This commit is contained in:
2025-12-01 17:21:38 +08:00
parent 32fee2b8ab
commit fab8c13cb3
7511 changed files with 996300 additions and 0 deletions

View File

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,25 @@
from __future__ import annotations
from dataclasses import dataclass
from typing import NamedTuple, Union
@dataclass
class ReactAction:
"""A full description of an action for an ReactAction to execute."""
tool: str
"""The name of the Tool to execute."""
tool_input: Union[str, dict]
"""The input to pass in to the Tool."""
log: str
"""Additional information to log about the action."""
class ReactFinish(NamedTuple):
"""The final return value of an ReactFinish."""
return_values: dict
"""Dictionary of return values."""
log: str
"""Additional information to log about the return value"""

View File

@@ -0,0 +1,23 @@
import json
import re
from typing import Union
from core.rag.retrieval.output_parser.react_output import ReactAction, ReactFinish
class StructuredChatOutputParser:
def parse(self, text: str) -> Union[ReactAction, ReactFinish]:
try:
action_match = re.search(r"```(\w*)\n?({.*?)```", text, re.DOTALL)
if action_match is not None:
response = json.loads(action_match.group(2).strip(), strict=False)
if isinstance(response, list):
response = response[0]
if response["action"] == "Final Answer":
return ReactFinish({"output": response["action_input"]}, text)
else:
return ReactAction(response["action"], response.get("action_input", {}), text)
else:
return ReactFinish({"output": text}, text)
except Exception:
raise ValueError(f"Could not parse LLM output: {text}")

View File

@@ -0,0 +1,16 @@
from enum import StrEnum
class RetrievalMethod(StrEnum):
SEMANTIC_SEARCH = "semantic_search"
FULL_TEXT_SEARCH = "full_text_search"
HYBRID_SEARCH = "hybrid_search"
KEYWORD_SEARCH = "keyword_search"
@staticmethod
def is_support_semantic_search(retrieval_method: str) -> bool:
return retrieval_method in {RetrievalMethod.SEMANTIC_SEARCH, RetrievalMethod.HYBRID_SEARCH}
@staticmethod
def is_support_fulltext_search(retrieval_method: str) -> bool:
return retrieval_method in {RetrievalMethod.FULL_TEXT_SEARCH, RetrievalMethod.HYBRID_SEARCH}

View File

@@ -0,0 +1,43 @@
from typing import Union
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
from core.model_manager import ModelInstance
from core.model_runtime.entities.llm_entities import LLMResult, LLMUsage
from core.model_runtime.entities.message_entities import PromptMessageTool, SystemPromptMessage, UserPromptMessage
class FunctionCallMultiDatasetRouter:
def invoke(
self,
query: str,
dataset_tools: list[PromptMessageTool],
model_config: ModelConfigWithCredentialsEntity,
model_instance: ModelInstance,
) -> tuple[Union[str, None], LLMUsage]:
"""Given input, decided what to do.
Returns:
Action specifying what tool to use.
"""
if len(dataset_tools) == 0:
return None, LLMUsage.empty_usage()
elif len(dataset_tools) == 1:
return dataset_tools[0].name, LLMUsage.empty_usage()
try:
prompt_messages = [
SystemPromptMessage(content="You are a helpful AI assistant."),
UserPromptMessage(content=query),
]
result: LLMResult = model_instance.invoke_llm(
prompt_messages=prompt_messages,
tools=dataset_tools,
stream=False,
model_parameters={"temperature": 0.2, "top_p": 0.3, "max_tokens": 1500},
)
usage = result.usage or LLMUsage.empty_usage()
if result.message.tool_calls:
# get retrieval model config
return result.message.tool_calls[0].function.name, usage
return None, usage
except Exception:
return None, LLMUsage.empty_usage()

