This commit is contained in:
2025-12-01 17:21:38 +08:00
parent 32fee2b8ab
commit fab8c13cb3
7511 changed files with 996300 additions and 0 deletions

View File

@@ -0,0 +1,95 @@
from collections.abc import Generator
from typing import cast
from core.app.apps.base_app_generate_response_converter import AppGenerateResponseConverter
from core.app.entities.task_entities import (
AppStreamResponse,
ErrorStreamResponse,
NodeFinishStreamResponse,
NodeStartStreamResponse,
PingStreamResponse,
WorkflowAppBlockingResponse,
WorkflowAppStreamResponse,
)
class WorkflowAppGenerateResponseConverter(AppGenerateResponseConverter):
_blocking_response_type = WorkflowAppBlockingResponse
@classmethod
def convert_blocking_full_response(cls, blocking_response: WorkflowAppBlockingResponse) -> dict: # type: ignore[override]
"""
Convert blocking full response.
:param blocking_response: blocking response
:return:
"""
return dict(blocking_response.model_dump())
@classmethod
def convert_blocking_simple_response(cls, blocking_response: WorkflowAppBlockingResponse) -> dict: # type: ignore[override]
"""
Convert blocking simple response.
:param blocking_response: blocking response
:return:
"""
return cls.convert_blocking_full_response(blocking_response)
@classmethod
def convert_stream_full_response(
cls, stream_response: Generator[AppStreamResponse, None, None]
) -> Generator[dict | str, None, None]:
"""
Convert stream full response.
:param stream_response: stream response
:return:
"""
for chunk in stream_response:
chunk = cast(WorkflowAppStreamResponse, chunk)
sub_stream_response = chunk.stream_response
if isinstance(sub_stream_response, PingStreamResponse):
yield "ping"
continue
response_chunk = {
"event": sub_stream_response.event.value,
"workflow_run_id": chunk.workflow_run_id,
}
if isinstance(sub_stream_response, ErrorStreamResponse):
data = cls._error_to_stream_response(sub_stream_response.err)
response_chunk.update(cast(dict, data))
else:
response_chunk.update(sub_stream_response.model_dump())
yield response_chunk
@classmethod
def convert_stream_simple_response(
cls, stream_response: Generator[AppStreamResponse, None, None]
) -> Generator[dict | str, None, None]:
"""
Convert stream simple response.
:param stream_response: stream response
:return:
"""
for chunk in stream_response:
chunk = cast(WorkflowAppStreamResponse, chunk)
sub_stream_response = chunk.stream_response
if isinstance(sub_stream_response, PingStreamResponse):
yield "ping"
continue
response_chunk = {
"event": sub_stream_response.event.value,
"workflow_run_id": chunk.workflow_run_id,
}
if isinstance(sub_stream_response, ErrorStreamResponse):
data = cls._error_to_stream_response(sub_stream_response.err)
response_chunk.update(cast(dict, data))
elif isinstance(sub_stream_response, NodeStartStreamResponse | NodeFinishStreamResponse):
response_chunk.update(cast(dict, sub_stream_response.to_ignore_detail_dict()))
else:
response_chunk.update(sub_stream_response.model_dump())
yield response_chunk

View File

@@ -0,0 +1,66 @@
from core.app.app_config.base_app_config_manager import BaseAppConfigManager
from core.app.app_config.common.sensitive_word_avoidance.manager import SensitiveWordAvoidanceConfigManager
from core.app.app_config.entities import RagPipelineVariableEntity, WorkflowUIBasedAppConfig
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
from core.app.app_config.features.text_to_speech.manager import TextToSpeechConfigManager
from core.app.app_config.workflow_ui_based_app.variables.manager import WorkflowVariablesConfigManager
from models.dataset import Pipeline
from models.model import AppMode
from models.workflow import Workflow
class PipelineConfig(WorkflowUIBasedAppConfig):
"""
Pipeline Config Entity.
