||
session_factory=session_factory,
|
||||
user=user,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
triggered_from=WorkflowNodeExecutionTriggeredFrom.WORKFLOW_RUN,
|
||||
)
|
||||
|
||||
return self._generate(
|
||||
app_model=app_model,
|
||||
workflow=workflow,
|
||||
user=user,
|
||||
application_generate_entity=application_generate_entity,
|
||||
invoke_from=invoke_from,
|
||||
workflow_execution_repository=workflow_execution_repository,
|
||||
workflow_node_execution_repository=workflow_node_execution_repository,
|
||||
streaming=streaming,
|
||||
root_node_id=root_node_id,
|
||||
graph_engine_layers=graph_engine_layers,
|
||||
)
|
||||
|
||||
def resume(self, *, workflow_run_id: str) -> None:
|
||||
"""
|
||||
@TBD
|
||||
"""
|
||||
pass
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
*,
|
||||
app_model: App,
|
||||
workflow: Workflow,
|
||||
user: Union[Account, EndUser],
|
||||
application_generate_entity: WorkflowAppGenerateEntity,
|
||||
invoke_from: InvokeFrom,
|
||||
workflow_execution_repository: WorkflowExecutionRepository,
|
||||
workflow_node_execution_repository: WorkflowNodeExecutionRepository,
|
||||
streaming: bool = True,
|
||||
variable_loader: VariableLoader = DUMMY_VARIABLE_LOADER,
|
||||
root_node_id: str | None = None,
|
||||
graph_engine_layers: Sequence[GraphEngineLayer] = (),
|
||||
) -> Union[Mapping[str, Any], Generator[str | Mapping[str, Any], None, None]]:
|
||||
"""
|
||||
Generate App response.
|
||||
|
||||
:param app_model: App
|
||||
:param workflow: Workflow
|
||||
:param user: account or end user
|
||||
:param application_generate_entity: application generate entity
|
||||
:param invoke_from: invoke from source
|
||||
:param workflow_execution_repository: repository for workflow execution
|
||||
:param workflow_node_execution_repository: repository for workflow node execution
|
||||
:param streaming: is stream
|
||||
"""
|
||||
# init queue manager
|
||||
queue_manager = WorkflowAppQueueManager(
|
||||
task_id=application_generate_entity.task_id,
|
||||
user_id=application_generate_entity.user_id,
|
||||
invoke_from=application_generate_entity.invoke_from,
|
||||
app_mode=app_model.mode,
|
||||
)
|
||||
|
||||
# new thread with request context and contextvars
|
||||
context = contextvars.copy_context()
|
||||
|
||||
# release database connection, because the following new thread operations may take a long time
|
||||
db.session.close()
|
||||
|
||||
worker_thread = threading.Thread(
|
||||
target=self._generate_worker,
|
||||
kwargs={
|
||||
"flask_app": current_app._get_current_object(), # type: ignore
|
||||
"application_generate_entity": application_generate_entity,
|
||||
"queue_manager": queue_manager,
|
||||
"context": context,
|
||||
"variable_loader": variable_loader,
|
||||
"root_node_id": root_node_id,
|
||||
"workflow_execution_repository": workflow_execution_repository,
|
||||
"workflow_node_execution_repository": workflow_node_execution_repository,
|
||||
"graph_engine_layers": graph_engine_layers,
|
||||
},
|
||||
)
|
||||
|
||||
worker_thread.start()
|
||||
|
||||
draft_var_saver_factory = self._get_draft_var_saver_factory(invoke_from, user)
|
||||
|
||||
# return response or stream generator
|
||||
response = self._handle_response(
|
||||
application_generate_entity=application_generate_entity,
|
||||
workflow=workflow,
|
||||
queue_manager=queue_manager,
|
||||
user=user,
|
||||
draft_var_saver_factory=draft_var_saver_factory,
|
||||
stream=streaming,
|
||||
)
|
||||
|
||||
return WorkflowAppGenerateResponseConverter.convert(response=response, invoke_from=invoke_from)
|
||||
|
||||
def single_iteration_generate(
|
||||
self,
|
||||
app_model: App,
|
||||
workflow: Workflow,
|
||||
node_id: str,
|
||||
user: Account | EndUser,
|
||||
args: Mapping[str, Any],
|
||||
streaming: bool = True,
|
||||
) -> Mapping[str, Any] | Generator[str | Mapping[str, Any], None, None]:
|
||||
"""
|
||||
Generate App response.
|
||||
|
||||
:param app_model: App
|
||||
:param workflow: Workflow
|
||||
:param node_id: the node id
|
||||
:param user: account or end user
|
||||
:param args: request args
|
||||
:param streaming: is streamed
|
||||
"""
|
||||
if not node_id:
|
||||
raise ValueError("node_id is required")
|
||||
|
||||
if args.get("inputs") is None:
|
||||
raise ValueError("inputs is required")
|
||||
|
||||
# convert to app config
|
||||
app_config = WorkflowAppConfigManager.get_app_config(app_model=app_model, workflow=workflow)
|
||||
|
||||
# init application generate entity
|
||||
application_generate_entity = WorkflowAppGenerateEntity(
|
||||
task_id=str(uuid.uuid4()),
|
||||
app_config=app_config,
|
||||
inputs={},
|
||||
files=[],
|
||||
user_id=user.id,
|
||||
stream=streaming,
|
||||
invoke_from=InvokeFrom.DEBUGGER,
|
||||
extras={"auto_generate_conversation_name": False},
|
||||
single_iteration_run=WorkflowAppGenerateEntity.SingleIterationRunEntity(
|
||||
node_id=node_id, inputs=args["inputs"]
|
||||
),
|
||||
workflow_execution_id=str(uuid.uuid4()),
|
||||
)
|
||||
contexts.plugin_tool_providers.set({})
|
||||
contexts.plugin_tool_providers_lock.set(threading.Lock())
|
||||
|
||||
# Create repositories
|
||||
#
|
||||
# Create session factory
|
||||
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
|
||||
# Create workflow execution(aka workflow run) repository
|
||||
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
|
||||
session_factory=session_factory,
|
||||
user=user,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
triggered_from=WorkflowRunTriggeredFrom.DEBUGGING,
|
||||
)
|
||||
# Create workflow node execution repository
|
||||
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
|
||||
session_factory=session_factory,
|
||||
user=user,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
triggered_from=WorkflowNodeExecutionTriggeredFrom.SINGLE_STEP,
|
||||
)
|
||||
draft_var_srv = WorkflowDraftVariableService(db.session())
|
||||
draft_var_srv.prefill_conversation_variable_default_values(workflow)
|
||||
var_loader = DraftVarLoader(
|
||||
engine=db.engine,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
tenant_id=application_generate_entity.app_config.tenant_id,
|
||||
)
|
||||
|
||||
return self._generate(
|
||||
app_model=app_model,
|
||||
workflow=workflow,
|
||||
user=user,
|
||||
invoke_from=InvokeFrom.DEBUGGER,
|
||||
application_generate_entity=application_generate_entity,
|
||||
workflow_execution_repository=workflow_execution_repository,
|
||||
workflow_node_execution_repository=workflow_node_execution_repository,
|
||||
streaming=streaming,
|
||||
variable_loader=var_loader,
|
||||
)
|
||||
|
||||
def single_loop_generate(
|
||||
self,
|
||||
app_model: App,
|
||||
workflow: Workflow,
|
||||
node_id: str,
|
||||
user: Account | EndUser,
|
||||
args: Mapping[str, Any],
|
||||
streaming: bool = True,
|
||||
) -> Mapping[str, Any] | Generator[str | Mapping[str, Any], None, None]:
|
||||
"""
|
||||
Generate App response.
|
||||
|
||||
:param app_model: App
|
||||
:param workflow: Workflow
|
||||
:param node_id: the node id
|
||||
:param user: account or end user
|
||||
:param args: request args
|
||||
:param streaming: is streamed
|
||||
"""
|
||||
if not node_id:
|
||||
raise ValueError("node_id is required")
|
||||
|
||||
if args.get("inputs") is None:
|
||||
raise ValueError("inputs is required")
|
||||
|
||||
# convert to app config
|
||||
app_config = WorkflowAppConfigManager.get_app_config(app_model=app_model, workflow=workflow)
|
||||
|
||||
# init application generate entity
|
||||
application_generate_entity = WorkflowAppGenerateEntity(
|
||||
task_id=str(uuid.uuid4()),
|
||||
app_config=app_config,
|
||||
inputs={},
|
||||
files=[],
|
||||
user_id=user.id,
|
||||
stream=streaming,
|
||||
invoke_from=InvokeFrom.DEBUGGER,
|
||||
extras={"auto_generate_conversation_name": False},
|
||||
single_loop_run=WorkflowAppGenerateEntity.SingleLoopRunEntity(node_id=node_id, inputs=args["inputs"]),
|
||||
workflow_execution_id=str(uuid.uuid4()),
|
||||
)
|
||||
contexts.plugin_tool_providers.set({})
|
||||
contexts.plugin_tool_providers_lock.set(threading.Lock())
|
||||
|
||||
# Create repositories
|
||||
#
|
||||
# Create session factory
|
||||
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
|
||||
# Create workflow execution(aka workflow run) repository
|
||||
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
|
||||
session_factory=session_factory,
|
||||
user=user,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
triggered_from=WorkflowRunTriggeredFrom.DEBUGGING,
|
||||
)
|
||||
# Create workflow node execution repository
|
||||
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
|
||||
session_factory=session_factory,
|
||||
user=user,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
triggered_from=WorkflowNodeExecutionTriggeredFrom.SINGLE_STEP,
|
||||
)
|
||||
draft_var_srv = WorkflowDraftVariableService(db.session())
|
||||
draft_var_srv.prefill_conversation_variable_default_values(workflow)
|
||||
var_loader = DraftVarLoader(
|
||||
engine=db.engine,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
tenant_id=application_generate_entity.app_config.tenant_id,
|
||||
)
|
||||
return self._generate(
|
||||
app_model=app_model,
|
||||
workflow=workflow,
|
||||
user=user,
|
||||
invoke_from=InvokeFrom.DEBUGGER,
|
||||
application_generate_entity=application_generate_entity,
|
||||
workflow_execution_repository=workflow_execution_repository,
|
||||
workflow_node_execution_repository=workflow_node_execution_repository,
|
||||
streaming=streaming,
|
||||
variable_loader=var_loader,
|
||||
)
|
||||
|
||||
def _generate_worker(
|
||||
self,
|
||||
flask_app: Flask,
|
||||
application_generate_entity: WorkflowAppGenerateEntity,
|
||||
queue_manager: AppQueueManager,
|
||||
context: contextvars.Context,
|
||||
variable_loader: VariableLoader,
|
||||
workflow_execution_repository: WorkflowExecutionRepository,
|
||||
workflow_node_execution_repository: WorkflowNodeExecutionRepository,
|
||||
root_node_id: str | None = None,
|
||||
graph_engine_layers: Sequence[GraphEngineLayer] = (),
|
||||
) -> None:
|
||||
"""
|
||||
Generate worker in a new thread.
