This commit is contained in:
2025-12-01 17:21:38 +08:00
parent 32fee2b8ab
commit fab8c13cb3
7511 changed files with 996300 additions and 0 deletions

View File

@@ -0,0 +1,222 @@
from collections.abc import Generator, Mapping
from typing import Union
from sqlalchemy import select
from sqlalchemy.orm import Session
from core.app.app_config.common.parameters_mapping import get_parameters_from_feature_dict
from core.app.apps.advanced_chat.app_generator import AdvancedChatAppGenerator
from core.app.apps.agent_chat.app_generator import AgentChatAppGenerator
from core.app.apps.chat.app_generator import ChatAppGenerator
from core.app.apps.completion.app_generator import CompletionAppGenerator
from core.app.apps.workflow.app_generator import WorkflowAppGenerator
from core.app.entities.app_invoke_entities import InvokeFrom
from core.plugin.backwards_invocation.base import BaseBackwardsInvocation
from extensions.ext_database import db
from models import Account
from models.model import App, AppMode, EndUser
from services.end_user_service import EndUserService
class PluginAppBackwardsInvocation(BaseBackwardsInvocation):
@classmethod
def fetch_app_info(cls, app_id: str, tenant_id: str) -> Mapping:
"""
Fetch app info
"""
app = cls._get_app(app_id, tenant_id)
"""Retrieve app parameters."""
if app.mode in {AppMode.ADVANCED_CHAT, AppMode.WORKFLOW}:
workflow = app.workflow
if workflow is None:
raise ValueError("unexpected app type")
features_dict = workflow.features_dict
user_input_form = workflow.user_input_form(to_old_structure=True)
else:
app_model_config = app.app_model_config
if app_model_config is None:
raise ValueError("unexpected app type")
features_dict = app_model_config.to_dict()
user_input_form = features_dict.get("user_input_form", [])
return {
"data": get_parameters_from_feature_dict(features_dict=features_dict, user_input_form=user_input_form),
}
@classmethod
def invoke_app(
cls,
app_id: str,
user_id: str,
tenant_id: str,
conversation_id: str | None,
query: str | None,
stream: bool,
inputs: Mapping,
files: list[dict],
) -> Generator[Mapping | str, None, None] | Mapping:
"""
invoke app
"""
app = cls._get_app(app_id, tenant_id)
if not user_id:
user = EndUserService.get_or_create_end_user(app)
else:
user = cls._get_user(user_id)
conversation_id = conversation_id or ""
if app.mode in {AppMode.ADVANCED_CHAT, AppMode.AGENT_CHAT, AppMode.CHAT}:
if not query:
raise ValueError("missing query")
return cls.invoke_chat_app(app, user, conversation_id, query, stream, inputs, files)
elif app.mode == AppMode.WORKFLOW:
return cls.invoke_workflow_app(app, user, stream, inputs, files)
elif app.mode == AppMode.COMPLETION:
return cls.invoke_completion_app(app, user, stream, inputs, files)
raise ValueError("unexpected app type")
@classmethod
def invoke_chat_app(
cls,
app: App,
user: Account | EndUser,
conversation_id: str,
query: str,
stream: bool,
inputs: Mapping,
files: list[dict],
) -> Generator[Mapping | str, None, None] | Mapping:
"""
invoke chat app
"""
if app.mode == AppMode.ADVANCED_CHAT:
workflow = app.workflow
if not workflow:
raise ValueError("unexpected app type")
return AdvancedChatAppGenerator().generate(
app_model=app,
workflow=workflow,
user=user,
args={
"inputs": inputs,
"query": query,
"files": files,
"conversation_id": conversation_id,
},
invoke_from=InvokeFrom.SERVICE_API,
streaming=stream,
)
elif app.mode == AppMode.AGENT_CHAT:
return AgentChatAppGenerator().generate(
app_model=app,
user=user,
args={
"inputs": inputs,
"query": query,
"files": files,
"conversation_id": conversation_id,
},
invoke_from=InvokeFrom.SERVICE_API,
streaming=stream,
)
elif app.mode == AppMode.CHAT:
return ChatAppGenerator().generate(
app_model=app,
user=user,
args={
"inputs": inputs,
"query": query,
"files": files,
"conversation_id": conversation_id,
},
invoke_from=InvokeFrom.SERVICE_API,
streaming=stream,
)
else:
raise ValueError("unexpected app type")
@classmethod
def invoke_workflow_app(
cls,
app: App,
user: EndUser | Account,
stream: bool,
inputs: Mapping,
files: list[dict],
) -> Generator[Mapping | str, None, None] | Mapping:
"""
invoke workflow app
"""
workflow = app.workflow
if not workflow:
raise ValueError("unexpected app type")
return WorkflowAppGenerator().generate(
app_model=app,
workflow=workflow,
user=user,
args={"inputs": inputs, "files": files},
invoke_from=InvokeFrom.SERVICE_API,
streaming=stream,
call_depth=1,
)
@classmethod
def invoke_completion_app(
cls,
app: App,
user: EndUser | Account,
stream: bool,
inputs: Mapping,
files: list[dict],
) -> Generator[Mapping | str, None, None] | Mapping:
"""
invoke completion app
"""
return CompletionAppGenerator().generate(
app_model=app,
user=user,
args={"inputs": inputs, "files": files},
invoke_from=InvokeFrom.SERVICE_API,
streaming=stream,
)
@classmethod
def _get_user(cls, user_id: str) -> Union[EndUser, Account]:
"""
get the user by user id
"""
with Session(db.engine, expire_on_commit=False) as session:
stmt = select(EndUser).where(EndUser.id == user_id)
user = session.scalar(stmt)
if not user:
stmt = select(Account).where(Account.id == user_id)
user = session.scalar(stmt)
if not user:
raise ValueError("user not found")
return user
@classmethod
def _get_app(cls, app_id: str, tenant_id: str) -> App:
"""
get app
"""
try:
app = db.session.query(App).where(App.id == app_id).where(App.tenant_id == tenant_id).first()
except Exception:
raise ValueError("app not found")
if not app:
raise ValueError("app not found")
return app