"""
rag_pipeline_variables: list[RagPipelineVariableEntity] = []
pass
class PipelineConfigManager(BaseAppConfigManager):
@classmethod
def get_pipeline_config(cls, pipeline: Pipeline, workflow: Workflow, start_node_id: str) -> PipelineConfig:
pipeline_config = PipelineConfig(
tenant_id=pipeline.tenant_id,
app_id=pipeline.id,
app_mode=AppMode.RAG_PIPELINE,
workflow_id=workflow.id,
rag_pipeline_variables=WorkflowVariablesConfigManager.convert_rag_pipeline_variable(
workflow=workflow, start_node_id=start_node_id
),
)
return pipeline_config
@classmethod
def config_validate(cls, tenant_id: str, config: dict, only_structure_validate: bool = False) -> dict:
"""
Validate for pipeline config
:param tenant_id: tenant id
:param config: app model config args
:param only_structure_validate: only validate the structure of the config
"""
related_config_keys = []
# file upload validation
config, current_related_config_keys = FileUploadConfigManager.validate_and_set_defaults(config=config)
related_config_keys.extend(current_related_config_keys)
# text_to_speech
config, current_related_config_keys = TextToSpeechConfigManager.validate_and_set_defaults(config)
related_config_keys.extend(current_related_config_keys)
# moderation validation
config, current_related_config_keys = SensitiveWordAvoidanceConfigManager.validate_and_set_defaults(
tenant_id=tenant_id, config=config, only_structure_validate=only_structure_validate
)
related_config_keys.extend(current_related_config_keys)
related_config_keys = list(set(related_config_keys))
# Filter out extra parameters
filtered_config = {key: config.get(key) for key in related_config_keys}
return filtered_config

View File

@@ -0,0 +1,824 @@
import contextvars
import datetime
import json
import logging
import secrets
import threading
import time
import uuid
from collections.abc import Generator, Mapping
from typing import Any, Literal, Union, cast, overload
from flask import Flask, current_app
from pydantic import ValidationError
from sqlalchemy import select
from sqlalchemy.orm import Session, sessionmaker
import contexts
from configs import dify_config
from core.app.apps.base_app_generator import BaseAppGenerator
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
from core.app.apps.exc import GenerateTaskStoppedError
from core.app.apps.pipeline.pipeline_config_manager import PipelineConfigManager
from core.app.apps.pipeline.pipeline_queue_manager import PipelineQueueManager
from core.app.apps.pipeline.pipeline_runner import PipelineRunner
from core.app.apps.workflow.generate_response_converter import WorkflowAppGenerateResponseConverter
from core.app.apps.workflow.generate_task_pipeline import WorkflowAppGenerateTaskPipeline
from core.app.entities.app_invoke_entities import InvokeFrom, RagPipelineGenerateEntity
from core.app.entities.rag_pipeline_invoke_entities import RagPipelineInvokeEntity
from core.app.entities.task_entities import WorkflowAppBlockingResponse, WorkflowAppStreamResponse
from core.datasource.entities.datasource_entities import (
DatasourceProviderType,
OnlineDriveBrowseFilesRequest,
)
from core.datasource.online_drive.online_drive_plugin import OnlineDriveDatasourcePlugin
from core.entities.knowledge_entities import PipelineDataset, PipelineDocument
from core.model_runtime.errors.invoke import InvokeAuthorizationError
from core.rag.index_processor.constant.built_in_field import BuiltInField
from core.repositories.factory import DifyCoreRepositoryFactory
from core.workflow.repositories.draft_variable_repository import DraftVariableSaverFactory
from core.workflow.repositories.workflow_execution_repository import WorkflowExecutionRepository
from core.workflow.repositories.workflow_node_execution_repository import WorkflowNodeExecutionRepository
from core.workflow.variable_loader import DUMMY_VARIABLE_LOADER, VariableLoader
from extensions.ext_database import db
from libs.flask_utils import preserve_flask_contexts
from models import Account, EndUser, Workflow, WorkflowNodeExecutionTriggeredFrom
from models.dataset import Document, DocumentPipelineExecutionLog, Pipeline
from models.enums import WorkflowRunTriggeredFrom
from models.model import AppMode
from services.datasource_provider_service import DatasourceProviderService
from services.rag_pipeline.rag_pipeline_task_proxy import RagPipelineTaskProxy
from services.workflow_draft_variable_service import DraftVarLoader, WorkflowDraftVariableService
logger = logging.getLogger(__name__)
class PipelineGenerator(BaseAppGenerator):
@overload
def generate(
self,
*,
pipeline: Pipeline,
workflow: Workflow,
user: Union[Account, EndUser],
args: Mapping[str, Any],
invoke_from: InvokeFrom,
streaming: Literal[True],
call_depth: int,
workflow_thread_pool_id: str | None,
is_retry: bool = False,
) -> Generator[Mapping | str, None, None]: ...
@overload
def generate(
self,
*,
pipeline: Pipeline,
workflow: Workflow,
user: Union[Account, EndUser],
args: Mapping[str, Any],
invoke_from: InvokeFrom,
streaming: Literal[False],
call_depth: int,
workflow_thread_pool_id: str | None,
is_retry: bool = False,
) -> Mapping[str, Any]: ...
@overload
def generate(
self,
*,
pipeline: Pipeline,
workflow: Workflow,
user: Union[Account, EndUser],
args: Mapping[str, Any],
invoke_from: InvokeFrom,
streaming: bool,
call_depth: int,
workflow_thread_pool_id: str | None,
is_retry: bool = False,
) -> Union[Mapping[str, Any], Generator[Mapping | str, None, None]]: ...
