This commit is contained in:
2025-12-01 17:21:38 +08:00
parent 32fee2b8ab
commit fab8c13cb3
7511 changed files with 996300 additions and 0 deletions

View File

@@ -0,0 +1,519 @@
import logging
from collections.abc import Sequence
from sqlalchemy.orm import sessionmaker
from core.ops.aliyun_trace.data_exporter.traceclient import (
TraceClient,
build_endpoint,
convert_datetime_to_nanoseconds,
convert_to_span_id,
convert_to_trace_id,
generate_span_id,
)
from core.ops.aliyun_trace.entities.aliyun_trace_entity import SpanData, TraceMetadata
from core.ops.aliyun_trace.entities.semconv import (
GEN_AI_COMPLETION,
GEN_AI_INPUT_MESSAGE,
GEN_AI_OUTPUT_MESSAGE,
GEN_AI_PROMPT,
GEN_AI_PROVIDER_NAME,
GEN_AI_REQUEST_MODEL,
GEN_AI_RESPONSE_FINISH_REASON,
GEN_AI_USAGE_INPUT_TOKENS,
GEN_AI_USAGE_OUTPUT_TOKENS,
GEN_AI_USAGE_TOTAL_TOKENS,
RETRIEVAL_DOCUMENT,
RETRIEVAL_QUERY,
TOOL_DESCRIPTION,
TOOL_NAME,
TOOL_PARAMETERS,
GenAISpanKind,
)
from core.ops.aliyun_trace.utils import (
create_common_span_attributes,
create_links_from_trace_id,
create_status_from_error,
extract_retrieval_documents,
format_input_messages,
format_output_messages,
format_retrieval_documents,
get_user_id_from_message_data,
get_workflow_node_status,
serialize_json_data,
)
from core.ops.base_trace_instance import BaseTraceInstance
from core.ops.entities.config_entity import AliyunConfig
from core.ops.entities.trace_entity import (
BaseTraceInfo,
DatasetRetrievalTraceInfo,
GenerateNameTraceInfo,
MessageTraceInfo,
ModerationTraceInfo,
SuggestedQuestionTraceInfo,
ToolTraceInfo,
WorkflowTraceInfo,
)
from core.repositories import SQLAlchemyWorkflowNodeExecutionRepository
from core.workflow.entities import WorkflowNodeExecution
from core.workflow.enums import NodeType, WorkflowNodeExecutionMetadataKey
from extensions.ext_database import db
from models import WorkflowNodeExecutionTriggeredFrom
logger = logging.getLogger(__name__)
class AliyunDataTrace(BaseTraceInstance):
def __init__(
self,
aliyun_config: AliyunConfig,
):
super().__init__(aliyun_config)
endpoint = build_endpoint(aliyun_config.endpoint, aliyun_config.license_key)
self.trace_client = TraceClient(service_name=aliyun_config.app_name, endpoint=endpoint)
def trace(self, trace_info: BaseTraceInfo):
if isinstance(trace_info, WorkflowTraceInfo):
self.workflow_trace(trace_info)
if isinstance(trace_info, MessageTraceInfo):
self.message_trace(trace_info)
if isinstance(trace_info, ModerationTraceInfo):
pass
if isinstance(trace_info, SuggestedQuestionTraceInfo):
self.suggested_question_trace(trace_info)
if isinstance(trace_info, DatasetRetrievalTraceInfo):
self.dataset_retrieval_trace(trace_info)
if isinstance(trace_info, ToolTraceInfo):
self.tool_trace(trace_info)
if isinstance(trace_info, GenerateNameTraceInfo):
pass
def api_check(self):
return self.trace_client.api_check()
def get_project_url(self):
try:
return self.trace_client.get_project_url()
except Exception as e:
logger.info("Aliyun get project url failed: %s", str(e), exc_info=True)
raise ValueError(f"Aliyun get project url failed: {str(e)}")
def workflow_trace(self, trace_info: WorkflowTraceInfo):
trace_metadata = TraceMetadata(
trace_id=convert_to_trace_id(trace_info.workflow_run_id),
workflow_span_id=convert_to_span_id(trace_info.workflow_run_id, "workflow"),
session_id=trace_info.metadata.get("conversation_id") or "",
user_id=str(trace_info.metadata.get("user_id") or ""),
links=create_links_from_trace_id(trace_info.trace_id),
)
self.add_workflow_span(trace_info, trace_metadata)
workflow_node_executions = self.get_workflow_node_executions(trace_info)
for node_execution in workflow_node_executions:
node_span = self.build_workflow_node_span(node_execution, trace_info, trace_metadata)
self.trace_client.add_span(node_span)
def message_trace(self, trace_info: MessageTraceInfo):
message_data = trace_info.message_data
if message_data is None:
return
message_id = trace_info.message_id
user_id = get_user_id_from_message_data(message_data)
status = create_status_from_error(trace_info.error)
trace_metadata = TraceMetadata(
trace_id=convert_to_trace_id(message_id),
workflow_span_id=0,
session_id=trace_info.metadata.get("conversation_id") or "",