View File

@@ -0,0 +1,27 @@
from collections.abc import Generator, Mapping
from typing import Generic, TypeVar
from pydantic import BaseModel
class BaseBackwardsInvocation:
@classmethod
def convert_to_event_stream(cls, response: Generator[BaseModel | Mapping | str, None, None] | BaseModel | Mapping):
if isinstance(response, Generator):
try:
for chunk in response:
if isinstance(chunk, BaseModel | dict):
yield BaseBackwardsInvocationResponse(data=chunk).model_dump_json().encode()
except Exception as e:
error_message = BaseBackwardsInvocationResponse(error=str(e)).model_dump_json()
yield error_message.encode()
else:
yield BaseBackwardsInvocationResponse(data=response).model_dump_json().encode()
T = TypeVar("T", bound=dict | Mapping | str | bool | int | BaseModel)
class BaseBackwardsInvocationResponse(BaseModel, Generic[T]):
data: T | None = None
error: str = ""

View File

@@ -0,0 +1,34 @@
from core.helper.provider_cache import SingletonProviderCredentialsCache
from core.plugin.entities.request import RequestInvokeEncrypt
from core.tools.utils.encryption import create_provider_encrypter
from models.account import Tenant
class PluginEncrypter:
@classmethod
def invoke_encrypt(cls, tenant: Tenant, payload: RequestInvokeEncrypt):
encrypter, cache = create_provider_encrypter(
tenant_id=tenant.id,
config=payload.config,
cache=SingletonProviderCredentialsCache(
tenant_id=tenant.id,
provider_type=payload.namespace,
provider_identity=payload.identity,
),
)
if payload.opt == "encrypt":
return {
"data": encrypter.encrypt(payload.data),
}
elif payload.opt == "decrypt":
return {
"data": encrypter.decrypt(payload.data),
}
elif payload.opt == "clear":
cache.delete()
return {
"data": {},
}
else:
raise ValueError(f"Invalid opt: {payload.opt}")