def generate(
self,
*,
pipeline: Pipeline,
workflow: Workflow,
user: Union[Account, EndUser],
args: Mapping[str, Any],
invoke_from: InvokeFrom,
streaming: bool = True,
call_depth: int = 0,
workflow_thread_pool_id: str | None = None,
is_retry: bool = False,
) -> Union[Mapping[str, Any], Generator[Mapping | str, None, None], None]:
# Add null check for dataset
with Session(db.engine, expire_on_commit=False) as session:
dataset = pipeline.retrieve_dataset(session)
if not dataset:
raise ValueError("Pipeline dataset is required")
inputs: Mapping[str, Any] = args["inputs"]
start_node_id: str = args["start_node_id"]
datasource_type: str = args["datasource_type"]
datasource_info_list: list[Mapping[str, Any]] = self._format_datasource_info_list(
datasource_type, args["datasource_info_list"], pipeline, workflow, start_node_id, user
)
batch = time.strftime("%Y%m%d%H%M%S") + str(secrets.randbelow(900000) + 100000)
# convert to app config
pipeline_config = PipelineConfigManager.get_pipeline_config(
pipeline=pipeline, workflow=workflow, start_node_id=start_node_id
)
documents: list[Document] = []
if invoke_from == InvokeFrom.PUBLISHED and not is_retry and not args.get("original_document_id"):
from services.dataset_service import DocumentService
for datasource_info in datasource_info_list:
position = DocumentService.get_documents_position(dataset.id)
document = self._build_document(
tenant_id=pipeline.tenant_id,
dataset_id=dataset.id,
built_in_field_enabled=dataset.built_in_field_enabled,
datasource_type=datasource_type,
datasource_info=datasource_info,
created_from="rag-pipeline",
position=position,
account=user,
batch=batch,
document_form=dataset.chunk_structure,
)
db.session.add(document)
documents.append(document)
db.session.commit()
# run in child thread
rag_pipeline_invoke_entities = []
for i, datasource_info in enumerate(datasource_info_list):
workflow_run_id = str(uuid.uuid4())
document_id = args.get("original_document_id") or None
if invoke_from == InvokeFrom.PUBLISHED and not is_retry:
document_id = document_id or documents[i].id
document_pipeline_execution_log = DocumentPipelineExecutionLog(
document_id=document_id,
datasource_type=datasource_type,
datasource_info=json.dumps(datasource_info),
datasource_node_id=start_node_id,
input_data=dict(inputs),
pipeline_id=pipeline.id,
created_by=user.id,
)
db.session.add(document_pipeline_execution_log)
db.session.commit()
application_generate_entity = RagPipelineGenerateEntity(
task_id=str(uuid.uuid4()),
app_config=pipeline_config,
pipeline_config=pipeline_config,
datasource_type=datasource_type,
datasource_info=datasource_info,
dataset_id=dataset.id,
original_document_id=args.get("original_document_id"),
start_node_id=start_node_id,
batch=batch,
document_id=document_id,
inputs=self._prepare_user_inputs(
user_inputs=inputs,
variables=pipeline_config.rag_pipeline_variables,
tenant_id=pipeline.tenant_id,
strict_type_validation=True if invoke_from == InvokeFrom.SERVICE_API else False,
),
files=[],
user_id=user.id,
stream=streaming,
invoke_from=invoke_from,
call_depth=call_depth,
workflow_execution_id=workflow_run_id,
)
contexts.plugin_tool_providers.set({})
contexts.plugin_tool_providers_lock.set(threading.Lock())
if invoke_from == InvokeFrom.DEBUGGER:
workflow_triggered_from = WorkflowRunTriggeredFrom.RAG_PIPELINE_DEBUGGING
else:
workflow_triggered_from = WorkflowRunTriggeredFrom.RAG_PIPELINE_RUN
# Create workflow node execution repository
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
session_factory=session_factory,
user=user,
app_id=application_generate_entity.app_config.app_id,
triggered_from=workflow_triggered_from,
)
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
session_factory=session_factory,
user=user,
app_id=application_generate_entity.app_config.app_id,
triggered_from=WorkflowNodeExecutionTriggeredFrom.RAG_PIPELINE_RUN,
)
if invoke_from == InvokeFrom.DEBUGGER or is_retry:
return self._generate(
flask_app=current_app._get_current_object(), # type: ignore
context=contextvars.copy_context(),
pipeline=pipeline,
workflow_id=workflow.id,
user=user,
application_generate_entity=application_generate_entity,
invoke_from=invoke_from,
workflow_execution_repository=workflow_execution_repository,
workflow_node_execution_repository=workflow_node_execution_repository,
streaming=streaming,
workflow_thread_pool_id=workflow_thread_pool_id,
)
else:
rag_pipeline_invoke_entities.append(
RagPipelineInvokeEntity(
pipeline_id=pipeline.id,
user_id=user.id,
tenant_id=pipeline.tenant_id,
workflow_id=workflow.id,
streaming=streaming,
workflow_execution_id=workflow_run_id,
workflow_thread_pool_id=workflow_thread_pool_id,
application_generate_entity=application_generate_entity.model_dump(),
)
)
if rag_pipeline_invoke_entities:
RagPipelineTaskProxy(dataset.tenant_id, user.id, rag_pipeline_invoke_entities).delay()
# return batch, dataset, documents
return {
"batch": batch,
"dataset": PipelineDataset(
id=dataset.id,
name=dataset.name,
description=dataset.description,
chunk_structure=dataset.chunk_structure,
).model_dump(),
"documents": [
PipelineDocument(
id=document.id,
position=document.position,
data_source_type=document.data_source_type,
data_source_info=json.loads(document.data_source_info) if document.data_source_info else None,
name=document.name,
indexing_status=document.indexing_status,
error=document.error,
enabled=document.enabled,
).model_dump()
for document in documents
],
}
def _generate(
self,
*,
flask_app: Flask,
context: contextvars.Context,
pipeline: Pipeline,
workflow_id: str,
user: Union[Account, EndUser],
application_generate_entity: RagPipelineGenerateEntity,
invoke_from: InvokeFrom,
workflow_execution_repository: WorkflowExecutionRepository,
workflow_node_execution_repository: WorkflowNodeExecutionRepository,
streaming: bool = True,
variable_loader: VariableLoader = DUMMY_VARIABLE_LOADER,
workflow_thread_pool_id: str | None = None,
) -> Union[Mapping[str, Any], Generator[str | Mapping[str, Any], None, None]]:
"""
Generate App response.