user_id=user_id,
links=create_links_from_trace_id(trace_info.trace_id),
)
inputs_json = serialize_json_data(trace_info.inputs)
outputs_str = str(trace_info.outputs)
message_span_id = convert_to_span_id(message_id, "message")
message_span = SpanData(
trace_id=trace_metadata.trace_id,
parent_span_id=None,
span_id=message_span_id,
name="message",
start_time=convert_datetime_to_nanoseconds(trace_info.start_time),
end_time=convert_datetime_to_nanoseconds(trace_info.end_time),
attributes=create_common_span_attributes(
session_id=trace_metadata.session_id,
user_id=trace_metadata.user_id,
span_kind=GenAISpanKind.CHAIN,
inputs=inputs_json,
outputs=outputs_str,
),
status=status,
links=trace_metadata.links,
)
self.trace_client.add_span(message_span)
llm_span = SpanData(
trace_id=trace_metadata.trace_id,
parent_span_id=message_span_id,
span_id=convert_to_span_id(message_id, "llm"),
name="llm",
start_time=convert_datetime_to_nanoseconds(trace_info.start_time),
end_time=convert_datetime_to_nanoseconds(trace_info.end_time),
attributes={
**create_common_span_attributes(
session_id=trace_metadata.session_id,
user_id=trace_metadata.user_id,
span_kind=GenAISpanKind.LLM,
inputs=inputs_json,
outputs=outputs_str,
),
GEN_AI_REQUEST_MODEL: trace_info.metadata.get("ls_model_name") or "",
GEN_AI_PROVIDER_NAME: trace_info.metadata.get("ls_provider") or "",
GEN_AI_USAGE_INPUT_TOKENS: str(trace_info.message_tokens),
GEN_AI_USAGE_OUTPUT_TOKENS: str(trace_info.answer_tokens),
GEN_AI_USAGE_TOTAL_TOKENS: str(trace_info.total_tokens),
GEN_AI_PROMPT: inputs_json,
GEN_AI_COMPLETION: outputs_str,
},
status=status,
links=trace_metadata.links,
)
self.trace_client.add_span(llm_span)
def dataset_retrieval_trace(self, trace_info: DatasetRetrievalTraceInfo):
if trace_info.message_data is None:
return
message_id = trace_info.message_id
trace_metadata = TraceMetadata(
trace_id=convert_to_trace_id(message_id),
workflow_span_id=0,
session_id=trace_info.metadata.get("conversation_id") or "",
user_id=str(trace_info.metadata.get("user_id") or ""),
links=create_links_from_trace_id(trace_info.trace_id),
)
documents_data = extract_retrieval_documents(trace_info.documents)
documents_json = serialize_json_data(documents_data)
inputs_str = str(trace_info.inputs)
dataset_retrieval_span = SpanData(
trace_id=trace_metadata.trace_id,
parent_span_id=convert_to_span_id(message_id, "message"),
span_id=generate_span_id(),
name="dataset_retrieval",
start_time=convert_datetime_to_nanoseconds(trace_info.start_time),
end_time=convert_datetime_to_nanoseconds(trace_info.end_time),
attributes={
**create_common_span_attributes(
session_id=trace_metadata.session_id,
user_id=trace_metadata.user_id,
span_kind=GenAISpanKind.RETRIEVER,
inputs=inputs_str,
outputs=documents_json,
),
RETRIEVAL_QUERY: inputs_str,
RETRIEVAL_DOCUMENT: documents_json,
},
links=trace_metadata.links,
)
self.trace_client.add_span(dataset_retrieval_span)
def tool_trace(self, trace_info: ToolTraceInfo):
if trace_info.message_data is None:
return
message_id = trace_info.message_id
status = create_status_from_error(trace_info.error)
trace_metadata = TraceMetadata(
trace_id=convert_to_trace_id(message_id),
workflow_span_id=0,
session_id=trace_info.metadata.get("conversation_id") or "",
user_id=str(trace_info.metadata.get("user_id") or ""),
links=create_links_from_trace_id(trace_info.trace_id),
)
tool_config_json = serialize_json_data(trace_info.tool_config)
tool_inputs_json = serialize_json_data(trace_info.tool_inputs)
inputs_json = serialize_json_data(trace_info.inputs)
tool_span = SpanData(
trace_id=trace_metadata.trace_id,
parent_span_id=convert_to_span_id(message_id, "message"),
span_id=generate_span_id(),
name=trace_info.tool_name,
start_time=convert_datetime_to_nanoseconds(trace_info.start_time),
end_time=convert_datetime_to_nanoseconds(trace_info.end_time),
attributes={
**create_common_span_attributes(
session_id=trace_metadata.session_id,
user_id=trace_metadata.user_id,
span_kind=GenAISpanKind.TOOL,
inputs=inputs_json,
outputs=str(trace_info.tool_outputs),
),
TOOL_NAME: trace_info.tool_name,
TOOL_DESCRIPTION: tool_config_json,
TOOL_PARAMETERS: tool_inputs_json,
},