View File

@@ -0,0 +1,410 @@
import tempfile
from binascii import hexlify, unhexlify
from collections.abc import Generator
from core.llm_generator.output_parser.structured_output import invoke_llm_with_structured_output
from core.model_manager import ModelManager
from core.model_runtime.entities.llm_entities import (
LLMResult,
LLMResultChunk,
LLMResultChunkDelta,
LLMResultChunkWithStructuredOutput,
LLMResultWithStructuredOutput,
)
from core.model_runtime.entities.message_entities import (
PromptMessage,
SystemPromptMessage,
UserPromptMessage,
)
from core.plugin.backwards_invocation.base import BaseBackwardsInvocation
from core.plugin.entities.request import (
RequestInvokeLLM,
RequestInvokeLLMWithStructuredOutput,
RequestInvokeModeration,
RequestInvokeRerank,
RequestInvokeSpeech2Text,
RequestInvokeSummary,
RequestInvokeTextEmbedding,
RequestInvokeTTS,
)
from core.tools.entities.tool_entities import ToolProviderType
from core.tools.utils.model_invocation_utils import ModelInvocationUtils
from core.workflow.nodes.llm import llm_utils
from models.account import Tenant
class PluginModelBackwardsInvocation(BaseBackwardsInvocation):
@classmethod
def invoke_llm(
cls, user_id: str, tenant: Tenant, payload: RequestInvokeLLM
) -> Generator[LLMResultChunk, None, None] | LLMResult:
"""
invoke llm
"""
model_instance = ModelManager().get_model_instance(
tenant_id=tenant.id,
provider=payload.provider,
model_type=payload.model_type,
model=payload.model,
)
# invoke model
response = model_instance.invoke_llm(
prompt_messages=payload.prompt_messages,
model_parameters=payload.completion_params,
tools=payload.tools,
stop=payload.stop,
stream=True if payload.stream is None else payload.stream,
user=user_id,
)
if isinstance(response, Generator):
def handle() -> Generator[LLMResultChunk, None, None]:
for chunk in response:
if chunk.delta.usage:
llm_utils.deduct_llm_quota(
tenant_id=tenant.id, model_instance=model_instance, usage=chunk.delta.usage
)
chunk.prompt_messages = []
yield chunk
return handle()
else:
if response.usage:
llm_utils.deduct_llm_quota(tenant_id=tenant.id, model_instance=model_instance, usage=response.usage)
def handle_non_streaming(response: LLMResult) -> Generator[LLMResultChunk, None, None]:
yield LLMResultChunk(
model=response.model,
prompt_messages=[],
system_fingerprint=response.system_fingerprint,
delta=LLMResultChunkDelta(
index=0,
message=response.message,
usage=response.usage,
finish_reason="",
),
)
return handle_non_streaming(response)
@classmethod
def invoke_llm_with_structured_output(
cls, user_id: str, tenant: Tenant, payload: RequestInvokeLLMWithStructuredOutput
):
"""
invoke llm with structured output
"""
model_instance = ModelManager().get_model_instance(
tenant_id=tenant.id,
provider=payload.provider,
model_type=payload.model_type,
model=payload.model,
)
model_schema = model_instance.model_type_instance.get_model_schema(payload.model, model_instance.credentials)
if not model_schema:
raise ValueError(f"Model schema not found for {payload.model}")
response = invoke_llm_with_structured_output(
provider=payload.provider,
model_schema=model_schema,
model_instance=model_instance,
prompt_messages=payload.prompt_messages,
json_schema=payload.structured_output_schema,
tools=payload.tools,
stop=payload.stop,
stream=True if payload.stream is None else payload.stream,
user=user_id,