:param pipeline: Pipeline
:param workflow: Workflow
:param user: account or end user
:param application_generate_entity: application generate entity
:param invoke_from: invoke from source
:param workflow_execution_repository: repository for workflow execution
:param workflow_node_execution_repository: repository for workflow node execution
:param streaming: is stream
:param workflow_thread_pool_id: workflow thread pool id
"""
with preserve_flask_contexts(flask_app, context_vars=context):
# init queue manager
workflow = db.session.query(Workflow).where(Workflow.id == workflow_id).first()
if not workflow:
raise ValueError(f"Workflow not found: {workflow_id}")
queue_manager = PipelineQueueManager(
task_id=application_generate_entity.task_id,
user_id=application_generate_entity.user_id,
invoke_from=application_generate_entity.invoke_from,
app_mode=AppMode.RAG_PIPELINE,
)
context = contextvars.copy_context()
# new thread
worker_thread = threading.Thread(
target=self._generate_worker,
kwargs={
"flask_app": current_app._get_current_object(), # type: ignore
"context": context,
"queue_manager": queue_manager,
"application_generate_entity": application_generate_entity,
"workflow_thread_pool_id": workflow_thread_pool_id,
"variable_loader": variable_loader,
"workflow_execution_repository": workflow_execution_repository,
"workflow_node_execution_repository": workflow_node_execution_repository,
},
)
worker_thread.start()
draft_var_saver_factory = self._get_draft_var_saver_factory(
invoke_from,
user,
)
# return response or stream generator
response = self._handle_response(
application_generate_entity=application_generate_entity,
workflow=workflow,
queue_manager=queue_manager,
user=user,
stream=streaming,
draft_var_saver_factory=draft_var_saver_factory,
)
return WorkflowAppGenerateResponseConverter.convert(response=response, invoke_from=invoke_from)
def single_iteration_generate(
self,
pipeline: Pipeline,
workflow: Workflow,
node_id: str,
user: Account | EndUser,
args: Mapping[str, Any],
streaming: bool = True,
) -> Mapping[str, Any] | Generator[str | Mapping[str, Any], None, None]:
"""
Generate App response.
:param app_model: App
:param workflow: Workflow
:param node_id: the node id
:param user: account or end user
:param args: request args
:param streaming: is streamed
"""
if not node_id:
raise ValueError("node_id is required")
if args.get("inputs") is None:
raise ValueError("inputs is required")
# convert to app config
pipeline_config = PipelineConfigManager.get_pipeline_config(
pipeline=pipeline, workflow=workflow, start_node_id=args.get("start_node_id", "shared")
)
with Session(db.engine) as session:
dataset = pipeline.retrieve_dataset(session)
if not dataset:
raise ValueError("Pipeline dataset is required")
# init application generate entity - use RagPipelineGenerateEntity instead
application_generate_entity = RagPipelineGenerateEntity(
task_id=str(uuid.uuid4()),
app_config=pipeline_config,
pipeline_config=pipeline_config,
datasource_type=args.get("datasource_type", ""),
datasource_info=args.get("datasource_info", {}),
dataset_id=dataset.id,
batch=args.get("batch", ""),
document_id=args.get("document_id"),
inputs={},
files=[],
user_id=user.id,
stream=streaming,
invoke_from=InvokeFrom.DEBUGGER,
call_depth=0,
workflow_execution_id=str(uuid.uuid4()),
single_iteration_run=RagPipelineGenerateEntity.SingleIterationRunEntity(
node_id=node_id, inputs=args["inputs"]
),
)
contexts.plugin_tool_providers.set({})
contexts.plugin_tool_providers_lock.set(threading.Lock())
# Create workflow node execution repository
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
session_factory=session_factory,
user=user,
app_id=application_generate_entity.app_config.app_id,
triggered_from=WorkflowRunTriggeredFrom.RAG_PIPELINE_DEBUGGING,
)
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
session_factory=session_factory,
user=user,
app_id=application_generate_entity.app_config.app_id,
triggered_from=WorkflowNodeExecutionTriggeredFrom.SINGLE_STEP,
)
draft_var_srv = WorkflowDraftVariableService(db.session())
draft_var_srv.prefill_conversation_variable_default_values(workflow)
var_loader = DraftVarLoader(
engine=db.engine,
app_id=application_generate_entity.app_config.app_id,
tenant_id=application_generate_entity.app_config.tenant_id,
)
return self._generate(
flask_app=current_app._get_current_object(), # type: ignore
pipeline=pipeline,
workflow_id=workflow.id,
user=user,
invoke_from=InvokeFrom.DEBUGGER,
application_generate_entity=application_generate_entity,
workflow_execution_repository=workflow_execution_repository,
workflow_node_execution_repository=workflow_node_execution_repository,
streaming=streaming,
variable_loader=var_loader,
context=contextvars.copy_context(),
)
def single_loop_generate(
self,
pipeline: Pipeline,
workflow: Workflow,
node_id: str,
user: Account | EndUser,
args: Mapping[str, Any],
streaming: bool = True,
) -> Mapping[str, Any] | Generator[str | Mapping[str, Any], None, None]:
"""
Generate App response.