|
||||
:param flask_app: Flask app
|
||||
:param application_generate_entity: application generate entity
|
||||
:param queue_manager: queue manager
|
||||
:param workflow_thread_pool_id: workflow thread pool id
|
||||
:return:
|
||||
"""
|
||||
with preserve_flask_contexts(flask_app, context_vars=context):
|
||||
with Session(db.engine, expire_on_commit=False) as session:
|
||||
workflow = session.scalar(
|
||||
select(Workflow).where(
|
||||
Workflow.tenant_id == application_generate_entity.app_config.tenant_id,
|
||||
Workflow.app_id == application_generate_entity.app_config.app_id,
|
||||
Workflow.id == application_generate_entity.app_config.workflow_id,
|
||||
)
|
||||
)
|
||||
if workflow is None:
|
||||
raise ValueError("Workflow not found")
|
||||
|
||||
# Determine system_user_id based on invocation source
|
||||
is_external_api_call = application_generate_entity.invoke_from in {
|
||||
InvokeFrom.WEB_APP,
|
||||
InvokeFrom.SERVICE_API,
|
||||
}
|
||||
|
||||
if is_external_api_call:
|
||||
# For external API calls, use end user's session ID
|
||||
end_user = session.scalar(select(EndUser).where(EndUser.id == application_generate_entity.user_id))
|
||||
system_user_id = end_user.session_id if end_user else ""
|
||||
else:
|
||||
# For internal calls, use the original user ID
|
||||
system_user_id = application_generate_entity.user_id
|
||||
|
||||
runner = WorkflowAppRunner(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
variable_loader=variable_loader,
|
||||
workflow=workflow,
|
||||
system_user_id=system_user_id,
|
||||
workflow_execution_repository=workflow_execution_repository,
|
||||
workflow_node_execution_repository=workflow_node_execution_repository,
|
||||
root_node_id=root_node_id,
|
||||
graph_engine_layers=graph_engine_layers,
|
||||
)
|
||||
|
||||
try:
|
||||
runner.run()
|
||||
except GenerateTaskStoppedError as e:
|
||||
logger.warning("Task stopped: %s", str(e))
|
||||
pass
|
||||
except InvokeAuthorizationError:
|
||||
queue_manager.publish_error(
|
||||
InvokeAuthorizationError("Incorrect API key provided"), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
except ValidationError as e:
|
||||
logger.exception("Validation Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
except ValueError as e:
|
||||
if dify_config.DEBUG:
|
||||
logger.exception("Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
except Exception as e:
|
||||
logger.exception("Unknown Error when generating")
|
||||
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
|
||||
|
||||
def _handle_response(
|
||||
self,
|
||||
application_generate_entity: WorkflowAppGenerateEntity,
|
||||
workflow: Workflow,
|
||||
queue_manager: AppQueueManager,
|
||||
user: Union[Account, EndUser],
|
||||
draft_var_saver_factory: DraftVariableSaverFactory,
|
||||
stream: bool = False,
|
||||
) -> Union[WorkflowAppBlockingResponse, Generator[WorkflowAppStreamResponse, None, None]]:
|
||||
"""
|
||||
Handle response.
|
||||
:param application_generate_entity: application generate entity
|
||||
:param workflow: workflow
|
||||
:param queue_manager: queue manager
|
||||
:param user: account or end user
|
||||
:param stream: is stream
|
||||
:param workflow_node_execution_repository: optional repository for workflow node execution
|
||||
:return:
|
||||
"""
|
||||
# init generate task pipeline
|
||||
generate_task_pipeline = WorkflowAppGenerateTaskPipeline(
|
||||
application_generate_entity=application_generate_entity,
|
||||
workflow=workflow,
|
||||
queue_manager=queue_manager,
|
||||
user=user,
|
||||
draft_var_saver_factory=draft_var_saver_factory,
|
||||
stream=stream,
|
||||
)
|
||||
|
||||
try:
|
||||
return generate_task_pipeline.process()
|
||||
except ValueError as e:
|
||||
if len(e.args) > 0 and e.args[0] == "I/O operation on closed file.": # ignore this error
|
||||
raise GenerateTaskStoppedError()
|
||||
else:
|
||||
logger.exception(
|
||||
"Fails to process generate task pipeline, task_id: %s", application_generate_entity.task_id
|
||||
)
|
||||
raise e
|
||||
45
dify/api/core/app/apps/workflow/app_queue_manager.py
Normal file
45
dify/api/core/app/apps/workflow/app_queue_manager.py
Normal file
@@ -0,0 +1,45 @@
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
from core.app.apps.exc import GenerateTaskStoppedError
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom
|
||||
from core.app.entities.queue_entities import (
|
||||
AppQueueEvent,
|
||||
QueueErrorEvent,
|
||||
QueueMessageEndEvent,
|
||||
QueueStopEvent,
|
||||
QueueWorkflowFailedEvent,
|
||||
QueueWorkflowPartialSuccessEvent,
|
||||
QueueWorkflowSucceededEvent,
|
||||
WorkflowQueueMessage,
|
||||
)
|
||||
|
||||
|
||||
class WorkflowAppQueueManager(AppQueueManager):
|
||||
def __init__(self, task_id: str, user_id: str, invoke_from: InvokeFrom, app_mode: str):
|
||||
super().__init__(task_id, user_id, invoke_from)
|
||||
|
||||
self._app_mode = app_mode
|
||||
|
||||
def _publish(self, event: AppQueueEvent, pub_from: PublishFrom):
|
||||
"""
|
||||
Publish event to queue
|
||||
:param event:
|
||||
:param pub_from:
|
||||
:return:
|
||||
"""
|
||||
message = WorkflowQueueMessage(task_id=self._task_id, app_mode=self._app_mode, event=event)
|
||||
|
||||
self._q.put(message)
|
||||
|
||||
if isinstance(
|
||||
event,
|
||||
QueueStopEvent
|
||||
| QueueErrorEvent
|
||||
| QueueMessageEndEvent
|
||||
| QueueWorkflowSucceededEvent
|
||||
| QueueWorkflowFailedEvent
|
||||
| QueueWorkflowPartialSuccessEvent,
|
||||
):
|
||||
self.stop_listen()
|
||||
|
||||
if pub_from == PublishFrom.APPLICATION_MANAGER and self._is_stopped():
|
||||
raise GenerateTaskStoppedError()
|
||||
153
dify/api/core/app/apps/workflow/app_runner.py
Normal file
153
dify/api/core/app/apps/workflow/app_runner.py
Normal file
@@ -0,0 +1,153 @@
|
||||
import logging
|
||||
import time
|
||||
from collections.abc import Sequence
|
||||
from typing import cast
|
||||
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager
|
||||
from core.app.apps.workflow.app_config_manager import WorkflowAppConfig
|
||||
from core.app.apps.workflow_app_runner import WorkflowBasedAppRunner
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom, WorkflowAppGenerateEntity
|
||||
from core.workflow.enums import WorkflowType
|
||||
from core.workflow.graph_engine.command_channels.redis_channel import RedisChannel
|
||||
from core.workflow.graph_engine.layers.base import GraphEngineLayer
|
||||
from core.workflow.graph_engine.layers.persistence import PersistenceWorkflowInfo, WorkflowPersistenceLayer
|
||||
from core.workflow.repositories.workflow_execution_repository import WorkflowExecutionRepository
|
||||
from core.workflow.repositories.workflow_node_execution_repository import WorkflowNodeExecutionRepository
|
||||
from core.workflow.runtime import GraphRuntimeState, VariablePool
|
||||
from core.workflow.system_variable import SystemVariable
|
||||
from core.workflow.variable_loader import VariableLoader
|
||||
from core.workflow.workflow_entry import WorkflowEntry
|
||||
from extensions.ext_redis import redis_client
|
||||
from libs.datetime_utils import naive_utc_now
|
||||
from models.enums import UserFrom
|
||||
from models.workflow import Workflow
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class WorkflowAppRunner(WorkflowBasedAppRunner):
|
||||
"""
|
||||
Workflow Application Runner
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
application_generate_entity: WorkflowAppGenerateEntity,
|
||||
queue_manager: AppQueueManager,
|
||||
variable_loader: VariableLoader,
|
||||
workflow: Workflow,
|
||||
system_user_id: str,
|
||||
root_node_id: str | None = None,
|
||||
workflow_execution_repository: WorkflowExecutionRepository,
|
||||
workflow_node_execution_repository: WorkflowNodeExecutionRepository,
|
||||
graph_engine_layers: Sequence[GraphEngineLayer] = (),
|
||||
):
|
||||
super().__init__(
|
||||
queue_manager=queue_manager,
|
||||
variable_loader=variable_loader,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
graph_engine_layers=graph_engine_layers,
|
||||
)
|
||||
self.application_generate_entity = application_generate_entity
|
||||
self._workflow = workflow
|
||||
self._sys_user_id = system_user_id
|
||||
self._root_node_id = root_node_id
|
||||
self._workflow_execution_repository = workflow_execution_repository
|
||||
self._workflow_node_execution_repository = workflow_node_execution_repository
|
||||
|
||||
def run(self):
|
||||
"""
|
||||
Run application
|
||||
"""
|
||||
app_config = self.application_generate_entity.app_config
|
||||
app_config = cast(WorkflowAppConfig, app_config)
|
||||
|
||||
system_inputs = SystemVariable(
|
||||
files=self.application_generate_entity.files,
|
||||
user_id=self._sys_user_id,
|
||||
app_id=app_config.app_id,
|
||||
timestamp=int(naive_utc_now().timestamp()),
|
||||
workflow_id=app_config.workflow_id,
|
||||
workflow_execution_id=self.application_generate_entity.workflow_execution_id,
|
||||
)
|
||||
|
||||
# if only single iteration or single loop run is requested
|
||||
if self.application_generate_entity.single_iteration_run or self.application_generate_entity.single_loop_run:
|
||||
graph, variable_pool, graph_runtime_state = self._prepare_single_node_execution(
|
||||
workflow=self._workflow,
|
||||
single_iteration_run=self.application_generate_entity.single_iteration_run,
|
||||
single_loop_run=self.application_generate_entity.single_loop_run,
|
||||
)
|
||||
else:
|
||||
inputs = self.application_generate_entity.inputs
|
||||
|
||||
# Create a variable pool.
|
||||
|
||||
variable_pool = VariablePool(
|
||||
system_variables=system_inputs,
|
||||
user_inputs=inputs,
|
||||
environment_variables=self._workflow.environment_variables,
|
||||
conversation_variables=[],
|
||||
)
|
||||
|
||||
graph_runtime_state = GraphRuntimeState(variable_pool=variable_pool, start_at=time.perf_counter())
|
||||
|
||||
# init graph
|
||||
graph = self._init_graph(
|
||||
graph_config=self._workflow.graph_dict,
|
||||
graph_runtime_state=graph_runtime_state,
|
||||
workflow_id=self._workflow.id,
|
||||
tenant_id=self._workflow.tenant_id,
|
||||
user_id=self.application_generate_entity.user_id,
|
||||
root_node_id=self._root_node_id,
|
||||
)
|
||||
|
||||
# RUN WORKFLOW
|
||||
# Create Redis command channel for this workflow execution
|
||||
task_id = self.application_generate_entity.task_id
|
||||
channel_key = f"workflow:{task_id}:commands"
|
||||
command_channel = RedisChannel(redis_client, channel_key)
|
||||
|
||||
self._queue_manager.graph_runtime_state = graph_runtime_state
|
||||
|
||||
workflow_entry = WorkflowEntry(
|
||||
tenant_id=self._workflow.tenant_id,
|
||||
app_id=self._workflow.app_id,
|
||||
workflow_id=self._workflow.id,
|
||||
graph=graph,
|
||||
graph_config=self._workflow.graph_dict,
|
||||
user_id=self.application_generate_entity.user_id,
|
||||
user_from=(
|
||||
UserFrom.ACCOUNT
|
||||
if self.application_generate_entity.invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER}
|
||||
else UserFrom.END_USER
|
||||
),
|
||||
invoke_from=self.application_generate_entity.invoke_from,
|
||||
call_depth=self.application_generate_entity.call_depth,
|
||||
variable_pool=variable_pool,
|
||||
graph_runtime_state=graph_runtime_state,
|
||||
command_channel=command_channel,
|
||||
)
|
||||
|
||||
persistence_layer = WorkflowPersistenceLayer(
|
||||
application_generate_entity=self.application_generate_entity,
|
||||
workflow_info=PersistenceWorkflowInfo(
|
||||
workflow_id=self._workflow.id,
|
||||
workflow_type=WorkflowType(self._workflow.type),
|
||||
version=self._workflow.version,
|
||||
graph_data=self._workflow.graph_dict,
|
||||
),
|
||||
workflow_execution_repository=self._workflow_execution_repository,
|
||||
workflow_node_execution_repository=self._workflow_node_execution_repository,
|
||||
trace_manager=self.application_generate_entity.trace_manager,
|
||||
)
|
||||
|
||||
workflow_entry.graph_engine.layer(persistence_layer)
|
||||
for layer in self._graph_engine_layers:
|
||||
workflow_entry.graph_engine.layer(layer)
|
||||
|
||||
generator = workflow_entry.run()
|
||||
|
||||
for event in generator:
|
||||
self._handle_event(workflow_entry, event)
|
||||
@@ -0,0 +1,95 @@
|
||||
from collections.abc import Generator
|
||||
from typing import cast
|
||||
|
||||
from core.app.apps.base_app_generate_response_converter import AppGenerateResponseConverter
|
||||
from core.app.entities.task_entities import (
|
||||
AppStreamResponse,
|
||||
ErrorStreamResponse,
|
||||
NodeFinishStreamResponse,
|
||||
NodeStartStreamResponse,
|
||||
PingStreamResponse,
|
||||
WorkflowAppBlockingResponse,
|
||||
WorkflowAppStreamResponse,
|
||||
)
|
||||
|
||||
|
||||
class WorkflowAppGenerateResponseConverter(AppGenerateResponseConverter):
|
||||
_blocking_response_type = WorkflowAppBlockingResponse
|
||||
|
||||
@classmethod
|
||||
def convert_blocking_full_response(cls, blocking_response: WorkflowAppBlockingResponse): # type: ignore[override]
|
||||
"""
|
||||
Convert blocking full response.
|
||||
:param blocking_response: blocking response
|
||||
:return:
|
||||
"""
|
||||
return blocking_response.model_dump()
|
||||
|
||||
@classmethod
|
||||
def convert_blocking_simple_response(cls, blocking_response: WorkflowAppBlockingResponse): # type: ignore[override]
|
||||
"""
|
||||
Convert blocking simple response.
|
||||
:param blocking_response: blocking response
|
||||
:return:
|
||||
"""
|
||||
return cls.convert_blocking_full_response(blocking_response)
|
||||
|
||||
@classmethod
|
||||
def convert_stream_full_response(
|
||||
cls, stream_response: Generator[AppStreamResponse, None, None]
|
||||
) -> Generator[dict | str, None, None]:
|
||||
"""
|
||||
Convert stream full response.
|
||||
:param stream_response: stream response
|
||||
:return:
|
||||
"""
|
||||
for chunk in stream_response:
|
||||
chunk = cast(WorkflowAppStreamResponse, chunk)
|
||||
sub_stream_response = chunk.stream_response
|
||||
|
||||
if isinstance(sub_stream_response, PingStreamResponse):
|
||||
yield "ping"
|
||||
continue
|
||||
|
||||
response_chunk: dict[str, object] = {
|
||||
"event": sub_stream_response.event.value,
|
||||
"workflow_run_id": chunk.workflow_run_id,
|
||||
}
|
||||
|
||||
if isinstance(sub_stream_response, ErrorStreamResponse):
|
||||
data = cls._error_to_stream_response(sub_stream_response.err)
|
||||
response_chunk.update(data)
|
||||
else:
|
||||
response_chunk.update(sub_stream_response.model_dump(mode="json"))
|
||||
yield response_chunk
|
||||
|
||||
@classmethod
|
||||
def convert_stream_simple_response(
|
||||
cls, stream_response: Generator[AppStreamResponse, None, None]
|
||||
) -> Generator[dict | str, None, None]:
|
||||
"""
|
||||
Convert stream simple response.
|
||||
:param stream_response: stream response
|
||||
:return:
|
||||
"""
|
||||
for chunk in stream_response:
|
||||
chunk = cast(WorkflowAppStreamResponse, chunk)
|
||||
sub_stream_response = chunk.stream_response
|
||||
|
||||
if isinstance(sub_stream_response, PingStreamResponse):
|
||||
yield "ping"
|
||||
continue
|
||||
|
||||
response_chunk: dict[str, object] = {
|
||||
"event": sub_stream_response.event.value,
|
||||
"workflow_run_id": chunk.workflow_run_id,
|
||||
}
|
||||
|
||||
if isinstance(sub_stream_response, ErrorStreamResponse):
|
||||
data = cls._error_to_stream_response(sub_stream_response.err)
|
||||
response_chunk.update(data)
|
||||
elif isinstance(sub_stream_response, NodeStartStreamResponse | NodeFinishStreamResponse):
|
||||
response_chunk.update(sub_stream_response.to_ignore_detail_dict())
|
||||
else:
|
||||
response_chunk.update(sub_stream_response.model_dump(mode="json"))
|
||||
yield response_chunk
|
||||
685
dify/api/core/app/apps/workflow/generate_task_pipeline.py
Normal file
685
dify/api/core/app/apps/workflow/generate_task_pipeline.py
Normal file
@@ -0,0 +1,685 @@
|
||||
import logging
|
||||
import time
|
||||
from collections.abc import Callable, Generator
|
||||
from contextlib import contextmanager
|
||||
from typing import Union
|
||||
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from constants.tts_auto_play_timeout import TTS_AUTO_PLAY_TIMEOUT, TTS_AUTO_PLAY_YIELD_CPU_TIME
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager
|
||||
from core.app.apps.common.graph_runtime_state_support import GraphRuntimeStateSupport
|
||||
from core.app.apps.common.workflow_response_converter import WorkflowResponseConverter
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom, WorkflowAppGenerateEntity
|
||||
from core.app.entities.queue_entities import (
|
||||
AppQueueEvent,
|
||||
MessageQueueMessage,
|
||||
QueueAgentLogEvent,
|
||||
QueueErrorEvent,
|
||||
QueueIterationCompletedEvent,
|
||||
QueueIterationNextEvent,
|
||||
QueueIterationStartEvent,
|
||||
QueueLoopCompletedEvent,
|
||||
QueueLoopNextEvent,
|
||||
QueueLoopStartEvent,
|
||||
QueueNodeExceptionEvent,
|
||||
QueueNodeFailedEvent,
|
||||
QueueNodeRetryEvent,
|
||||
QueueNodeStartedEvent,
|
||||
QueueNodeSucceededEvent,
|
||||
QueuePingEvent,
|
||||
QueueStopEvent,
|
||||
QueueTextChunkEvent,
|
||||
QueueWorkflowFailedEvent,
|
||||
QueueWorkflowPartialSuccessEvent,
|
||||
QueueWorkflowStartedEvent,
|
||||
QueueWorkflowSucceededEvent,
|
||||
WorkflowQueueMessage,
|
||||
)
|
||||
from core.app.entities.task_entities import (
|
||||
ErrorStreamResponse,
|
||||
MessageAudioEndStreamResponse,
|
||||
MessageAudioStreamResponse,
|
||||
PingStreamResponse,
|
||||
StreamResponse,
|
||||
TextChunkStreamResponse,
|
||||
WorkflowAppBlockingResponse,
|
||||
WorkflowAppStreamResponse,
|
||||
WorkflowFinishStreamResponse,
|
||||
WorkflowStartStreamResponse,
|
||||
)
|
||||
from core.app.task_pipeline.based_generate_task_pipeline import BasedGenerateTaskPipeline
|
||||
from core.base.tts import AppGeneratorTTSPublisher, AudioTrunk
|
||||
from core.ops.ops_trace_manager import TraceQueueManager
|
||||
from core.workflow.enums import WorkflowExecutionStatus
|
||||
from core.workflow.repositories.draft_variable_repository import DraftVariableSaverFactory
|
||||