model_parameters=payload.completion_params,
)
if isinstance(response, Generator):
def handle() -> Generator[LLMResultChunkWithStructuredOutput, None, None]:
for chunk in response:
if chunk.delta.usage:
llm_utils.deduct_llm_quota(
tenant_id=tenant.id, model_instance=model_instance, usage=chunk.delta.usage
)
chunk.prompt_messages = []
yield chunk
return handle()
else:
if response.usage:
llm_utils.deduct_llm_quota(tenant_id=tenant.id, model_instance=model_instance, usage=response.usage)
def handle_non_streaming(
response: LLMResultWithStructuredOutput,
) -> Generator[LLMResultChunkWithStructuredOutput, None, None]:
yield LLMResultChunkWithStructuredOutput(
model=response.model,
prompt_messages=[],
system_fingerprint=response.system_fingerprint,
structured_output=response.structured_output,
delta=LLMResultChunkDelta(
index=0,
message=response.message,
usage=response.usage,
finish_reason="",
),
)
return handle_non_streaming(response)
@classmethod
def invoke_text_embedding(cls, user_id: str, tenant: Tenant, payload: RequestInvokeTextEmbedding):
"""
invoke text embedding
"""
model_instance = ModelManager().get_model_instance(
tenant_id=tenant.id,
provider=payload.provider,
model_type=payload.model_type,
model=payload.model,
)
# invoke model
response = model_instance.invoke_text_embedding(
texts=payload.texts,
user=user_id,
)
return response
@classmethod
def invoke_rerank(cls, user_id: str, tenant: Tenant, payload: RequestInvokeRerank):
"""
invoke rerank
"""
model_instance = ModelManager().get_model_instance(
tenant_id=tenant.id,
provider=payload.provider,
model_type=payload.model_type,
model=payload.model,
)
# invoke model
response = model_instance.invoke_rerank(
query=payload.query,
docs=payload.docs,
score_threshold=payload.score_threshold,
top_n=payload.top_n,
user=user_id,
)
return response
@classmethod
def invoke_tts(cls, user_id: str, tenant: Tenant, payload: RequestInvokeTTS):
"""
invoke tts
"""
model_instance = ModelManager().get_model_instance(
tenant_id=tenant.id,
provider=payload.provider,
model_type=payload.model_type,
model=payload.model,
)
# invoke model
response = model_instance.invoke_tts(
content_text=payload.content_text,
tenant_id=tenant.id,
voice=payload.voice,
user=user_id,
)
def handle() -> Generator[dict, None, None]:
for chunk in response:
yield {"result": hexlify(chunk).decode("utf-8")}
return handle()
@classmethod
def invoke_speech2text(cls, user_id: str, tenant: Tenant, payload: RequestInvokeSpeech2Text):
"""
invoke speech2text
"""
model_instance = ModelManager().get_model_instance(
tenant_id=tenant.id,
provider=payload.provider,
model_type=payload.model_type,
model=payload.model,
)
# invoke model
with tempfile.NamedTemporaryFile(suffix=".mp3", mode="wb", delete=True) as temp:
temp.write(unhexlify(payload.file))
temp.flush()
temp.seek(0)
response = model_instance.invoke_speech2text(
file=temp,
user=user_id,
)
return {
"result": response,
}
@classmethod
def invoke_moderation(cls, user_id: str, tenant: Tenant, payload: RequestInvokeModeration):
"""
invoke moderation
"""
model_instance = ModelManager().get_model_instance(
tenant_id=tenant.id,
provider=payload.provider,
model_type=payload.model_type,
model=payload.model,
)
# invoke model
response = model_instance.invoke_moderation(
text=payload.text,
user=user_id,
)
return {
"result": response,
}
@classmethod