status=status,
links=trace_metadata.links,
)
self.trace_client.add_span(tool_span)
def get_workflow_node_executions(self, trace_info: WorkflowTraceInfo) -> Sequence[WorkflowNodeExecution]:
app_id = trace_info.metadata.get("app_id")
if not app_id:
raise ValueError("No app_id found in trace_info metadata")
service_account = self.get_service_account_with_tenant(app_id)
session_factory = sessionmaker(bind=db.engine)
workflow_node_execution_repository = SQLAlchemyWorkflowNodeExecutionRepository(
session_factory=session_factory,
user=service_account,
app_id=app_id,
triggered_from=WorkflowNodeExecutionTriggeredFrom.WORKFLOW_RUN,
)
return workflow_node_execution_repository.get_by_workflow_run(workflow_run_id=trace_info.workflow_run_id)
def build_workflow_node_span(
self, node_execution: WorkflowNodeExecution, trace_info: WorkflowTraceInfo, trace_metadata: TraceMetadata
):
try:
if node_execution.node_type == NodeType.LLM:
node_span = self.build_workflow_llm_span(trace_info, node_execution, trace_metadata)
elif node_execution.node_type == NodeType.KNOWLEDGE_RETRIEVAL:
node_span = self.build_workflow_retrieval_span(trace_info, node_execution, trace_metadata)
elif node_execution.node_type == NodeType.TOOL:
node_span = self.build_workflow_tool_span(trace_info, node_execution, trace_metadata)
else:
node_span = self.build_workflow_task_span(trace_info, node_execution, trace_metadata)
return node_span
except Exception as e:
logger.debug("Error occurred in build_workflow_node_span: %s", e, exc_info=True)
return None
def build_workflow_task_span(
self, trace_info: WorkflowTraceInfo, node_execution: WorkflowNodeExecution, trace_metadata: TraceMetadata
) -> SpanData:
inputs_json = serialize_json_data(node_execution.inputs)
outputs_json = serialize_json_data(node_execution.outputs)
return SpanData(
trace_id=trace_metadata.trace_id,
parent_span_id=trace_metadata.workflow_span_id,
span_id=convert_to_span_id(node_execution.id, "node"),
name=node_execution.title,
start_time=convert_datetime_to_nanoseconds(node_execution.created_at),
end_time=convert_datetime_to_nanoseconds(node_execution.finished_at),
attributes=create_common_span_attributes(
session_id=trace_metadata.session_id,
user_id=trace_metadata.user_id,
span_kind=GenAISpanKind.TASK,
inputs=inputs_json,
outputs=outputs_json,
),
status=get_workflow_node_status(node_execution),
links=trace_metadata.links,
)
def build_workflow_tool_span(
self, trace_info: WorkflowTraceInfo, node_execution: WorkflowNodeExecution, trace_metadata: TraceMetadata
) -> SpanData:
tool_des = {}
if node_execution.metadata:
tool_des = node_execution.metadata.get(WorkflowNodeExecutionMetadataKey.TOOL_INFO, {})
inputs_json = serialize_json_data(node_execution.inputs or {})
outputs_json = serialize_json_data(node_execution.outputs)
return SpanData(
trace_id=trace_metadata.trace_id,
parent_span_id=trace_metadata.workflow_span_id,
span_id=convert_to_span_id(node_execution.id, "node"),
name=node_execution.title,
start_time=convert_datetime_to_nanoseconds(node_execution.created_at),
end_time=convert_datetime_to_nanoseconds(node_execution.finished_at),
attributes={
**create_common_span_attributes(
session_id=trace_metadata.session_id,
user_id=trace_metadata.user_id,
span_kind=GenAISpanKind.TOOL,
inputs=inputs_json,
outputs=outputs_json,
),
TOOL_NAME: node_execution.title,
TOOL_DESCRIPTION: serialize_json_data(tool_des),
TOOL_PARAMETERS: inputs_json,
},
status=get_workflow_node_status(node_execution),
links=trace_metadata.links,
)
def build_workflow_retrieval_span(
self, trace_info: WorkflowTraceInfo, node_execution: WorkflowNodeExecution, trace_metadata: TraceMetadata
) -> SpanData:
input_value = str(node_execution.inputs.get("query", "")) if node_execution.inputs else ""
output_value = serialize_json_data(node_execution.outputs.get("result", [])) if node_execution.outputs else ""
retrieval_documents = node_execution.outputs.get("result", []) if node_execution.outputs else []
semantic_retrieval_documents = format_retrieval_documents(retrieval_documents)
semantic_retrieval_documents_json = serialize_json_data(semantic_retrieval_documents)
return SpanData(
trace_id=trace_metadata.trace_id,