from core.workflow.runtime import GraphRuntimeState
|
||||
from core.workflow.system_variable import SystemVariable
|
||||
from extensions.ext_database import db
|
||||
from models import Account
|
||||
from models.enums import CreatorUserRole
|
||||
from models.model import EndUser
|
||||
from models.workflow import Workflow, WorkflowAppLog, WorkflowAppLogCreatedFrom
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class WorkflowAppGenerateTaskPipeline(GraphRuntimeStateSupport):
|
||||
"""
|
||||
WorkflowAppGenerateTaskPipeline is a class that generate stream output and state management for Application.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
application_generate_entity: WorkflowAppGenerateEntity,
|
||||
workflow: Workflow,
|
||||
queue_manager: AppQueueManager,
|
||||
user: Union[Account, EndUser],
|
||||
stream: bool,
|
||||
draft_var_saver_factory: DraftVariableSaverFactory,
|
||||
):
|
||||
self._base_task_pipeline = BasedGenerateTaskPipeline(
|
||||
application_generate_entity=application_generate_entity,
|
||||
queue_manager=queue_manager,
|
||||
stream=stream,
|
||||
)
|
||||
|
||||
if isinstance(user, EndUser):
|
||||
self._user_id = user.id
|
||||
user_session_id = user.session_id
|
||||
self._created_by_role = CreatorUserRole.END_USER
|
||||
else:
|
||||
self._user_id = user.id
|
||||
user_session_id = user.id
|
||||
self._created_by_role = CreatorUserRole.ACCOUNT
|
||||
|
||||
self._application_generate_entity = application_generate_entity
|
||||
self._workflow_features_dict = workflow.features_dict
|
||||
self._workflow_execution_id = ""
|
||||
self._invoke_from = queue_manager.invoke_from
|
||||
self._draft_var_saver_factory = draft_var_saver_factory
|
||||
self._workflow = workflow
|
||||
self._workflow_system_variables = SystemVariable(
|
||||
files=application_generate_entity.files,
|
||||
user_id=user_session_id,
|
||||
app_id=application_generate_entity.app_config.app_id,
|
||||
workflow_id=workflow.id,
|
||||
workflow_execution_id=application_generate_entity.workflow_execution_id,
|
||||
)
|
||||
self._workflow_response_converter = WorkflowResponseConverter(
|
||||
application_generate_entity=application_generate_entity,
|
||||
user=user,
|
||||
system_variables=self._workflow_system_variables,
|
||||
)
|
||||
self._graph_runtime_state: GraphRuntimeState | None = self._base_task_pipeline.queue_manager.graph_runtime_state
|
||||
|
||||
def process(self) -> Union[WorkflowAppBlockingResponse, Generator[WorkflowAppStreamResponse, None, None]]:
|
||||
"""
|
||||
Process generate task pipeline.
|
||||
:return:
|
||||
"""
|
||||
generator = self._wrapper_process_stream_response(trace_manager=self._application_generate_entity.trace_manager)
|
||||
if self._base_task_pipeline.stream:
|
||||
return self._to_stream_response(generator)
|
||||
else:
|
||||
return self._to_blocking_response(generator)
|
||||
|
||||
def _to_blocking_response(self, generator: Generator[StreamResponse, None, None]) -> WorkflowAppBlockingResponse:
|
||||
"""
|
||||
To blocking response.
|
||||
:return:
|
||||
"""
|
||||
for stream_response in generator:
|
||||
if isinstance(stream_response, ErrorStreamResponse):
|
||||
raise stream_response.err
|
||||
elif isinstance(stream_response, WorkflowFinishStreamResponse):
|
||||
response = WorkflowAppBlockingResponse(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_run_id=stream_response.data.id,
|
||||
data=WorkflowAppBlockingResponse.Data(
|
||||
id=stream_response.data.id,
|
||||
workflow_id=stream_response.data.workflow_id,
|
||||
status=stream_response.data.status,
|
||||
outputs=stream_response.data.outputs,
|
||||
error=stream_response.data.error,
|
||||
elapsed_time=stream_response.data.elapsed_time,
|
||||
total_tokens=stream_response.data.total_tokens,
|
||||
total_steps=stream_response.data.total_steps,
|
||||
created_at=int(stream_response.data.created_at),
|
||||
finished_at=int(stream_response.data.finished_at),
|
||||
),
|
||||
)
|
||||
|
||||
return response
|
||||
else:
|
||||
continue
|
||||
|
||||
raise ValueError("queue listening stopped unexpectedly.")
|
||||
|
||||
def _to_stream_response(
|
||||
self, generator: Generator[StreamResponse, None, None]
|
||||
) -> Generator[WorkflowAppStreamResponse, None, None]:
|
||||
"""
|
||||
To stream response.
|
||||
:return:
|
||||
"""
|
||||
workflow_run_id = None
|
||||
for stream_response in generator:
|
||||
if isinstance(stream_response, WorkflowStartStreamResponse):
|
||||
workflow_run_id = stream_response.workflow_run_id
|
||||
|
||||
yield WorkflowAppStreamResponse(workflow_run_id=workflow_run_id, stream_response=stream_response)
|
||||
|
||||
def _listen_audio_msg(self, publisher: AppGeneratorTTSPublisher | None, task_id: str):
|
||||
if not publisher:
|
||||
return None
|
||||
audio_msg = publisher.check_and_get_audio()
|
||||
if audio_msg and isinstance(audio_msg, AudioTrunk) and audio_msg.status != "finish":
|
||||
return MessageAudioStreamResponse(audio=audio_msg.audio, task_id=task_id)
|
||||
return None
|
||||
|
||||
def _wrapper_process_stream_response(
|
||||
self, trace_manager: TraceQueueManager | None = None
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
tts_publisher = None
|
||||
task_id = self._application_generate_entity.task_id
|
||||
tenant_id = self._application_generate_entity.app_config.tenant_id
|
||||
features_dict = self._workflow_features_dict
|
||||
|
||||
if (
|
||||
features_dict.get("text_to_speech")
|
||||
and features_dict["text_to_speech"].get("enabled")
|
||||
and features_dict["text_to_speech"].get("autoPlay") == "enabled"
|
||||
):
|
||||
tts_publisher = AppGeneratorTTSPublisher(
|
||||
tenant_id, features_dict["text_to_speech"].get("voice"), features_dict["text_to_speech"].get("language")
|
||||
)
|
||||
|
||||
for response in self._process_stream_response(tts_publisher=tts_publisher, trace_manager=trace_manager):
|
||||
while True:
|
||||
audio_response = self._listen_audio_msg(publisher=tts_publisher, task_id=task_id)
|
||||
if audio_response:
|
||||
yield audio_response
|
||||
else:
|
||||
break
|
||||
yield response
|
||||
|
||||
start_listener_time = time.time()
|
||||
while (time.time() - start_listener_time) < TTS_AUTO_PLAY_TIMEOUT:
|
||||
try:
|
||||
if not tts_publisher:
|
||||
break
|
||||
audio_trunk = tts_publisher.check_and_get_audio()
|
||||
if audio_trunk is None:
|
||||
# release cpu
|
||||
# sleep 20 ms ( 40ms => 1280 byte audio file,20ms => 640 byte audio file)
|
||||
time.sleep(TTS_AUTO_PLAY_YIELD_CPU_TIME)
|
||||
continue
|
||||
if audio_trunk.status == "finish":
|
||||
break
|
||||
else:
|
||||
yield MessageAudioStreamResponse(audio=audio_trunk.audio, task_id=task_id)
|
||||
except Exception:
|
||||
logger.exception("Fails to get audio trunk, task_id: %s", task_id)
|
||||
break
|
||||
if tts_publisher:
|
||||
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
|
||||
|
||||
@contextmanager
|
||||
def _database_session(self):
|
||||
"""Context manager for database sessions."""
|
||||
with Session(db.engine, expire_on_commit=False) as session:
|
||||
try:
|
||||
yield session
|
||||
session.commit()
|
||||
except Exception:
|
||||
session.rollback()
|
||||
raise
|
||||
|
||||
def _ensure_workflow_initialized(self):
|
||||
"""Fluent validation for workflow state."""
|
||||
if not self._workflow_execution_id:
|
||||
raise ValueError("workflow run not initialized.")
|
||||
|
||||
def _handle_ping_event(self, event: QueuePingEvent, **kwargs) -> Generator[PingStreamResponse, None, None]:
|
||||
"""Handle ping events."""
|
||||
yield self._base_task_pipeline.ping_stream_response()
|
||||
|
||||
def _handle_error_event(self, event: QueueErrorEvent, **kwargs) -> Generator[ErrorStreamResponse, None, None]:
|
||||
"""Handle error events."""
|
||||
err = self._base_task_pipeline.handle_error(event=event)
|
||||
yield self._base_task_pipeline.error_to_stream_response(err)
|
||||
|
||||
def _handle_workflow_started_event(
|
||||
self, event: QueueWorkflowStartedEvent, **kwargs
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle workflow started events."""
|
||||
runtime_state = self._resolve_graph_runtime_state()
|
||||
|
||||
run_id = self._extract_workflow_run_id(runtime_state)
|
||||
self._workflow_execution_id = run_id
|
||||
start_resp = self._workflow_response_converter.workflow_start_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_run_id=run_id,
|
||||
workflow_id=self._workflow.id,
|
||||
)
|
||||
yield start_resp
|
||||
|
||||
def _handle_node_retry_event(self, event: QueueNodeRetryEvent, **kwargs) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle node retry events."""