def get_system_model_max_tokens(cls, tenant_id: str) -> int:
"""
get system model max tokens
"""
return ModelInvocationUtils.get_max_llm_context_tokens(tenant_id=tenant_id)
@classmethod
def get_prompt_tokens(cls, tenant_id: str, prompt_messages: list[PromptMessage]) -> int:
"""
get prompt tokens
"""
return ModelInvocationUtils.calculate_tokens(tenant_id=tenant_id, prompt_messages=prompt_messages)
@classmethod
def invoke_system_model(
cls,
user_id: str,
tenant: Tenant,
prompt_messages: list[PromptMessage],
) -> LLMResult:
"""
invoke system model
"""
return ModelInvocationUtils.invoke(
user_id=user_id,
tenant_id=tenant.id,
tool_type=ToolProviderType.PLUGIN,
tool_name="plugin",
prompt_messages=prompt_messages,
)
@classmethod
def invoke_summary(cls, user_id: str, tenant: Tenant, payload: RequestInvokeSummary):
"""
invoke summary
"""
max_tokens = cls.get_system_model_max_tokens(tenant_id=tenant.id)
content = payload.text
SUMMARY_PROMPT = """You are a professional language researcher, you are interested in the language
and you can quickly aimed at the main point of an webpage and reproduce it in your own words but
retain the original meaning and keep the key points.
however, the text you got is too long, what you got is possible a part of the text.
Please summarize the text you got.
Here is the extra instruction you need to follow:
<extra_instruction>
{payload.instruction}
</extra_instruction>
"""
if (
cls.get_prompt_tokens(
tenant_id=tenant.id,
prompt_messages=[UserPromptMessage(content=content)],
)
< max_tokens * 0.6
):
return content
def get_prompt_tokens(content: str) -> int:
return cls.get_prompt_tokens(
tenant_id=tenant.id,
prompt_messages=[
SystemPromptMessage(content=SUMMARY_PROMPT.replace("{payload.instruction}", payload.instruction)),
UserPromptMessage(content=content),
],
)
def summarize(content: str) -> str:
summary = cls.invoke_system_model(
user_id=user_id,
tenant=tenant,
prompt_messages=[
SystemPromptMessage(content=SUMMARY_PROMPT.replace("{payload.instruction}", payload.instruction)),
UserPromptMessage(content=content),
],
)
assert isinstance(summary.message.content, str)
return summary.message.content
lines = content.split("\n")
new_lines: list[str] = []
# split long line into multiple lines
for i in range(len(lines)):
line = lines[i]
if not line.strip():
continue
if len(line) < max_tokens * 0.5:
new_lines.append(line)
elif get_prompt_tokens(line) > max_tokens * 0.7:
while get_prompt_tokens(line) > max_tokens * 0.7:
new_lines.append(line[: int(max_tokens * 0.5)])
line = line[int(max_tokens * 0.5) :]
new_lines.append(line)
else:
new_lines.append(line)
# merge lines into messages with max tokens
messages: list[str] = []
for line in new_lines:
if len(messages) == 0:
messages.append(line)
else:
if len(messages[-1]) + len(line) < max_tokens * 0.5:
messages[-1] += line
if get_prompt_tokens(messages[-1] + line) > max_tokens * 0.7:
messages.append(line)
else:
messages[-1] += line
summaries = []
for i in range(len(messages)):
message = messages[i]
summary = summarize(message)
summaries.append(summary)
result = "\n".join(summaries)
if (
cls.get_prompt_tokens(
tenant_id=tenant.id,
prompt_messages=[UserPromptMessage(content=result)],
)
> max_tokens * 0.7
):
return cls.invoke_summary(
user_id=user_id,
tenant=tenant,
payload=RequestInvokeSummary(text=result, instruction=payload.instruction),
)
return result