:param app_model: App
:param workflow: Workflow
:param node_id: the node id
:param user: account or end user
:param args: request args
:param streaming: is streamed
"""
if not node_id:
raise ValueError("node_id is required")
if args.get("inputs") is None:
raise ValueError("inputs is required")
with Session(db.engine) as session:
dataset = pipeline.retrieve_dataset(session)
if not dataset:
raise ValueError("Pipeline dataset is required")
# convert to app config
pipeline_config = PipelineConfigManager.get_pipeline_config(
pipeline=pipeline, workflow=workflow, start_node_id=args.get("start_node_id", "shared")
)
# init application generate entity
application_generate_entity = RagPipelineGenerateEntity(
task_id=str(uuid.uuid4()),
app_config=pipeline_config,
pipeline_config=pipeline_config,
datasource_type=args.get("datasource_type", ""),
datasource_info=args.get("datasource_info", {}),
batch=args.get("batch", ""),
document_id=args.get("document_id"),
dataset_id=dataset.id,
inputs={},
files=[],
user_id=user.id,
stream=streaming,
invoke_from=InvokeFrom.DEBUGGER,
extras={"auto_generate_conversation_name": False},
single_loop_run=RagPipelineGenerateEntity.SingleLoopRunEntity(node_id=node_id, inputs=args["inputs"]),
workflow_execution_id=str(uuid.uuid4()),
)
contexts.plugin_tool_providers.set({})
contexts.plugin_tool_providers_lock.set(threading.Lock())
# Create workflow node execution repository
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
workflow_execution_repository = DifyCoreRepositoryFactory.create_workflow_execution_repository(
session_factory=session_factory,
user=user,
app_id=application_generate_entity.app_config.app_id,
triggered_from=WorkflowRunTriggeredFrom.RAG_PIPELINE_DEBUGGING,
)
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
session_factory=session_factory,
user=user,
app_id=application_generate_entity.app_config.app_id,
triggered_from=WorkflowNodeExecutionTriggeredFrom.SINGLE_STEP,
)
draft_var_srv = WorkflowDraftVariableService(db.session())
draft_var_srv.prefill_conversation_variable_default_values(workflow)
var_loader = DraftVarLoader(
engine=db.engine,
app_id=application_generate_entity.app_config.app_id,
tenant_id=application_generate_entity.app_config.tenant_id,
)
return self._generate(
flask_app=current_app._get_current_object(), # type: ignore
pipeline=pipeline,
workflow_id=workflow.id,
user=user,
invoke_from=InvokeFrom.DEBUGGER,
application_generate_entity=application_generate_entity,
workflow_execution_repository=workflow_execution_repository,
workflow_node_execution_repository=workflow_node_execution_repository,
streaming=streaming,
variable_loader=var_loader,
context=contextvars.copy_context(),
)
def _generate_worker(
self,
flask_app: Flask,
application_generate_entity: RagPipelineGenerateEntity,
queue_manager: AppQueueManager,
context: contextvars.Context,
variable_loader: VariableLoader,
workflow_execution_repository: WorkflowExecutionRepository,
workflow_node_execution_repository: WorkflowNodeExecutionRepository,
workflow_thread_pool_id: str | None = None,
) -> None:
"""
Generate worker in a new thread.
:param flask_app: Flask app
:param application_generate_entity: application generate entity
:param queue_manager: queue manager
:param workflow_thread_pool_id: workflow thread pool id
:return:
"""
with preserve_flask_contexts(flask_app, context_vars=context):
try:
with Session(db.engine, expire_on_commit=False) as session:
workflow = session.scalar(
select(Workflow).where(
Workflow.tenant_id == application_generate_entity.app_config.tenant_id,
Workflow.app_id == application_generate_entity.app_config.app_id,
Workflow.id == application_generate_entity.app_config.workflow_id,
)
)
if workflow is None:
raise ValueError("Workflow not found")
# Determine system_user_id based on invocation source
is_external_api_call = application_generate_entity.invoke_from in {
InvokeFrom.WEB_APP,
InvokeFrom.SERVICE_API,
}
if is_external_api_call:
# For external API calls, use end user's session ID
end_user = session.scalar(
select(EndUser).where(EndUser.id == application_generate_entity.user_id)
)
system_user_id = end_user.session_id if end_user else ""
else:
# For internal calls, use the original user ID
system_user_id = application_generate_entity.user_id
# workflow app
runner = PipelineRunner(
application_generate_entity=application_generate_entity,
queue_manager=queue_manager,
workflow_thread_pool_id=workflow_thread_pool_id,
variable_loader=variable_loader,
workflow=workflow,
system_user_id=system_user_id,
workflow_execution_repository=workflow_execution_repository,
workflow_node_execution_repository=workflow_node_execution_repository,
)
runner.run()
except GenerateTaskStoppedError:
pass
except InvokeAuthorizationError:
queue_manager.publish_error(
InvokeAuthorizationError("Incorrect API key provided"), PublishFrom.APPLICATION_MANAGER
)
except ValidationError as e:
logger.exception("Validation Error when generating")
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
except ValueError as e:
if dify_config.DEBUG:
logger.exception("Error when generating")
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
except Exception as e:
logger.exception("Unknown Error when generating")
queue_manager.publish_error(e, PublishFrom.APPLICATION_MANAGER)
finally:
db.session.close()
def _handle_response(
self,
application_generate_entity: RagPipelineGenerateEntity,
workflow: Workflow,
queue_manager: AppQueueManager,
user: Union[Account, EndUser],
draft_var_saver_factory: DraftVariableSaverFactory,
stream: bool = False,
) -> Union[WorkflowAppBlockingResponse, Generator[WorkflowAppStreamResponse, None, None]]:
"""
Handle response.