|
||||
self._ensure_workflow_initialized()
|
||||
|
||||
response = self._workflow_response_converter.workflow_node_retry_to_stream_response(
|
||||
event=event,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
)
|
||||
|
||||
if response:
|
||||
yield response
|
||||
|
||||
def _handle_node_started_event(
|
||||
self, event: QueueNodeStartedEvent, **kwargs
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle node started events."""
|
||||
self._ensure_workflow_initialized()
|
||||
|
||||
node_start_response = self._workflow_response_converter.workflow_node_start_to_stream_response(
|
||||
event=event,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
)
|
||||
|
||||
if node_start_response:
|
||||
yield node_start_response
|
||||
|
||||
def _handle_node_succeeded_event(
|
||||
self, event: QueueNodeSucceededEvent, **kwargs
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle node succeeded events."""
|
||||
node_success_response = self._workflow_response_converter.workflow_node_finish_to_stream_response(
|
||||
event=event,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
)
|
||||
|
||||
self._save_output_for_event(event, event.node_execution_id)
|
||||
|
||||
if node_success_response:
|
||||
yield node_success_response
|
||||
|
||||
def _handle_node_failed_events(
|
||||
self,
|
||||
event: Union[QueueNodeFailedEvent, QueueNodeExceptionEvent],
|
||||
**kwargs,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle various node failure events."""
|
||||
node_failed_response = self._workflow_response_converter.workflow_node_finish_to_stream_response(
|
||||
event=event,
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
)
|
||||
|
||||
if isinstance(event, QueueNodeExceptionEvent):
|
||||
self._save_output_for_event(event, event.node_execution_id)
|
||||
|
||||
if node_failed_response:
|
||||
yield node_failed_response
|
||||
|
||||
def _handle_iteration_start_event(
|
||||
self, event: QueueIterationStartEvent, **kwargs
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle iteration start events."""
|
||||
self._ensure_workflow_initialized()
|
||||
|
||||
iter_start_resp = self._workflow_response_converter.workflow_iteration_start_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_execution_id=self._workflow_execution_id,
|
||||
event=event,
|
||||
)
|
||||
yield iter_start_resp
|
||||
|
||||
def _handle_iteration_next_event(
|
||||
self, event: QueueIterationNextEvent, **kwargs
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle iteration next events."""
|
||||
self._ensure_workflow_initialized()
|
||||
|
||||
iter_next_resp = self._workflow_response_converter.workflow_iteration_next_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_execution_id=self._workflow_execution_id,
|
||||
event=event,
|
||||
)
|
||||
yield iter_next_resp
|
||||
|
||||
def _handle_iteration_completed_event(
|
||||
self, event: QueueIterationCompletedEvent, **kwargs
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle iteration completed events."""
|
||||
self._ensure_workflow_initialized()
|
||||
|
||||
iter_finish_resp = self._workflow_response_converter.workflow_iteration_completed_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_execution_id=self._workflow_execution_id,
|
||||
event=event,
|
||||
)
|
||||
yield iter_finish_resp
|
||||
|
||||
def _handle_loop_start_event(self, event: QueueLoopStartEvent, **kwargs) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle loop start events."""
|
||||
self._ensure_workflow_initialized()
|
||||
|
||||
loop_start_resp = self._workflow_response_converter.workflow_loop_start_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_execution_id=self._workflow_execution_id,
|
||||
event=event,
|
||||
)
|
||||
yield loop_start_resp
|
||||
|
||||
def _handle_loop_next_event(self, event: QueueLoopNextEvent, **kwargs) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle loop next events."""
|
||||
self._ensure_workflow_initialized()
|
||||
|
||||
loop_next_resp = self._workflow_response_converter.workflow_loop_next_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_execution_id=self._workflow_execution_id,
|
||||
event=event,
|
||||
)
|
||||
yield loop_next_resp
|
||||
|
||||
def _handle_loop_completed_event(
|
||||
self, event: QueueLoopCompletedEvent, **kwargs
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle loop completed events."""
|
||||
self._ensure_workflow_initialized()
|
||||
|
||||
loop_finish_resp = self._workflow_response_converter.workflow_loop_completed_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_execution_id=self._workflow_execution_id,
|
||||
event=event,
|
||||
)
|
||||
yield loop_finish_resp
|
||||
|
||||
def _handle_workflow_succeeded_event(
|
||||
self,
|
||||
event: QueueWorkflowSucceededEvent,
|
||||
*,
|
||||
trace_manager: TraceQueueManager | None = None,
|
||||
**kwargs,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle workflow succeeded events."""
|
||||
_ = trace_manager
|
||||
self._ensure_workflow_initialized()
|
||||
validated_state = self._ensure_graph_runtime_initialized()
|
||||
workflow_finish_resp = self._workflow_response_converter.workflow_finish_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_id=self._workflow.id,
|
||||
status=WorkflowExecutionStatus.SUCCEEDED,
|
||||
graph_runtime_state=validated_state,
|
||||
)
|
||||
|
||||
with self._database_session() as session:
|
||||
self._save_workflow_app_log(session=session, workflow_run_id=self._workflow_execution_id)
|
||||
|
||||
yield workflow_finish_resp
|
||||
|
||||
def _handle_workflow_partial_success_event(
|
||||
self,
|
||||
event: QueueWorkflowPartialSuccessEvent,
|
||||
*,
|
||||
trace_manager: TraceQueueManager | None = None,
|
||||
**kwargs,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle workflow partial success events."""
|
||||
_ = trace_manager
|
||||
self._ensure_workflow_initialized()
|
||||
validated_state = self._ensure_graph_runtime_initialized()
|
||||
workflow_finish_resp = self._workflow_response_converter.workflow_finish_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_id=self._workflow.id,
|
||||
status=WorkflowExecutionStatus.PARTIAL_SUCCEEDED,
|
||||
graph_runtime_state=validated_state,
|
||||
exceptions_count=event.exceptions_count,
|
||||
)
|
||||
|
||||
with self._database_session() as session:
|
||||
self._save_workflow_app_log(session=session, workflow_run_id=self._workflow_execution_id)
|
||||
|
||||
yield workflow_finish_resp
|
||||
|
||||
def _handle_workflow_failed_and_stop_events(
|
||||
self,
|
||||
event: Union[QueueWorkflowFailedEvent, QueueStopEvent],
|
||||
*,
|
||||
trace_manager: TraceQueueManager | None = None,
|
||||
**kwargs,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle workflow failed and stop events."""
|
||||
_ = trace_manager
|
||||
self._ensure_workflow_initialized()
|
||||
validated_state = self._ensure_graph_runtime_initialized()
|
||||
|
||||
if isinstance(event, QueueWorkflowFailedEvent):
|
||||
status = WorkflowExecutionStatus.FAILED
|
||||
error = event.error
|
||||
exceptions_count = event.exceptions_count
|
||||
else:
|
||||
status = WorkflowExecutionStatus.STOPPED
|
||||
error = event.get_stop_reason()
|
||||
exceptions_count = 0
|
||||
workflow_finish_resp = self._workflow_response_converter.workflow_finish_to_stream_response(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
workflow_id=self._workflow.id,
|
||||
status=status,
|
||||
graph_runtime_state=validated_state,
|
||||
error=error,
|
||||
exceptions_count=exceptions_count,
|
||||
)
|
||||
|
||||
with self._database_session() as session:
|
||||
self._save_workflow_app_log(session=session, workflow_run_id=self._workflow_execution_id)
|
||||
|
||||
yield workflow_finish_resp
|
||||
|
||||
def _handle_text_chunk_event(
|
||||
self,
|
||||
event: QueueTextChunkEvent,
|
||||
*,
|
||||
tts_publisher: AppGeneratorTTSPublisher | None = None,
|
||||
queue_message: Union[WorkflowQueueMessage, MessageQueueMessage] | None = None,
|
||||
**kwargs,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle text chunk events."""
|
||||
delta_text = event.text
|
||||
if delta_text is None:
|
||||
return
|
||||
|
||||
# only publish tts message at text chunk streaming
|
||||
if tts_publisher and queue_message:
|
||||
tts_publisher.publish(queue_message)
|
||||
|
||||
yield self._text_chunk_to_stream_response(delta_text, from_variable_selector=event.from_variable_selector)
|
||||
|
||||
def _handle_agent_log_event(self, event: QueueAgentLogEvent, **kwargs) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle agent log events."""
|
||||
yield self._workflow_response_converter.handle_agent_log(
|
||||
task_id=self._application_generate_entity.task_id, event=event
|
||||
)
|
||||
|
||||
def _get_event_handlers(self) -> dict[type, Callable]:
|
||||
"""Get mapping of event types to their handlers using fluent pattern."""
|
||||
return {
|
||||
# Basic events
|
||||
QueuePingEvent: self._handle_ping_event,
|
||||
QueueErrorEvent: self._handle_error_event,
|
||||
QueueTextChunkEvent: self._handle_text_chunk_event,
|
||||
# Workflow events
|
||||
QueueWorkflowStartedEvent: self._handle_workflow_started_event,
|
||||
QueueWorkflowSucceededEvent: self._handle_workflow_succeeded_event,
|
||||
QueueWorkflowPartialSuccessEvent: self._handle_workflow_partial_success_event,
|
||||
# Node events
|
||||
QueueNodeRetryEvent: self._handle_node_retry_event,
|
||||
QueueNodeStartedEvent: self._handle_node_started_event,
|
||||
QueueNodeSucceededEvent: self._handle_node_succeeded_event,
|
||||
# Iteration events
|
||||
QueueIterationStartEvent: self._handle_iteration_start_event,
|
||||
QueueIterationNextEvent: self._handle_iteration_next_event,
|
||||
QueueIterationCompletedEvent: self._handle_iteration_completed_event,
|
||||
# Loop events
|
||||
QueueLoopStartEvent: self._handle_loop_start_event,
|
||||
QueueLoopNextEvent: self._handle_loop_next_event,
|
||||
QueueLoopCompletedEvent: self._handle_loop_completed_event,
|
||||
# Agent events
|
||||
QueueAgentLogEvent: self._handle_agent_log_event,
|
||||
}
|
||||
|
||||
def _dispatch_event(
|
||||
self,
|
||||
event: AppQueueEvent,
|
||||
*,
|
||||
tts_publisher: AppGeneratorTTSPublisher | None = None,
|
||||
trace_manager: TraceQueueManager | None = None,
|
||||
queue_message: Union[WorkflowQueueMessage, MessageQueueMessage] | None = None,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Dispatch events using elegant pattern matching."""