View File

@@ -0,0 +1,119 @@
from core.plugin.backwards_invocation.base import BaseBackwardsInvocation
from core.workflow.enums import NodeType
from core.workflow.nodes.parameter_extractor.entities import (
ModelConfig as ParameterExtractorModelConfig,
)
from core.workflow.nodes.parameter_extractor.entities import (
ParameterConfig,
ParameterExtractorNodeData,
)
from core.workflow.nodes.question_classifier.entities import (
ClassConfig,
QuestionClassifierNodeData,
)
from core.workflow.nodes.question_classifier.entities import (
ModelConfig as QuestionClassifierModelConfig,
)
from services.workflow_service import WorkflowService
class PluginNodeBackwardsInvocation(BaseBackwardsInvocation):
@classmethod
def invoke_parameter_extractor(
cls,
tenant_id: str,
user_id: str,
parameters: list[ParameterConfig],
model_config: ParameterExtractorModelConfig,
instruction: str,
query: str,
):
"""
Invoke parameter extractor node.
:param tenant_id: str
:param user_id: str
:param parameters: list[ParameterConfig]
:param model_config: ModelConfig
:param instruction: str
:param query: str
:return: dict
"""
# FIXME(-LAN-): Avoid import service into core
workflow_service = WorkflowService()
node_id = "1919810"
node_data = ParameterExtractorNodeData(
title="parameter_extractor",
desc="parameter_extractor",
parameters=parameters,
reasoning_mode="function_call",
query=[node_id, "query"],
model=model_config,
instruction=instruction, # instruct with variables are not supported
)
node_data_dict = node_data.model_dump()
node_data_dict["type"] = NodeType.PARAMETER_EXTRACTOR
execution = workflow_service.run_free_workflow_node(
node_data_dict,
tenant_id=tenant_id,
user_id=user_id,
node_id=node_id,
user_inputs={
f"{node_id}.query": query,
},
)
return {
"inputs": execution.inputs,
"outputs": execution.outputs,
"process_data": execution.process_data,
}
@classmethod
def invoke_question_classifier(
cls,
tenant_id: str,
user_id: str,
model_config: QuestionClassifierModelConfig,
classes: list[ClassConfig],
instruction: str,
query: str,
):
"""
Invoke question classifier node.
:param tenant_id: str
:param user_id: str
:param model_config: ModelConfig
:param classes: list[ClassConfig]
:param instruction: str
:param query: str
:return: dict
"""
# FIXME(-LAN-): Avoid import service into core
workflow_service = WorkflowService()
node_id = "1919810"
node_data = QuestionClassifierNodeData(
title="question_classifier",
desc="question_classifier",
query_variable_selector=[node_id, "query"],
model=model_config,
classes=classes,
instruction=instruction, # instruct with variables are not supported
)
node_data_dict = node_data.model_dump()
execution = workflow_service.run_free_workflow_node(
node_data_dict,
tenant_id=tenant_id,
user_id=user_id,
node_id=node_id,
user_inputs={
f"{node_id}.query": query,
},
)
return {
"inputs": execution.inputs,
"outputs": execution.outputs,
"process_data": execution.process_data,
}

View File

@@ -0,0 +1,46 @@
from collections.abc import Generator
from typing import Any
from core.callback_handler.workflow_tool_callback_handler import DifyWorkflowCallbackHandler
from core.plugin.backwards_invocation.base import BaseBackwardsInvocation
from core.tools.entities.tool_entities import ToolInvokeMessage, ToolProviderType
from core.tools.tool_engine import ToolEngine
from core.tools.tool_manager import ToolManager
from core.tools.utils.message_transformer import ToolFileMessageTransformer
class PluginToolBackwardsInvocation(BaseBackwardsInvocation):
"""
Backwards invocation for plugin tools.
"""
@classmethod
def invoke_tool(
cls,
tenant_id: str,
user_id: str,
tool_type: ToolProviderType,
provider: str,
tool_name: str,
tool_parameters: dict[str, Any],
credential_id: str | None = None,
) -> Generator[ToolInvokeMessage, None, None]:
"""
invoke tool
"""
# get tool runtime
try:
tool_runtime = ToolManager.get_tool_runtime_from_plugin(
tool_type, tenant_id, provider, tool_name, tool_parameters, credential_id
)
response = ToolEngine.generic_invoke(
tool_runtime, tool_parameters, user_id, DifyWorkflowCallbackHandler(), workflow_call_depth=1
)
response = ToolFileMessageTransformer.transform_tool_invoke_messages(
response, user_id=user_id, tenant_id=tenant_id
)
return response
except Exception as e:
raise e