parent_span_id=trace_metadata.workflow_span_id,
span_id=convert_to_span_id(node_execution.id, "node"),
name=node_execution.title,
start_time=convert_datetime_to_nanoseconds(node_execution.created_at),
end_time=convert_datetime_to_nanoseconds(node_execution.finished_at),
attributes={
**create_common_span_attributes(
session_id=trace_metadata.session_id,
user_id=trace_metadata.user_id,
span_kind=GenAISpanKind.RETRIEVER,
inputs=input_value,
outputs=output_value,
),
RETRIEVAL_QUERY: input_value,
RETRIEVAL_DOCUMENT: semantic_retrieval_documents_json,
},
status=get_workflow_node_status(node_execution),
links=trace_metadata.links,
)
def build_workflow_llm_span(
self, trace_info: WorkflowTraceInfo, node_execution: WorkflowNodeExecution, trace_metadata: TraceMetadata
) -> SpanData:
process_data = node_execution.process_data or {}
outputs = node_execution.outputs or {}
usage_data = process_data.get("usage", {}) if "usage" in process_data else outputs.get("usage", {})
prompts_json = serialize_json_data(process_data.get("prompts", []))
text_output = str(outputs.get("text", ""))
gen_ai_input_message = format_input_messages(process_data)
gen_ai_output_message = format_output_messages(outputs)
return SpanData(
trace_id=trace_metadata.trace_id,
parent_span_id=trace_metadata.workflow_span_id,
span_id=convert_to_span_id(node_execution.id, "node"),
name=node_execution.title,
start_time=convert_datetime_to_nanoseconds(node_execution.created_at),
end_time=convert_datetime_to_nanoseconds(node_execution.finished_at),
attributes={
**create_common_span_attributes(
session_id=trace_metadata.session_id,
user_id=trace_metadata.user_id,
span_kind=GenAISpanKind.LLM,
inputs=prompts_json,
outputs=text_output,
),
GEN_AI_REQUEST_MODEL: process_data.get("model_name") or "",
GEN_AI_PROVIDER_NAME: process_data.get("model_provider") or "",
GEN_AI_USAGE_INPUT_TOKENS: str(usage_data.get("prompt_tokens", 0)),
GEN_AI_USAGE_OUTPUT_TOKENS: str(usage_data.get("completion_tokens", 0)),
GEN_AI_USAGE_TOTAL_TOKENS: str(usage_data.get("total_tokens", 0)),
GEN_AI_PROMPT: prompts_json,
GEN_AI_COMPLETION: text_output,
GEN_AI_RESPONSE_FINISH_REASON: outputs.get("finish_reason") or "",
GEN_AI_INPUT_MESSAGE: gen_ai_input_message,
GEN_AI_OUTPUT_MESSAGE: gen_ai_output_message,
},
status=get_workflow_node_status(node_execution),
links=trace_metadata.links,
)
def add_workflow_span(self, trace_info: WorkflowTraceInfo, trace_metadata: TraceMetadata):
message_span_id = None
if trace_info.message_id:
message_span_id = convert_to_span_id(trace_info.message_id, "message")
status = create_status_from_error(trace_info.error)
inputs_json = serialize_json_data(trace_info.workflow_run_inputs)
outputs_json = serialize_json_data(trace_info.workflow_run_outputs)
if message_span_id:
message_span = SpanData(
trace_id=trace_metadata.trace_id,
parent_span_id=None,
span_id=message_span_id,
name="message",
start_time=convert_datetime_to_nanoseconds(trace_info.start_time),
end_time=convert_datetime_to_nanoseconds(trace_info.end_time),
attributes=create_common_span_attributes(
session_id=trace_metadata.session_id,
user_id=trace_metadata.user_id,
span_kind=GenAISpanKind.CHAIN,
inputs=trace_info.workflow_run_inputs.get("sys.query") or "",
outputs=outputs_json,
),
status=status,
links=trace_metadata.links,
)
self.trace_client.add_span(message_span)
workflow_span = SpanData(
trace_id=trace_metadata.trace_id,
parent_span_id=message_span_id,
span_id=trace_metadata.workflow_span_id,
name="workflow",
start_time=convert_datetime_to_nanoseconds(trace_info.start_time),
end_time=convert_datetime_to_nanoseconds(trace_info.end_time),
attributes=create_common_span_attributes(
session_id=trace_metadata.session_id,
user_id=trace_metadata.user_id,
span_kind=GenAISpanKind.CHAIN,
inputs=inputs_json,
outputs=outputs_json,
),
status=status,
links=trace_metadata.links,
)
self.trace_client.add_span(workflow_span)
def suggested_question_trace(self, trace_info: SuggestedQuestionTraceInfo):
message_id = trace_info.message_id
status = create_status_from_error(trace_info.error)
trace_metadata = TraceMetadata(
trace_id=convert_to_trace_id(message_id),
workflow_span_id=0,