|
||||
handlers = self._get_event_handlers()
|
||||
event_type = type(event)
|
||||
|
||||
# Direct handler lookup
|
||||
if handler := handlers.get(event_type):
|
||||
yield from handler(
|
||||
event,
|
||||
tts_publisher=tts_publisher,
|
||||
trace_manager=trace_manager,
|
||||
queue_message=queue_message,
|
||||
)
|
||||
return
|
||||
|
||||
# Handle node failure events with isinstance check
|
||||
if isinstance(
|
||||
event,
|
||||
(
|
||||
QueueNodeFailedEvent,
|
||||
QueueNodeExceptionEvent,
|
||||
),
|
||||
):
|
||||
yield from self._handle_node_failed_events(
|
||||
event,
|
||||
tts_publisher=tts_publisher,
|
||||
trace_manager=trace_manager,
|
||||
queue_message=queue_message,
|
||||
)
|
||||
return
|
||||
|
||||
# Handle workflow failed and stop events with isinstance check
|
||||
if isinstance(event, (QueueWorkflowFailedEvent, QueueStopEvent)):
|
||||
yield from self._handle_workflow_failed_and_stop_events(
|
||||
event,
|
||||
tts_publisher=tts_publisher,
|
||||
trace_manager=trace_manager,
|
||||
queue_message=queue_message,
|
||||
)
|
||||
return
|
||||
|
||||
# For unhandled events, we continue (original behavior)
|
||||
return
|
||||
|
||||
def _process_stream_response(
|
||||
self,
|
||||
tts_publisher: AppGeneratorTTSPublisher | None = None,
|
||||
trace_manager: TraceQueueManager | None = None,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""
|
||||
Process stream response using elegant Fluent Python patterns.
|
||||
Maintains exact same functionality as original 44-if-statement version.
|
||||
"""
|
||||
for queue_message in self._base_task_pipeline.queue_manager.listen():
|
||||
event = queue_message.event
|
||||
|
||||
match event:
|
||||
case QueueWorkflowStartedEvent():
|
||||
self._resolve_graph_runtime_state()
|
||||
yield from self._handle_workflow_started_event(event)
|
||||
|
||||
case QueueTextChunkEvent():
|
||||
yield from self._handle_text_chunk_event(
|
||||
event, tts_publisher=tts_publisher, queue_message=queue_message
|
||||
)
|
||||
|
||||
case QueueErrorEvent():
|
||||
yield from self._handle_error_event(event)
|
||||
break
|
||||
|
||||
case QueueWorkflowFailedEvent():
|
||||
yield from self._handle_workflow_failed_and_stop_events(event)
|
||||
break
|
||||
|
||||
case QueueStopEvent():
|
||||
yield from self._handle_workflow_failed_and_stop_events(event)
|
||||
break
|
||||
|
||||
# Handle all other events through elegant dispatch
|
||||
case _:
|
||||
if responses := list(
|
||||
self._dispatch_event(
|
||||
event,
|
||||
tts_publisher=tts_publisher,
|
||||
trace_manager=trace_manager,
|
||||
queue_message=queue_message,
|
||||
)
|
||||
):
|
||||
yield from responses
|
||||
|
||||
if tts_publisher:
|
||||
tts_publisher.publish(None)
|
||||
|
||||
def _save_workflow_app_log(self, *, session: Session, workflow_run_id: str | None):
|
||||
invoke_from = self._application_generate_entity.invoke_from
|
||||
if invoke_from == InvokeFrom.SERVICE_API:
|
||||
created_from = WorkflowAppLogCreatedFrom.SERVICE_API
|
||||
elif invoke_from == InvokeFrom.EXPLORE:
|
||||
created_from = WorkflowAppLogCreatedFrom.INSTALLED_APP
|
||||
elif invoke_from == InvokeFrom.WEB_APP:
|
||||
created_from = WorkflowAppLogCreatedFrom.WEB_APP
|
||||
else:
|
||||
# not save log for debugging
|
||||
return
|
||||
|
||||
if not workflow_run_id:
|
||||
return
|
||||
|
||||
workflow_app_log = WorkflowAppLog(
|
||||
tenant_id=self._application_generate_entity.app_config.tenant_id,
|
||||
app_id=self._application_generate_entity.app_config.app_id,
|
||||
workflow_id=self._workflow.id,
|
||||
workflow_run_id=workflow_run_id,
|
||||
created_from=created_from.value,
|
||||
created_by_role=self._created_by_role,
|
||||
created_by=self._user_id,
|
||||
)
|
||||
|
||||
session.add(workflow_app_log)
|
||||
session.commit()
|
||||
|
||||
def _text_chunk_to_stream_response(
|
||||
self, text: str, from_variable_selector: list[str] | None = None
|
||||
) -> TextChunkStreamResponse:
|
||||
"""
|
||||
Handle completed event.
|
||||
:param text: text
|
||||
:return:
|
||||
"""
|
||||
response = TextChunkStreamResponse(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
data=TextChunkStreamResponse.Data(text=text, from_variable_selector=from_variable_selector),
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
def _save_output_for_event(self, event: QueueNodeSucceededEvent | QueueNodeExceptionEvent, node_execution_id: str):
|
||||
with Session(db.engine) as session, session.begin():
|
||||
saver = self._draft_var_saver_factory(
|
||||
session=session,
|
||||
app_id=self._application_generate_entity.app_config.app_id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type,
|
||||
node_execution_id=node_execution_id,
|
||||
enclosing_node_id=event.in_loop_id or event.in_iteration_id,
|
||||
)
|
||||
saver.save(event.process_data, event.outputs)
|
||||
572
dify/api/core/app/apps/workflow_app_runner.py
Normal file
572
dify/api/core/app/apps/workflow_app_runner.py
Normal file
@@ -0,0 +1,572 @@
|
||||
import time
|
||||
from collections.abc import Mapping, Sequence
|
||||
from typing import Any, cast
|
||||
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom
|
||||
from core.app.entities.queue_entities import (
|
||||
AppQueueEvent,
|
||||
QueueAgentLogEvent,
|
||||
QueueIterationCompletedEvent,
|
||||
QueueIterationNextEvent,
|
||||
QueueIterationStartEvent,
|
||||
QueueLoopCompletedEvent,
|
||||
QueueLoopNextEvent,
|
||||
QueueLoopStartEvent,
|
||||
QueueNodeExceptionEvent,
|
||||
QueueNodeFailedEvent,
|
||||
QueueNodeRetryEvent,
|
||||
QueueNodeStartedEvent,
|
||||
QueueNodeSucceededEvent,
|
||||
QueueRetrieverResourcesEvent,
|
||||
QueueTextChunkEvent,
|
||||
QueueWorkflowFailedEvent,
|
||||
QueueWorkflowPartialSuccessEvent,
|
||||
QueueWorkflowStartedEvent,
|
||||
QueueWorkflowSucceededEvent,
|
||||
)
|
||||
from core.workflow.entities import GraphInitParams
|
||||
from core.workflow.graph import Graph
|
||||
from core.workflow.graph_engine.layers.base import GraphEngineLayer
|
||||
from core.workflow.graph_events import (
|
||||
GraphEngineEvent,
|
||||
GraphRunFailedEvent,
|
||||
GraphRunPartialSucceededEvent,
|
||||
GraphRunStartedEvent,
|
||||
GraphRunSucceededEvent,
|
||||
NodeRunAgentLogEvent,
|
||||
NodeRunExceptionEvent,
|
||||
NodeRunFailedEvent,
|
||||
NodeRunIterationFailedEvent,
|
||||
NodeRunIterationNextEvent,
|
||||
NodeRunIterationStartedEvent,
|
||||
NodeRunIterationSucceededEvent,
|
||||
NodeRunLoopFailedEvent,
|
||||
NodeRunLoopNextEvent,
|
||||
NodeRunLoopStartedEvent,
|
||||
NodeRunLoopSucceededEvent,
|
||||
NodeRunRetrieverResourceEvent,
|
||||
NodeRunRetryEvent,
|
||||
NodeRunStartedEvent,
|
||||
NodeRunStreamChunkEvent,
|
||||
NodeRunSucceededEvent,
|
||||
)
|
||||
from core.workflow.graph_events.graph import GraphRunAbortedEvent
|
||||
from core.workflow.nodes import NodeType
|
||||
from core.workflow.nodes.node_factory import DifyNodeFactory
|
||||
from core.workflow.nodes.node_mapping import NODE_TYPE_CLASSES_MAPPING
|
||||
from core.workflow.runtime import GraphRuntimeState, VariablePool
|
||||
from core.workflow.system_variable import SystemVariable
|
||||
from core.workflow.variable_loader import DUMMY_VARIABLE_LOADER, VariableLoader, load_into_variable_pool
|
||||
from core.workflow.workflow_entry import WorkflowEntry
|
||||
from models.enums import UserFrom
|
||||
from models.workflow import Workflow
|
||||
|
||||
|
||||
class WorkflowBasedAppRunner:
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
queue_manager: AppQueueManager,
|
||||
variable_loader: VariableLoader = DUMMY_VARIABLE_LOADER,
|
||||
app_id: str,
|
||||
graph_engine_layers: Sequence[GraphEngineLayer] = (),
|
||||
):
|
||||
self._queue_manager = queue_manager
|
||||
self._variable_loader = variable_loader
|
||||
self._app_id = app_id
|
||||
self._graph_engine_layers = graph_engine_layers
|
||||
|
||||
def _init_graph(
|
||||
self,
|
||||
graph_config: Mapping[str, Any],
|
||||
graph_runtime_state: GraphRuntimeState,
|
||||
workflow_id: str = "",
|
||||
tenant_id: str = "",
|
||||
user_id: str = "",
|
||||
root_node_id: str | None = None,
|
||||
) -> Graph:
|
||||
"""
|
||||
Init graph
|
||||
"""
|
||||
if "nodes" not in graph_config or "edges" not in graph_config:
|
||||
raise ValueError("nodes or edges not found in workflow graph")
|
||||
|
||||
if not isinstance(graph_config.get("nodes"), list):
|
||||
raise ValueError("nodes in workflow graph must be a list")
|
||||
|
||||
if not isinstance(graph_config.get("edges"), list):
|
||||
raise ValueError("edges in workflow graph must be a list")
|
||||
|
||||
# Create required parameters for Graph.init
|
||||
graph_init_params = GraphInitParams(
|
||||
tenant_id=tenant_id or "",
|
||||
app_id=self._app_id,
|
||||
workflow_id=workflow_id,
|
||||
graph_config=graph_config,
|
||||
user_id=user_id,
|
||||
user_from=UserFrom.ACCOUNT,
|
||||
invoke_from=InvokeFrom.SERVICE_API,
|
||||
call_depth=0,
|
||||
)
|
||||
|
||||
# Use the provided graph_runtime_state for consistent state management
|
||||
|
||||
node_factory = DifyNodeFactory(
|
||||
graph_init_params=graph_init_params,
|
||||
graph_runtime_state=graph_runtime_state,
|
||||
)
|
||||
|
||||
# init graph
|
||||
graph = Graph.init(graph_config=graph_config, node_factory=node_factory, root_node_id=root_node_id)
|
||||
|
||||
if not graph:
|
||||
raise ValueError("graph not found in workflow")
|
||||
|
||||
return graph
|
||||
|
||||
def _prepare_single_node_execution(
|
||||
self,
|
||||
workflow: Workflow,
|
||||
single_iteration_run: Any | None = None,
|
||||
single_loop_run: Any | None = None,
|
||||
) -> tuple[Graph, VariablePool, GraphRuntimeState]:
|
||||
"""
|
||||
Prepare graph, variable pool, and runtime state for single node execution
|
||||
(either single iteration or single loop).