View File

@@ -0,0 +1,248 @@
from collections.abc import Generator, Sequence
from typing import Union
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
from core.model_manager import ModelInstance
from core.model_runtime.entities.llm_entities import LLMResult, LLMUsage
from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageRole, PromptMessageTool
from core.prompt.advanced_prompt_transform import AdvancedPromptTransform
from core.prompt.entities.advanced_prompt_entities import ChatModelMessage, CompletionModelPromptTemplate
from core.rag.retrieval.output_parser.react_output import ReactAction
from core.rag.retrieval.output_parser.structured_chat import StructuredChatOutputParser
from core.workflow.nodes.llm import llm_utils
PREFIX = """Respond to the human as helpfully and accurately as possible. You have access to the following tools:"""
SUFFIX = """Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.
Thought:""" # noqa: E501
FORMAT_INSTRUCTIONS = """Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
The nouns in the format of "Thought", "Action", "Action Input", "Final Answer" must be expressed in English.
Valid "action" values: "Final Answer" or {tool_names}
Provide only ONE action per $JSON_BLOB, as shown:
```
{{
"action": $TOOL_NAME,
"action_input": $INPUT
}}
```
Follow this format:
Question: input question to answer
Thought: consider previous and subsequent steps
Action:
```
$JSON_BLOB
```
Observation: action result
... (repeat Thought/Action/Observation N times)
Thought: I know what to respond
Action:
```
{{
"action": "Final Answer",
"action_input": "Final response to human"
}}
```""" # noqa: E501
class ReactMultiDatasetRouter:
def invoke(
self,
query: str,
dataset_tools: list[PromptMessageTool],
model_config: ModelConfigWithCredentialsEntity,
model_instance: ModelInstance,
user_id: str,
tenant_id: str,
) -> tuple[Union[str, None], LLMUsage]:
"""Given input, decided what to do.
Returns:
Action specifying what tool to use.
"""
if len(dataset_tools) == 0:
return None, LLMUsage.empty_usage()
elif len(dataset_tools) == 1:
return dataset_tools[0].name, LLMUsage.empty_usage()
try:
return self._react_invoke(
query=query,
model_config=model_config,
model_instance=model_instance,
tools=dataset_tools,
user_id=user_id,
tenant_id=tenant_id,
)
except Exception:
return None, LLMUsage.empty_usage()
def _react_invoke(
self,
query: str,
model_config: ModelConfigWithCredentialsEntity,
model_instance: ModelInstance,
tools: Sequence[PromptMessageTool],
user_id: str,
tenant_id: str,
prefix: str = PREFIX,
suffix: str = SUFFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
) -> tuple[Union[str, None], LLMUsage]:
prompt: Union[list[ChatModelMessage], CompletionModelPromptTemplate]
if model_config.mode == "chat":
prompt = self.create_chat_prompt(
query=query,
tools=tools,
prefix=prefix,
suffix=suffix,
format_instructions=format_instructions,
)
else:
prompt = self.create_completion_prompt(
tools=tools,
prefix=prefix,
format_instructions=format_instructions,
)
stop = ["Observation:"]
# handle invoke result
prompt_transform = AdvancedPromptTransform()
prompt_messages = prompt_transform.get_prompt(
prompt_template=prompt,
inputs={},
query="",
files=[],
context="",
memory_config=None,
memory=None,
model_config=model_config,
)
result_text, usage = self._invoke_llm(
completion_param=model_config.parameters,
model_instance=model_instance,
prompt_messages=prompt_messages,
stop=stop,
user_id=user_id,
tenant_id=tenant_id,
)
output_parser = StructuredChatOutputParser()
react_decision = output_parser.parse(result_text)
if isinstance(react_decision, ReactAction):
return react_decision.tool, usage
return None, usage
def _invoke_llm(
self,
completion_param: dict,
model_instance: ModelInstance,
prompt_messages: list[PromptMessage],
stop: list[str],
user_id: str,
tenant_id: str,
) -> tuple[str, LLMUsage]:
"""
Invoke large language model
:param model_instance: model instance
:param prompt_messages: prompt messages
:param stop: stop
:return:
"""
invoke_result: Generator[LLMResult, None, None] = model_instance.invoke_llm(
prompt_messages=prompt_messages,
model_parameters=completion_param,
stop=stop,
stream=True,
user=user_id,
)
# handle invoke result
text, usage = self._handle_invoke_result(invoke_result=invoke_result)
# deduct quota
llm_utils.deduct_llm_quota(tenant_id=tenant_id, model_instance=model_instance, usage=usage)
return text, usage
def _handle_invoke_result(self, invoke_result: Generator) -> tuple[str, LLMUsage]:
"""
Handle invoke result
:param invoke_result: invoke result
:return:
"""
model = None
prompt_messages: list[PromptMessage] = []
full_text = ""
usage = None
for result in invoke_result:
text = result.delta.message.content
full_text += text
if not model:
model = result.model
if not prompt_messages:
prompt_messages = result.prompt_messages
if not usage and result.delta.usage:
usage = result.delta.usage
if not usage:
usage = LLMUsage.empty_usage()
return full_text, usage
def create_chat_prompt(
self,
query: str,
tools: Sequence[PromptMessageTool],
prefix: str = PREFIX,
suffix: str = SUFFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
) -> list[ChatModelMessage]:
tool_strings = []
for tool in tools:
tool_strings.append(
f"{tool.name}: {tool.description}, args: {{'query': {{'title': 'Query',"
f" 'description': 'Query for the dataset to be used to retrieve the dataset.', 'type': 'string'}}}}"
)
formatted_tools = "\n".join(tool_strings)
unique_tool_names = {tool.name for tool in tools}
tool_names = ", ".join('"' + name + '"' for name in unique_tool_names)
format_instructions = format_instructions.format(tool_names=tool_names)
template = "\n\n".join([prefix, formatted_tools, format_instructions, suffix])
prompt_messages = []
system_prompt_messages = ChatModelMessage(role=PromptMessageRole.SYSTEM, text=template)
prompt_messages.append(system_prompt_messages)
user_prompt_message = ChatModelMessage(role=PromptMessageRole.USER, text=query)
prompt_messages.append(user_prompt_message)
return prompt_messages
def create_completion_prompt(
self,
tools: Sequence[PromptMessageTool],
prefix: str = PREFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
) -> CompletionModelPromptTemplate:
"""Create prompt in the style of the zero shot agent.
Args:
tools: List of tools the agent will have access to, used to format the
prompt.
prefix: String to put before the list of tools.
format_instructions: The format instruction prompt.
Returns:
A PromptTemplate with the template assembled from the pieces here.
"""
suffix = """Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.
Question: {input}
Thought: {agent_scratchpad}
""" # noqa: E501
tool_strings = "\n".join([f"{tool.name}: {tool.description}" for tool in tools])
tool_names = ", ".join([tool.name for tool in tools])
format_instructions = format_instructions.format(tool_names=tool_names)
template = "\n\n".join([prefix, tool_strings, format_instructions, suffix])
return CompletionModelPromptTemplate(text=template)