session_id=trace_info.metadata.get("conversation_id") or "",
user_id=str(trace_info.metadata.get("user_id") or ""),
links=create_links_from_trace_id(trace_info.trace_id),
)
inputs_json = serialize_json_data(trace_info.inputs)
suggested_question_json = serialize_json_data(trace_info.suggested_question)
suggested_question_span = SpanData(
trace_id=trace_metadata.trace_id,
parent_span_id=convert_to_span_id(message_id, "message"),
span_id=convert_to_span_id(message_id, "suggested_question"),
name="suggested_question",
start_time=convert_datetime_to_nanoseconds(trace_info.start_time),
end_time=convert_datetime_to_nanoseconds(trace_info.end_time),
attributes={
**create_common_span_attributes(
session_id=trace_metadata.session_id,
user_id=trace_metadata.user_id,
span_kind=GenAISpanKind.LLM,
inputs=inputs_json,
outputs=suggested_question_json,
),
GEN_AI_REQUEST_MODEL: trace_info.metadata.get("ls_model_name") or "",
GEN_AI_PROVIDER_NAME: trace_info.metadata.get("ls_provider") or "",
GEN_AI_PROMPT: inputs_json,
GEN_AI_COMPLETION: suggested_question_json,
},
status=status,
links=trace_metadata.links,
)
self.trace_client.add_span(suggested_question_span)

View File

@@ -0,0 +1,236 @@
import hashlib
import logging
import random
import socket
import threading
import uuid
from collections import deque
from collections.abc import Sequence
from datetime import datetime
from typing import Final, cast
from urllib.parse import urljoin
import httpx
from opentelemetry import trace as trace_api
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk.resources import Resource
from opentelemetry.sdk.trace import ReadableSpan
from opentelemetry.sdk.util.instrumentation import InstrumentationScope
from opentelemetry.semconv.resource import ResourceAttributes
from opentelemetry.trace import Link, SpanContext, TraceFlags
from configs import dify_config
from core.ops.aliyun_trace.entities.aliyun_trace_entity import SpanData
INVALID_SPAN_ID: Final[int] = 0x0000000000000000
INVALID_TRACE_ID: Final[int] = 0x00000000000000000000000000000000
DEFAULT_TIMEOUT: Final[int] = 5
DEFAULT_MAX_QUEUE_SIZE: Final[int] = 1000
DEFAULT_SCHEDULE_DELAY_SEC: Final[int] = 5
DEFAULT_MAX_EXPORT_BATCH_SIZE: Final[int] = 50
logger = logging.getLogger(__name__)
class TraceClient:
def __init__(
self,
service_name: str,
endpoint: str,
max_queue_size: int = DEFAULT_MAX_QUEUE_SIZE,
schedule_delay_sec: int = DEFAULT_SCHEDULE_DELAY_SEC,
max_export_batch_size: int = DEFAULT_MAX_EXPORT_BATCH_SIZE,
):
self.endpoint = endpoint
self.resource = Resource(
attributes={
ResourceAttributes.SERVICE_NAME: service_name,
ResourceAttributes.SERVICE_VERSION: f"dify-{dify_config.project.version}-{dify_config.COMMIT_SHA}",
ResourceAttributes.DEPLOYMENT_ENVIRONMENT: f"{dify_config.DEPLOY_ENV}-{dify_config.EDITION}",
ResourceAttributes.HOST_NAME: socket.gethostname(),
}
)
self.span_builder = SpanBuilder(self.resource)
self.exporter = OTLPSpanExporter(endpoint=endpoint)
self.max_queue_size = max_queue_size
self.schedule_delay_sec = schedule_delay_sec
self.max_export_batch_size = max_export_batch_size
self.queue: deque = deque(maxlen=max_queue_size)
self.condition = threading.Condition(threading.Lock())
self.done = False
self.worker_thread = threading.Thread(target=self._worker, daemon=True)
self.worker_thread.start()
self._spans_dropped = False
def export(self, spans: Sequence[ReadableSpan]):
self.exporter.export(spans)
def api_check(self) -> bool:
try:
response = httpx.head(self.endpoint, timeout=DEFAULT_TIMEOUT)
if response.status_code == 405:
return True
else:
logger.debug("AliyunTrace API check failed: Unexpected status code: %s", response.status_code)
return False
except httpx.RequestError as e:
logger.debug("AliyunTrace API check failed: %s", str(e))
raise ValueError(f"AliyunTrace API check failed: {str(e)}")
def get_project_url(self) -> str:
return "https://arms.console.aliyun.com/#/llm"
def add_span(self, span_data: SpanData | None) -> None:
if span_data is None:
return
span: ReadableSpan = self.span_builder.build_span(span_data)
with self.condition:
if len(self.queue) == self.max_queue_size:
if not self._spans_dropped:
logger.warning("Queue is full, likely spans will be dropped.")