|
||||
|
||||
Args:
|
||||
workflow: The workflow instance
|
||||
single_iteration_run: SingleIterationRunEntity if running single iteration, None otherwise
|
||||
single_loop_run: SingleLoopRunEntity if running single loop, None otherwise
|
||||
|
||||
Returns:
|
||||
A tuple containing (graph, variable_pool, graph_runtime_state)
|
||||
|
||||
Raises:
|
||||
ValueError: If neither single_iteration_run nor single_loop_run is specified
|
||||
"""
|
||||
# Create initial runtime state with variable pool containing environment variables
|
||||
graph_runtime_state = GraphRuntimeState(
|
||||
variable_pool=VariablePool(
|
||||
system_variables=SystemVariable.empty(),
|
||||
user_inputs={},
|
||||
environment_variables=workflow.environment_variables,
|
||||
),
|
||||
start_at=time.time(),
|
||||
)
|
||||
|
||||
# Determine which type of single node execution and get graph/variable_pool
|
||||
if single_iteration_run:
|
||||
graph, variable_pool = self._get_graph_and_variable_pool_of_single_iteration(
|
||||
workflow=workflow,
|
||||
node_id=single_iteration_run.node_id,
|
||||
user_inputs=dict(single_iteration_run.inputs),
|
||||
graph_runtime_state=graph_runtime_state,
|
||||
)
|
||||
elif single_loop_run:
|
||||
graph, variable_pool = self._get_graph_and_variable_pool_of_single_loop(
|
||||
workflow=workflow,
|
||||
node_id=single_loop_run.node_id,
|
||||
user_inputs=dict(single_loop_run.inputs),
|
||||
graph_runtime_state=graph_runtime_state,
|
||||
)
|
||||
else:
|
||||
raise ValueError("Neither single_iteration_run nor single_loop_run is specified")
|
||||
|
||||
# Return the graph, variable_pool, and the same graph_runtime_state used during graph creation
|
||||
# This ensures all nodes in the graph reference the same GraphRuntimeState instance
|
||||
return graph, variable_pool, graph_runtime_state
|
||||
|
||||
def _get_graph_and_variable_pool_for_single_node_run(
|
||||
self,
|
||||
workflow: Workflow,
|
||||
node_id: str,
|
||||
user_inputs: dict[str, Any],
|
||||
graph_runtime_state: GraphRuntimeState,
|
||||
node_type_filter_key: str, # 'iteration_id' or 'loop_id'
|
||||
node_type_label: str = "node", # 'iteration' or 'loop' for error messages
|
||||
) -> tuple[Graph, VariablePool]:
|
||||
"""
|
||||
Get graph and variable pool for single node execution (iteration or loop).
|
||||
|
||||
Args:
|
||||
workflow: The workflow instance
|
||||
node_id: The node ID to execute
|
||||
user_inputs: User inputs for the node
|
||||
graph_runtime_state: The graph runtime state
|
||||
node_type_filter_key: The key to filter nodes ('iteration_id' or 'loop_id')
|
||||
node_type_label: Label for error messages ('iteration' or 'loop')
|
||||
|
||||
Returns:
|
||||
A tuple containing (graph, variable_pool)
|
||||
"""
|
||||
# fetch workflow graph
|
||||
graph_config = workflow.graph_dict
|
||||
if not graph_config:
|
||||
raise ValueError("workflow graph not found")
|
||||
|
||||
graph_config = cast(dict[str, Any], graph_config)
|
||||
|
||||
if "nodes" not in graph_config or "edges" not in graph_config:
|
||||
raise ValueError("nodes or edges not found in workflow graph")
|
||||
|
||||
if not isinstance(graph_config.get("nodes"), list):
|
||||
raise ValueError("nodes in workflow graph must be a list")
|
||||
|
||||
if not isinstance(graph_config.get("edges"), list):
|
||||
raise ValueError("edges in workflow graph must be a list")
|
||||
|
||||
# filter nodes only in the specified node type (iteration or loop)
|
||||
main_node_config = next((n for n in graph_config.get("nodes", []) if n.get("id") == node_id), None)
|
||||
start_node_id = main_node_config.get("data", {}).get("start_node_id") if main_node_config else None
|
||||
node_configs = [
|
||||
node
|
||||
for node in graph_config.get("nodes", [])
|
||||
if node.get("id") == node_id
|
||||
or node.get("data", {}).get(node_type_filter_key, "") == node_id
|
||||
or (start_node_id and node.get("id") == start_node_id)
|
||||
]
|
||||
|
||||
graph_config["nodes"] = node_configs
|
||||
|
||||
node_ids = [node.get("id") for node in node_configs]
|
||||
|
||||
# filter edges only in the specified node type
|
||||
edge_configs = [
|
||||
edge
|
||||
for edge in graph_config.get("edges", [])
|
||||
if (edge.get("source") is None or edge.get("source") in node_ids)
|
||||
and (edge.get("target") is None or edge.get("target") in node_ids)
|
||||
]
|
||||
|
||||
graph_config["edges"] = edge_configs
|
||||
|
||||
# Create required parameters for Graph.init
|
||||
graph_init_params = GraphInitParams(
|
||||
tenant_id=workflow.tenant_id,
|
||||
app_id=self._app_id,
|
||||
workflow_id=workflow.id,
|
||||
graph_config=graph_config,
|
||||
user_id="",
|
||||
user_from=UserFrom.ACCOUNT,
|
||||
invoke_from=InvokeFrom.SERVICE_API,
|
||||
call_depth=0,
|
||||
)
|
||||
|
||||
node_factory = DifyNodeFactory(
|
||||
graph_init_params=graph_init_params,
|
||||
graph_runtime_state=graph_runtime_state,
|
||||
)
|
||||
|
||||
# init graph
|
||||
graph = Graph.init(graph_config=graph_config, node_factory=node_factory, root_node_id=node_id)
|
||||
|
||||
if not graph:
|
||||
raise ValueError("graph not found in workflow")
|
||||
|
||||
# fetch node config from node id
|
||||
target_node_config = None
|
||||
for node in node_configs:
|
||||
if node.get("id") == node_id:
|
||||
target_node_config = node
|
||||
break
|
||||
|
||||
if not target_node_config:
|
||||
raise ValueError(f"{node_type_label} node id not found in workflow graph")
|
||||
|
||||
# Get node class
|
||||
node_type = NodeType(target_node_config.get("data", {}).get("type"))
|
||||
node_version = target_node_config.get("data", {}).get("version", "1")
|
||||
node_cls = NODE_TYPE_CLASSES_MAPPING[node_type][node_version]
|
||||
|
||||
# Use the variable pool from graph_runtime_state instead of creating a new one
|
||||
variable_pool = graph_runtime_state.variable_pool
|
||||
|
||||
try:
|
||||
variable_mapping = node_cls.extract_variable_selector_to_variable_mapping(
|
||||
graph_config=workflow.graph_dict, config=target_node_config
|
||||
)
|
||||
except NotImplementedError:
|
||||
variable_mapping = {}
|
||||
|
||||
load_into_variable_pool(
|
||||
variable_loader=self._variable_loader,
|
||||
variable_pool=variable_pool,
|
||||
variable_mapping=variable_mapping,
|
||||
user_inputs=user_inputs,
|
||||
)
|
||||
|
||||
WorkflowEntry.mapping_user_inputs_to_variable_pool(
|
||||
variable_mapping=variable_mapping,
|
||||
user_inputs=user_inputs,
|
||||
variable_pool=variable_pool,
|
||||
tenant_id=workflow.tenant_id,
|
||||
)
|
||||
|
||||
return graph, variable_pool
|
||||
|
||||
def _get_graph_and_variable_pool_of_single_iteration(
|
||||
self,
|
||||
workflow: Workflow,
|
||||
node_id: str,
|
||||
user_inputs: dict[str, Any],
|
||||
graph_runtime_state: GraphRuntimeState,
|
||||
) -> tuple[Graph, VariablePool]:
|
||||
"""
|
||||
Get variable pool of single iteration
|
||||
"""
|
||||
return self._get_graph_and_variable_pool_for_single_node_run(
|
||||
workflow=workflow,
|
||||
node_id=node_id,
|
||||
user_inputs=user_inputs,
|
||||
graph_runtime_state=graph_runtime_state,
|
||||
node_type_filter_key="iteration_id",
|
||||
node_type_label="iteration",
|
||||
)
|
||||
|
||||
def _get_graph_and_variable_pool_of_single_loop(
|
||||
self,
|
||||
workflow: Workflow,
|
||||
node_id: str,
|
||||
user_inputs: dict[str, Any],
|
||||
graph_runtime_state: GraphRuntimeState,
|
||||
) -> tuple[Graph, VariablePool]:
|
||||
"""
|
||||
Get variable pool of single loop
|
||||
"""
|
||||
return self._get_graph_and_variable_pool_for_single_node_run(
|
||||
workflow=workflow,
|
||||
node_id=node_id,
|
||||
user_inputs=user_inputs,
|
||||
graph_runtime_state=graph_runtime_state,
|
||||
node_type_filter_key="loop_id",
|
||||
node_type_label="loop",
|
||||
)
|
||||
|
||||
def _handle_event(self, workflow_entry: WorkflowEntry, event: GraphEngineEvent):
|
||||
"""
|
||||
Handle event
|
||||
:param workflow_entry: workflow entry
|
||||
:param event: event
|
||||
"""
|
||||
if isinstance(event, GraphRunStartedEvent):
|
||||
self._publish_event(QueueWorkflowStartedEvent())