:param application_generate_entity: application generate entity
:param workflow: workflow
:param queue_manager: queue manager
:param user: account or end user
:param stream: is stream
:return:
"""
# init generate task pipeline
generate_task_pipeline = WorkflowAppGenerateTaskPipeline(
application_generate_entity=application_generate_entity,
workflow=workflow,
queue_manager=queue_manager,
user=user,
stream=stream,
draft_var_saver_factory=draft_var_saver_factory,
)
try:
return generate_task_pipeline.process()
except ValueError as e:
if len(e.args) > 0 and e.args[0] == "I/O operation on closed file.": # ignore this error
raise GenerateTaskStoppedError()
else:
logger.exception(
"Fails to process generate task pipeline, task_id: %r",
application_generate_entity.task_id,
)
raise e
def _build_document(
self,
tenant_id: str,
dataset_id: str,
built_in_field_enabled: bool,
datasource_type: str,
datasource_info: Mapping[str, Any],
created_from: str,
position: int,
account: Union[Account, EndUser],
batch: str,
document_form: str,
):
if datasource_type == "local_file":
name = datasource_info.get("name", "untitled")
elif datasource_type == "online_document":
name = datasource_info.get("page", {}).get("page_name", "untitled")
elif datasource_type == "website_crawl":
name = datasource_info.get("title", "untitled")
elif datasource_type == "online_drive":
name = datasource_info.get("name", "untitled")
else:
raise ValueError(f"Unsupported datasource type: {datasource_type}")
document = Document(
tenant_id=tenant_id,
dataset_id=dataset_id,
position=position,
data_source_type=datasource_type,
data_source_info=json.dumps(datasource_info),
batch=batch,
name=name,
created_from=created_from,
created_by=account.id,
doc_form=document_form,
)
doc_metadata = {}
if built_in_field_enabled:
doc_metadata = {
BuiltInField.document_name: name,
BuiltInField.uploader: account.name,
BuiltInField.upload_date: datetime.datetime.now(datetime.UTC).strftime("%Y-%m-%d %H:%M:%S"),
BuiltInField.last_update_date: datetime.datetime.now(datetime.UTC).strftime("%Y-%m-%d %H:%M:%S"),
BuiltInField.source: datasource_type,
}
if doc_metadata:
document.doc_metadata = doc_metadata
return document
def _format_datasource_info_list(
self,
datasource_type: str,
datasource_info_list: list[Mapping[str, Any]],
pipeline: Pipeline,
workflow: Workflow,
start_node_id: str,
user: Union[Account, EndUser],
) -> list[Mapping[str, Any]]:
"""
Format datasource info list.
"""
if datasource_type == "online_drive":
all_files: list[Mapping[str, Any]] = []
datasource_node_data = None
datasource_nodes = workflow.graph_dict.get("nodes", [])
for datasource_node in datasource_nodes:
if datasource_node.get("id") == start_node_id:
datasource_node_data = datasource_node.get("data", {})
break
if not datasource_node_data:
raise ValueError("Datasource node data not found")
from core.datasource.datasource_manager import DatasourceManager
datasource_runtime = DatasourceManager.get_datasource_runtime(
provider_id=f"{datasource_node_data.get('plugin_id')}/{datasource_node_data.get('provider_name')}",
datasource_name=datasource_node_data.get("datasource_name"),
tenant_id=pipeline.tenant_id,
datasource_type=DatasourceProviderType(datasource_type),
)
datasource_provider_service = DatasourceProviderService()
credentials = datasource_provider_service.get_datasource_credentials(
tenant_id=pipeline.tenant_id,
provider=datasource_node_data.get("provider_name"),
plugin_id=datasource_node_data.get("plugin_id"),
credential_id=datasource_node_data.get("credential_id"),
)
if credentials:
datasource_runtime.runtime.credentials = credentials
datasource_runtime = cast(OnlineDriveDatasourcePlugin, datasource_runtime)
for datasource_info in datasource_info_list:
if datasource_info.get("id") and datasource_info.get("type") == "folder":
# get all files in the folder
self._get_files_in_folder(
datasource_runtime,
datasource_info.get("id", ""),
datasource_info.get("bucket", None),
user.id,
all_files,
datasource_info,
None,
)
else:
all_files.append(
{
"id": datasource_info.get("id", ""),
"name": datasource_info.get("name", "untitled"),
"bucket": datasource_info.get("bucket", None),
}
)
return all_files
else:
return datasource_info_list
def _get_files_in_folder(
self,
datasource_runtime: OnlineDriveDatasourcePlugin,
prefix: str,
bucket: str | None,
user_id: str,
all_files: list,
datasource_info: Mapping[str, Any],
next_page_parameters: dict | None = None,
):
"""
Get files in a folder.