self._spans_dropped = True
self.queue.appendleft(span)
if len(self.queue) >= self.max_export_batch_size:
self.condition.notify()
def _worker(self) -> None:
while not self.done:
with self.condition:
if len(self.queue) < self.max_export_batch_size and not self.done:
self.condition.wait(timeout=self.schedule_delay_sec)
self._export_batch()
def _export_batch(self) -> None:
spans_to_export: list[ReadableSpan] = []
with self.condition:
while len(spans_to_export) < self.max_export_batch_size and self.queue:
spans_to_export.append(self.queue.pop())
if spans_to_export:
try:
self.exporter.export(spans_to_export)
except Exception as e:
logger.debug("Error exporting spans: %s", e)
def shutdown(self) -> None:
with self.condition:
self.done = True
self.condition.notify_all()
self.worker_thread.join()
self._export_batch()
self.exporter.shutdown()
class SpanBuilder:
def __init__(self, resource: Resource) -> None:
self.resource = resource
self.instrumentation_scope = InstrumentationScope(
__name__,
"",
None,
None,
)
def build_span(self, span_data: SpanData) -> ReadableSpan:
span_context = trace_api.SpanContext(
trace_id=span_data.trace_id,
span_id=span_data.span_id,
is_remote=False,
trace_flags=trace_api.TraceFlags(trace_api.TraceFlags.SAMPLED),
trace_state=None,
)
parent_span_context = None
if span_data.parent_span_id is not None:
parent_span_context = trace_api.SpanContext(
trace_id=span_data.trace_id,
span_id=span_data.parent_span_id,
is_remote=False,
trace_flags=trace_api.TraceFlags(trace_api.TraceFlags.SAMPLED),
trace_state=None,
)
span = ReadableSpan(
name=span_data.name,
context=span_context,
parent=parent_span_context,
resource=self.resource,
attributes=span_data.attributes,
events=span_data.events,
links=span_data.links,
kind=trace_api.SpanKind.INTERNAL,
status=span_data.status,
start_time=span_data.start_time,
end_time=span_data.end_time,
instrumentation_scope=self.instrumentation_scope,
)
return span
def create_link(trace_id_str: str) -> Link:
placeholder_span_id = INVALID_SPAN_ID
try:
trace_id = int(trace_id_str, 16)
except ValueError as e:
raise ValueError(f"Invalid trace ID format: {trace_id_str}") from e
span_context = SpanContext(
trace_id=trace_id, span_id=placeholder_span_id, is_remote=False, trace_flags=TraceFlags(TraceFlags.SAMPLED)
)
return Link(span_context)
def generate_span_id() -> int:
span_id = random.getrandbits(64)
while span_id == INVALID_SPAN_ID:
span_id = random.getrandbits(64)
return span_id
def convert_to_trace_id(uuid_v4: str | None) -> int:
if uuid_v4 is None:
raise ValueError("UUID cannot be None")
try:
uuid_obj = uuid.UUID(uuid_v4)
return cast(int, uuid_obj.int)
except ValueError as e:
raise ValueError(f"Invalid UUID input: {uuid_v4}") from e
def convert_string_to_id(string: str | None) -> int:
if not string:
return generate_span_id()
hash_bytes = hashlib.sha256(string.encode("utf-8")).digest()
return int.from_bytes(hash_bytes[:8], byteorder="big", signed=False)
def convert_to_span_id(uuid_v4: str | None, span_type: str) -> int:
if uuid_v4 is None:
raise ValueError("UUID cannot be None")
try:
uuid_obj = uuid.UUID(uuid_v4)
except ValueError as e:
raise ValueError(f"Invalid UUID input: {uuid_v4}") from e
combined_key = f"{uuid_obj.hex}-{span_type}"
return convert_string_to_id(combined_key)
def convert_datetime_to_nanoseconds(start_time_a: datetime | None) -> int | None:
if start_time_a is None:
return None
timestamp_in_seconds = start_time_a.timestamp()
return int(timestamp_in_seconds * 1e9)
def build_endpoint(base_url: str, license_key: str) -> str:
if "log.aliyuncs.com" in base_url: # cms2.0 endpoint
return urljoin(base_url, f"adapt_{license_key}/api/v1/traces")
else: # xtrace endpoint
return urljoin(base_url, f"adapt_{license_key}/api/otlp/traces")

View File

@@ -0,0 +1,36 @@
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
from opentelemetry import trace as trace_api
from opentelemetry.sdk.trace import Event
from opentelemetry.trace import Status, StatusCode
from pydantic import BaseModel, Field
@dataclass
class TraceMetadata:
"""Metadata for trace operations, containing common attributes for all spans in a trace."""