|
||||
elif isinstance(event, GraphRunSucceededEvent):
|
||||
self._publish_event(QueueWorkflowSucceededEvent(outputs=event.outputs))
|
||||
elif isinstance(event, GraphRunPartialSucceededEvent):
|
||||
self._publish_event(
|
||||
QueueWorkflowPartialSuccessEvent(outputs=event.outputs, exceptions_count=event.exceptions_count)
|
||||
)
|
||||
elif isinstance(event, GraphRunFailedEvent):
|
||||
self._publish_event(QueueWorkflowFailedEvent(error=event.error, exceptions_count=event.exceptions_count))
|
||||
elif isinstance(event, GraphRunAbortedEvent):
|
||||
self._publish_event(QueueWorkflowFailedEvent(error=event.reason or "Unknown error", exceptions_count=0))
|
||||
elif isinstance(event, NodeRunRetryEvent):
|
||||
node_run_result = event.node_run_result
|
||||
inputs = node_run_result.inputs
|
||||
process_data = node_run_result.process_data
|
||||
outputs = node_run_result.outputs
|
||||
execution_metadata = node_run_result.metadata
|
||||
self._publish_event(
|
||||
QueueNodeRetryEvent(
|
||||
node_execution_id=event.id,
|
||||
node_id=event.node_id,
|
||||
node_title=event.node_title,
|
||||
node_type=event.node_type,
|
||||
start_at=event.start_at,
|
||||
in_iteration_id=event.in_iteration_id,
|
||||
in_loop_id=event.in_loop_id,
|
||||
inputs=inputs,
|
||||
process_data=process_data,
|
||||
outputs=outputs,
|
||||
error=event.error,
|
||||
execution_metadata=execution_metadata,
|
||||
retry_index=event.retry_index,
|
||||
provider_type=event.provider_type,
|
||||
provider_id=event.provider_id,
|
||||
)
|
||||
)
|
||||
elif isinstance(event, NodeRunStartedEvent):
|
||||
self._publish_event(
|
||||
QueueNodeStartedEvent(
|
||||
node_execution_id=event.id,
|
||||
node_id=event.node_id,
|
||||
node_title=event.node_title,
|
||||
node_type=event.node_type,
|
||||
start_at=event.start_at,
|
||||
in_iteration_id=event.in_iteration_id,
|
||||
in_loop_id=event.in_loop_id,
|
||||
agent_strategy=event.agent_strategy,
|
||||
provider_type=event.provider_type,
|
||||
provider_id=event.provider_id,
|
||||
)
|
||||
)
|
||||
elif isinstance(event, NodeRunSucceededEvent):
|
||||
node_run_result = event.node_run_result
|
||||
inputs = node_run_result.inputs
|
||||
process_data = node_run_result.process_data
|
||||
outputs = node_run_result.outputs
|
||||
execution_metadata = node_run_result.metadata
|
||||
self._publish_event(
|
||||
QueueNodeSucceededEvent(
|
||||
node_execution_id=event.id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type,
|
||||
start_at=event.start_at,
|
||||
inputs=inputs,
|
||||
process_data=process_data,
|
||||
outputs=outputs,
|
||||
execution_metadata=execution_metadata,
|
||||
in_iteration_id=event.in_iteration_id,
|
||||
in_loop_id=event.in_loop_id,
|
||||
)
|
||||
)
|
||||
elif isinstance(event, NodeRunFailedEvent):
|
||||
self._publish_event(
|
||||
QueueNodeFailedEvent(
|
||||
node_execution_id=event.id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type,
|
||||
start_at=event.start_at,
|
||||
inputs=event.node_run_result.inputs,
|
||||
process_data=event.node_run_result.process_data,
|
||||
outputs=event.node_run_result.outputs,
|
||||
error=event.node_run_result.error or "Unknown error",
|
||||
execution_metadata=event.node_run_result.metadata,
|
||||
in_iteration_id=event.in_iteration_id,
|
||||
in_loop_id=event.in_loop_id,
|
||||
)
|
||||
)
|
||||
elif isinstance(event, NodeRunExceptionEvent):
|
||||
self._publish_event(
|
||||
QueueNodeExceptionEvent(
|
||||
node_execution_id=event.id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type,
|
||||
start_at=event.start_at,
|
||||
inputs=event.node_run_result.inputs,
|
||||
process_data=event.node_run_result.process_data,
|
||||
outputs=event.node_run_result.outputs,
|
||||
error=event.node_run_result.error or "Unknown error",
|
||||
execution_metadata=event.node_run_result.metadata,
|
||||
in_iteration_id=event.in_iteration_id,
|
||||
in_loop_id=event.in_loop_id,
|
||||
)
|
||||
)
|
||||
elif isinstance(event, NodeRunStreamChunkEvent):
|
||||
self._publish_event(
|
||||
QueueTextChunkEvent(
|
||||
text=event.chunk,
|
||||
from_variable_selector=list(event.selector),
|
||||
in_iteration_id=event.in_iteration_id,
|
||||
in_loop_id=event.in_loop_id,
|
||||
)
|
||||
)
|
||||
elif isinstance(event, NodeRunRetrieverResourceEvent):
|
||||
self._publish_event(
|
||||
QueueRetrieverResourcesEvent(
|
||||
retriever_resources=event.retriever_resources,
|
||||
in_iteration_id=event.in_iteration_id,
|
||||
in_loop_id=event.in_loop_id,
|
||||
)
|
||||
)
|
||||
elif isinstance(event, NodeRunAgentLogEvent):
|
||||
self._publish_event(
|
||||
QueueAgentLogEvent(
|
||||
id=event.message_id,
|
||||
label=event.label,
|
||||
node_execution_id=event.node_execution_id,
|
||||
parent_id=event.parent_id,
|
||||
error=event.error,
|
||||
status=event.status,
|
||||
data=event.data,
|
||||
metadata=event.metadata,
|
||||
node_id=event.node_id,
|
||||
)
|
||||
)
|
||||
elif isinstance(event, NodeRunIterationStartedEvent):
|
||||
self._publish_event(
|
||||
QueueIterationStartEvent(
|
||||
node_execution_id=event.id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type,
|
||||
node_title=event.node_title,
|
||||
start_at=event.start_at,
|
||||
node_run_index=workflow_entry.graph_engine.graph_runtime_state.node_run_steps,
|
||||
inputs=event.inputs,
|
||||
metadata=event.metadata,
|
||||
)
|
||||
)
|
||||
elif isinstance(event, NodeRunIterationNextEvent):
|
||||
self._publish_event(
|
||||
QueueIterationNextEvent(
|
||||
node_execution_id=event.id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type,
|
||||
node_title=event.node_title,
|
||||
index=event.index,
|
||||
node_run_index=workflow_entry.graph_engine.graph_runtime_state.node_run_steps,
|
||||
output=event.pre_iteration_output,
|
||||
)
|
||||
)
|
||||
elif isinstance(event, (NodeRunIterationSucceededEvent | NodeRunIterationFailedEvent)):
|
||||
self._publish_event(
|
||||
QueueIterationCompletedEvent(
|
||||
node_execution_id=event.id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type,
|
||||
node_title=event.node_title,
|
||||
start_at=event.start_at,
|
||||
node_run_index=workflow_entry.graph_engine.graph_runtime_state.node_run_steps,
|
||||
inputs=event.inputs,
|
||||
outputs=event.outputs,
|
||||
metadata=event.metadata,
|
||||
steps=event.steps,
|
||||
error=event.error if isinstance(event, NodeRunIterationFailedEvent) else None,
|
||||
)
|
||||
)
|
||||
elif isinstance(event, NodeRunLoopStartedEvent):
|
||||
self._publish_event(
|
||||
QueueLoopStartEvent(
|
||||
node_execution_id=event.id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type,
|
||||
node_title=event.node_title,
|
||||
start_at=event.start_at,
|
||||
node_run_index=workflow_entry.graph_engine.graph_runtime_state.node_run_steps,
|
||||
inputs=event.inputs,
|
||||
metadata=event.metadata,
|
||||
)
|
||||
)
|
||||
elif isinstance(event, NodeRunLoopNextEvent):
|
||||
self._publish_event(
|
||||
QueueLoopNextEvent(
|
||||
node_execution_id=event.id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type,
|
||||
node_title=event.node_title,
|
||||
index=event.index,
|
||||
node_run_index=workflow_entry.graph_engine.graph_runtime_state.node_run_steps,
|
||||
output=event.pre_loop_output,
|
||||
)
|
||||
)
|
||||
elif isinstance(event, (NodeRunLoopSucceededEvent | NodeRunLoopFailedEvent)):
|
||||
self._publish_event(
|
||||
QueueLoopCompletedEvent(
|
||||
node_execution_id=event.id,
|
||||
node_id=event.node_id,
|
||||
node_type=event.node_type,
|
||||
node_title=event.node_title,
|
||||
start_at=event.start_at,
|
||||
node_run_index=workflow_entry.graph_engine.graph_runtime_state.node_run_steps,
|
||||
inputs=event.inputs,
|
||||
outputs=event.outputs,
|
||||
metadata=event.metadata,
|
||||
steps=event.steps,
|
||||
error=event.error if isinstance(event, NodeRunLoopFailedEvent) else None,
|
||||
)
|
||||
)
|
||||
|
||||
def _publish_event(self, event: AppQueueEvent):
|
||||
self._queue_manager.publish(event, PublishFrom.APPLICATION_MANAGER)
|
||||
Reference in New Issue
Block a user