"""
result_generator = datasource_runtime.online_drive_browse_files(
user_id=user_id,
request=OnlineDriveBrowseFilesRequest(
bucket=bucket,
prefix=prefix,
max_keys=20,
next_page_parameters=next_page_parameters,
),
provider_type=datasource_runtime.datasource_provider_type(),
)
is_truncated = False
for result in result_generator:
for files in result.result:
for file in files.files:
if file.type == "folder":
self._get_files_in_folder(
datasource_runtime,
file.id,
bucket,
user_id,
all_files,
datasource_info,
None,
)
else:
all_files.append(
{
"id": file.id,
"name": file.name,
"bucket": bucket,
}
)
is_truncated = files.is_truncated
next_page_parameters = files.next_page_parameters
if is_truncated:
self._get_files_in_folder(
datasource_runtime, prefix, bucket, user_id, all_files, datasource_info, next_page_parameters
)

View File

@@ -0,0 +1,45 @@
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
from core.app.apps.exc import GenerateTaskStoppedError
from core.app.entities.app_invoke_entities import InvokeFrom
from core.app.entities.queue_entities import (
AppQueueEvent,
QueueErrorEvent,
QueueMessageEndEvent,
QueueStopEvent,
QueueWorkflowFailedEvent,
QueueWorkflowPartialSuccessEvent,
QueueWorkflowSucceededEvent,
WorkflowQueueMessage,
)
class PipelineQueueManager(AppQueueManager):
def __init__(self, task_id: str, user_id: str, invoke_from: InvokeFrom, app_mode: str) -> None:
super().__init__(task_id, user_id, invoke_from)
self._app_mode = app_mode
def _publish(self, event: AppQueueEvent, pub_from: PublishFrom) -> None:
"""
Publish event to queue
:param event:
:param pub_from:
:return:
"""
message = WorkflowQueueMessage(task_id=self._task_id, app_mode=self._app_mode, event=event)
self._q.put(message)
if isinstance(
event,
QueueStopEvent
| QueueErrorEvent
| QueueMessageEndEvent
| QueueWorkflowSucceededEvent
| QueueWorkflowFailedEvent
| QueueWorkflowPartialSuccessEvent,
):
self.stop_listen()
if pub_from == PublishFrom.APPLICATION_MANAGER and self._is_stopped():
raise GenerateTaskStoppedError()

View File

@@ -0,0 +1,287 @@
import logging
import time
from typing import cast
from core.app.apps.base_app_queue_manager import AppQueueManager
from core.app.apps.pipeline.pipeline_config_manager import PipelineConfig
from core.app.apps.workflow_app_runner import WorkflowBasedAppRunner
from core.app.entities.app_invoke_entities import (
InvokeFrom,
RagPipelineGenerateEntity,
)
from core.variables.variables import RAGPipelineVariable, RAGPipelineVariableInput
from core.workflow.entities.graph_init_params import GraphInitParams
from core.workflow.enums import WorkflowType
from core.workflow.graph import Graph
from core.workflow.graph_engine.layers.persistence import PersistenceWorkflowInfo, WorkflowPersistenceLayer
from core.workflow.graph_events import GraphEngineEvent, GraphRunFailedEvent
from core.workflow.nodes.node_factory import DifyNodeFactory
from core.workflow.repositories.workflow_execution_repository import WorkflowExecutionRepository
from core.workflow.repositories.workflow_node_execution_repository import WorkflowNodeExecutionRepository
from core.workflow.runtime import GraphRuntimeState, VariablePool
from core.workflow.system_variable import SystemVariable
from core.workflow.variable_loader import VariableLoader
from core.workflow.workflow_entry import WorkflowEntry
from extensions.ext_database import db
from models.dataset import Document, Pipeline
from models.enums import UserFrom
from models.model import EndUser
from models.workflow import Workflow
logger = logging.getLogger(__name__)
class PipelineRunner(WorkflowBasedAppRunner):
"""
Pipeline Application Runner
"""
def __init__(
self,
application_generate_entity: RagPipelineGenerateEntity,
queue_manager: AppQueueManager,
variable_loader: VariableLoader,
workflow: Workflow,
system_user_id: str,
workflow_execution_repository: WorkflowExecutionRepository,
workflow_node_execution_repository: WorkflowNodeExecutionRepository,
workflow_thread_pool_id: str | None = None,
) -> None:
"""
:param application_generate_entity: application generate entity
:param queue_manager: application queue manager
:param workflow_thread_pool_id: workflow thread pool id
"""
super().__init__(
queue_manager=queue_manager,
variable_loader=variable_loader,
app_id=application_generate_entity.app_config.app_id,
)
self.application_generate_entity = application_generate_entity
self.workflow_thread_pool_id = workflow_thread_pool_id
self._workflow = workflow
self._sys_user_id = system_user_id
self._workflow_execution_repository = workflow_execution_repository
self._workflow_node_execution_repository = workflow_node_execution_repository
def _get_app_id(self) -> str:
return self.application_generate_entity.app_config.app_id
def run(self) -> None:
"""
Run application
"""
app_config = self.application_generate_entity.app_config
app_config = cast(PipelineConfig, app_config)
user_id = None
if self.application_generate_entity.invoke_from in {InvokeFrom.WEB_APP, InvokeFrom.SERVICE_API}:
end_user = db.session.query(EndUser).where(EndUser.id == self.application_generate_entity.user_id).first()
if end_user:
user_id = end_user.session_id
else:
user_id = self.application_generate_entity.user_id
pipeline = db.session.query(Pipeline).where(Pipeline.id == app_config.app_id).first()
if not pipeline:
raise ValueError("Pipeline not found")
workflow = self.get_workflow(pipeline=pipeline, workflow_id=app_config.workflow_id)
if not workflow:
raise ValueError("Workflow not initialized")
db.session.close()
# if only single iteration run is requested
if self.application_generate_entity.single_iteration_run or self.application_generate_entity.single_loop_run:
# Handle single iteration or single loop run
graph, variable_pool, graph_runtime_state = self._prepare_single_node_execution(
workflow=workflow,
single_iteration_run=self.application_generate_entity.single_iteration_run,
single_loop_run=self.application_generate_entity.single_loop_run,
)
else:
inputs = self.application_generate_entity.inputs
files = self.application_generate_entity.files
# Create a variable pool.
system_inputs = SystemVariable(
files=files,
user_id=user_id,
app_id=app_config.app_id,
workflow_id=app_config.workflow_id,
workflow_execution_id=self.application_generate_entity.workflow_execution_id,
document_id=self.application_generate_entity.document_id,
original_document_id=self.application_generate_entity.original_document_id,
batch=self.application_generate_entity.batch,
dataset_id=self.application_generate_entity.dataset_id,
datasource_type=self.application_generate_entity.datasource_type,
datasource_info=self.application_generate_entity.datasource_info,
invoke_from=self.application_generate_entity.invoke_from.value,
)
rag_pipeline_variables = []
if workflow.rag_pipeline_variables:
for v in workflow.rag_pipeline_variables:
rag_pipeline_variable = RAGPipelineVariable.model_validate(v)
if (
rag_pipeline_variable.belong_to_node_id
in (self.application_generate_entity.start_node_id, "shared")
) and rag_pipeline_variable.variable in inputs:
rag_pipeline_variables.append(
RAGPipelineVariableInput(
variable=rag_pipeline_variable,
value=inputs[rag_pipeline_variable.variable],
)
)
variable_pool = VariablePool(
system_variables=system_inputs,
user_inputs=inputs,
environment_variables=workflow.environment_variables,
conversation_variables=[],
rag_pipeline_variables=rag_pipeline_variables,
)
graph_runtime_state = GraphRuntimeState(variable_pool=variable_pool, start_at=time.perf_counter())
# init graph
graph = self._init_rag_pipeline_graph(
graph_runtime_state=graph_runtime_state,
start_node_id=self.application_generate_entity.start_node_id,
workflow=workflow,
)
# RUN WORKFLOW
workflow_entry = WorkflowEntry(
tenant_id=workflow.tenant_id,
app_id=workflow.app_id,
workflow_id=workflow.id,
graph=graph,
graph_config=workflow.graph_dict,
user_id=self.application_generate_entity.user_id,
user_from=(
UserFrom.ACCOUNT
if self.application_generate_entity.invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER}
else UserFrom.END_USER
),
invoke_from=self.application_generate_entity.invoke_from,
call_depth=self.application_generate_entity.call_depth,
graph_runtime_state=graph_runtime_state,
variable_pool=variable_pool,
)
self._queue_manager.graph_runtime_state = graph_runtime_state
persistence_layer = WorkflowPersistenceLayer(
application_generate_entity=self.application_generate_entity,
workflow_info=PersistenceWorkflowInfo(
workflow_id=workflow.id,
workflow_type=WorkflowType(workflow.type),
version=workflow.version,
graph_data=workflow.graph_dict,
),
workflow_execution_repository=self._workflow_execution_repository,
workflow_node_execution_repository=self._workflow_node_execution_repository,
trace_manager=self.application_generate_entity.trace_manager,
)
workflow_entry.graph_engine.layer(persistence_layer)
generator = workflow_entry.run()
for event in generator:
self._update_document_status(
event, self.application_generate_entity.document_id, self.application_generate_entity.dataset_id
)
self._handle_event(workflow_entry, event)
def get_workflow(self, pipeline: Pipeline, workflow_id: str) -> Workflow | None:
"""
Get workflow
"""
# fetch workflow by workflow_id
workflow = (
db.session.query(Workflow)
.where(Workflow.tenant_id == pipeline.tenant_id, Workflow.app_id == pipeline.id, Workflow.id == workflow_id)
.first()
)
# return workflow
return workflow
def _init_rag_pipeline_graph(
self, workflow: Workflow, graph_runtime_state: GraphRuntimeState, start_node_id: str | None = None
) -> Graph:
"""
Init pipeline graph
"""
graph_config = workflow.graph_dict
if "nodes" not in graph_config or "edges" not in graph_config:
raise ValueError("nodes or edges not found in workflow graph")
if not isinstance(graph_config.get("nodes"), list):
raise ValueError("nodes in workflow graph must be a list")
if not isinstance(graph_config.get("edges"), list):
raise ValueError("edges in workflow graph must be a list")
# nodes = graph_config.get("nodes", [])
# edges = graph_config.get("edges", [])
# real_run_nodes = []
# real_edges = []
# exclude_node_ids = []
# for node in nodes:
# node_id = node.get("id")
# node_type = node.get("data", {}).get("type", "")
# if node_type == "datasource":
# if start_node_id != node_id:
# exclude_node_ids.append(node_id)
# continue
# real_run_nodes.append(node)
# for edge in edges:
# if edge.get("source") in exclude_node_ids:
# continue
# real_edges.append(edge)
# graph_config = dict(graph_config)
# graph_config["nodes"] = real_run_nodes
# graph_config["edges"] = real_edges
# init graph
# Create required parameters for Graph.init
graph_init_params = GraphInitParams(
tenant_id=workflow.tenant_id,
app_id=self._app_id,
workflow_id=workflow.id,
graph_config=graph_config,
user_id=self.application_generate_entity.user_id,
user_from=UserFrom.ACCOUNT,
invoke_from=InvokeFrom.SERVICE_API,
call_depth=0,
)
node_factory = DifyNodeFactory(
graph_init_params=graph_init_params,
graph_runtime_state=graph_runtime_state,
)
graph = Graph.init(graph_config=graph_config, node_factory=node_factory, root_node_id=start_node_id)
if not graph:
raise ValueError("graph not found in workflow")
return graph
def _update_document_status(self, event: GraphEngineEvent, document_id: str | None, dataset_id: str | None) -> None:
"""
Update document status
"""
if isinstance(event, GraphRunFailedEvent):
if document_id and dataset_id:
document = (
db.session.query(Document)
.where(Document.id == document_id, Document.dataset_id == dataset_id)
.first()
)
if document:
document.indexing_status = "error"
document.error = event.error or "Unknown error"
db.session.add(document)
db.session.commit()