trace_id: int
workflow_span_id: int
session_id: str
user_id: str
links: list[trace_api.Link]
class SpanData(BaseModel):
"""Data model for span information in Aliyun trace system."""
model_config = {"arbitrary_types_allowed": True}
trace_id: int = Field(..., description="The unique identifier for the trace.")
parent_span_id: int | None = Field(None, description="The ID of the parent span, if any.")
span_id: int = Field(..., description="The unique identifier for this span.")
name: str = Field(..., description="The name of the span.")
attributes: dict[str, Any] = Field(default_factory=dict, description="Attributes associated with the span.")
events: Sequence[Event] = Field(default_factory=list, description="Events recorded in the span.")
links: Sequence[trace_api.Link] = Field(default_factory=list, description="Links to other spans.")
status: Status = Field(default=Status(StatusCode.UNSET), description="The status of the span.")
start_time: int | None = Field(..., description="The start time of the span in nanoseconds.")
end_time: int | None = Field(..., description="The end time of the span in nanoseconds.")

View File

@@ -0,0 +1,46 @@
from enum import StrEnum
from typing import Final
# Public attributes
GEN_AI_SESSION_ID: Final[str] = "gen_ai.session.id"
GEN_AI_USER_ID: Final[str] = "gen_ai.user.id"
GEN_AI_USER_NAME: Final[str] = "gen_ai.user.name"
GEN_AI_SPAN_KIND: Final[str] = "gen_ai.span.kind"
GEN_AI_FRAMEWORK: Final[str] = "gen_ai.framework"
# Chain attributes
INPUT_VALUE: Final[str] = "input.value"
OUTPUT_VALUE: Final[str] = "output.value"
# Retriever attributes
RETRIEVAL_QUERY: Final[str] = "retrieval.query"
RETRIEVAL_DOCUMENT: Final[str] = "retrieval.document"
# LLM attributes
GEN_AI_REQUEST_MODEL: Final[str] = "gen_ai.request.model"
GEN_AI_PROVIDER_NAME: Final[str] = "gen_ai.provider.name"
GEN_AI_USAGE_INPUT_TOKENS: Final[str] = "gen_ai.usage.input_tokens"
GEN_AI_USAGE_OUTPUT_TOKENS: Final[str] = "gen_ai.usage.output_tokens"
GEN_AI_USAGE_TOTAL_TOKENS: Final[str] = "gen_ai.usage.total_tokens"
GEN_AI_PROMPT: Final[str] = "gen_ai.prompt"
GEN_AI_COMPLETION: Final[str] = "gen_ai.completion"
GEN_AI_RESPONSE_FINISH_REASON: Final[str] = "gen_ai.response.finish_reason"
GEN_AI_INPUT_MESSAGE: Final[str] = "gen_ai.input.messages"
GEN_AI_OUTPUT_MESSAGE: Final[str] = "gen_ai.output.messages"
# Tool attributes
TOOL_NAME: Final[str] = "tool.name"
TOOL_DESCRIPTION: Final[str] = "tool.description"
TOOL_PARAMETERS: Final[str] = "tool.parameters"
class GenAISpanKind(StrEnum):
CHAIN = "CHAIN"
RETRIEVER = "RETRIEVER"
RERANKER = "RERANKER"
LLM = "LLM"
EMBEDDING = "EMBEDDING"
TOOL = "TOOL"
AGENT = "AGENT"
TASK = "TASK"

View File

@@ -0,0 +1,190 @@
import json
from collections.abc import Mapping
from typing import Any
from opentelemetry.trace import Link, Status, StatusCode
from core.ops.aliyun_trace.entities.semconv import (
GEN_AI_FRAMEWORK,
GEN_AI_SESSION_ID,
GEN_AI_SPAN_KIND,
GEN_AI_USER_ID,
INPUT_VALUE,
OUTPUT_VALUE,
GenAISpanKind,
)
from core.rag.models.document import Document
from core.workflow.entities import WorkflowNodeExecution
from core.workflow.enums import WorkflowNodeExecutionStatus
from extensions.ext_database import db
from models import EndUser
# Constants
DEFAULT_JSON_ENSURE_ASCII = False
DEFAULT_FRAMEWORK_NAME = "dify"
def get_user_id_from_message_data(message_data) -> str:
user_id = message_data.from_account_id
if message_data.from_end_user_id:
end_user_data: EndUser | None = (
db.session.query(EndUser).where(EndUser.id == message_data.from_end_user_id).first()
)
if end_user_data is not None:
user_id = end_user_data.session_id
return user_id
def create_status_from_error(error: str | None) -> Status:
if error:
return Status(StatusCode.ERROR, error)
return Status(StatusCode.OK)
def get_workflow_node_status(node_execution: WorkflowNodeExecution) -> Status:
if node_execution.status == WorkflowNodeExecutionStatus.SUCCEEDED:
return Status(StatusCode.OK)
if node_execution.status in [WorkflowNodeExecutionStatus.FAILED, WorkflowNodeExecutionStatus.EXCEPTION]:
return Status(StatusCode.ERROR, str(node_execution.error))
return Status(StatusCode.UNSET)
def create_links_from_trace_id(trace_id: str | None) -> list[Link]:
from core.ops.aliyun_trace.data_exporter.traceclient import create_link
links = []
if trace_id:
links.append(create_link(trace_id_str=trace_id))
return links
def extract_retrieval_documents(documents: list[Document]) -> list[dict[str, Any]]:
documents_data = []
for document in documents:
document_data = {
"content": document.page_content,
"metadata": {
"dataset_id": document.metadata.get("dataset_id"),
"doc_id": document.metadata.get("doc_id"),
"document_id": document.metadata.get("document_id"),
},
"score": document.metadata.get("score"),
}
documents_data.append(document_data)
return documents_data
def serialize_json_data(data: Any, ensure_ascii: bool = DEFAULT_JSON_ENSURE_ASCII) -> str:
return json.dumps(data, ensure_ascii=ensure_ascii)
def create_common_span_attributes(
session_id: str = "",
user_id: str = "",
span_kind: str = GenAISpanKind.CHAIN,
framework: str = DEFAULT_FRAMEWORK_NAME,
inputs: str = "",
outputs: str = "",
) -> dict[str, Any]:
return {
GEN_AI_SESSION_ID: session_id,
GEN_AI_USER_ID: user_id,
GEN_AI_SPAN_KIND: span_kind,
GEN_AI_FRAMEWORK: framework,
INPUT_VALUE: inputs,
OUTPUT_VALUE: outputs,
}
def format_retrieval_documents(retrieval_documents: list) -> list:
try:
if not isinstance(retrieval_documents, list):
return []
semantic_documents = []
for doc in retrieval_documents:
if not isinstance(doc, dict):
continue
metadata = doc.get("metadata", {})
content = doc.get("content", "")
title = doc.get("title", "")
score = metadata.get("score", 0.0)
document_id = metadata.get("document_id", "")
semantic_metadata = {}
if title:
semantic_metadata["title"] = title
if metadata.get("source"):
semantic_metadata["source"] = metadata["source"]
elif metadata.get("_source"):
semantic_metadata["source"] = metadata["_source"]
if metadata.get("doc_metadata"):
doc_metadata = metadata["doc_metadata"]
if isinstance(doc_metadata, dict):
semantic_metadata.update(doc_metadata)
semantic_doc = {
"document": {"content": content, "metadata": semantic_metadata, "score": score, "id": document_id}
}
semantic_documents.append(semantic_doc)
return semantic_documents
except Exception:
return []
def format_input_messages(process_data: Mapping[str, Any]) -> str:
try:
if not isinstance(process_data, dict):
return serialize_json_data([])
prompts = process_data.get("prompts", [])
if not prompts:
return serialize_json_data([])
valid_roles = {"system", "user", "assistant", "tool"}
input_messages = []
for prompt in prompts:
if not isinstance(prompt, dict):
continue
role = prompt.get("role", "")
text = prompt.get("text", "")
if not role or role not in valid_roles:
continue
if text:
message = {"role": role, "parts": [{"type": "text", "content": text}]}
input_messages.append(message)
return serialize_json_data(input_messages)
except Exception:
return serialize_json_data([])
def format_output_messages(outputs: Mapping[str, Any]) -> str:
try:
if not isinstance(outputs, dict):
return serialize_json_data([])
text = outputs.get("text", "")
finish_reason = outputs.get("finish_reason", "")
if not text:
return serialize_json_data([])
valid_finish_reasons = {"stop", "length", "content_filter", "tool_call", "error"}
if finish_reason not in valid_finish_reasons:
finish_reason = "stop"
output_message = {
"role": "assistant",
"parts": [{"type": "text", "content": text}],
"finish_reason": finish_reason,
}
return serialize_json_data([output_message])
except Exception:
return serialize_json_data([])