View File

@@ -0,0 +1,66 @@
METADATA_FILTER_SYSTEM_PROMPT = """
### Job Description',
You are a text metadata extract engine that extract text's metadata based on user input and set the metadata value
### Task
Your task is to ONLY extract the metadatas that exist in the input text from the provided metadata list and Use the following operators ["contains", "not contains", "start with", "end with", "is", "is not", "empty", "not empty", "=", "", ">", "<", "", "", "before", "after"] to express logical relationships, then return result in JSON format with the key "metadata_fields" and value "metadata_field_value" and comparison operator "comparison_operator".
### Format
The input text is in the variable input_text. Metadata are specified as a list in the variable metadata_fields.
### Constraint
DO NOT include anything other than the JSON array in your response.
""" # noqa: E501
METADATA_FILTER_USER_PROMPT_1 = """
{ "input_text": "I want to know which companys email address test@example.com is?",
"metadata_fields": ["filename", "email", "phone", "address"]
}
"""
METADATA_FILTER_ASSISTANT_PROMPT_1 = """
```json
{"metadata_map": [
{"metadata_field_name": "email", "metadata_field_value": "test@example.com", "comparison_operator": "="}
]
}
```
"""
METADATA_FILTER_USER_PROMPT_2 = """
{"input_text": "What are the movies with a score of more than 9 in 2024?",
"metadata_fields": ["name", "year", "rating", "country"]}
"""
METADATA_FILTER_ASSISTANT_PROMPT_2 = """
```json
{"metadata_map": [
{"metadata_field_name": "year", "metadata_field_value": "2024", "comparison_operator": "="},
{"metadata_field_name": "rating", "metadata_field_value": "9", "comparison_operator": ">"},
]}
```
"""
METADATA_FILTER_USER_PROMPT_3 = """
'{{"input_text": "{input_text}",',
'"metadata_fields": {metadata_fields}}}'
"""
METADATA_FILTER_COMPLETION_PROMPT = """
### Job Description
You are a text metadata extract engine that extract text's metadata based on user input and set the metadata value
### Task
# Your task is to ONLY extract the metadatas that exist in the input text from the provided metadata list and Use the following operators ["=", "!=", ">", "<", ">=", "<="] to express logical relationships, then return result in JSON format with the key "metadata_fields" and value "metadata_field_value" and comparison operator "comparison_operator".
### Format
The input text is in the variable input_text. Metadata are specified as a list in the variable metadata_fields.
### Constraint
DO NOT include anything other than the JSON array in your response.
### Example
Here is the chat example between human and assistant, inside <example></example> XML tags.
<example>
User:{{"input_text": ["I want to know which companys email address test@example.com is?"], "metadata_fields": ["filename", "email", "phone", "address"]}}
Assistant:{{"metadata_map": [{{"metadata_field_name": "email", "metadata_field_value": "test@example.com", "comparison_operator": "="}}]}}
User:{{"input_text": "What are the movies with a score of more than 9 in 2024?", "metadata_fields": ["name", "year", "rating", "country"]}}
Assistant:{{"metadata_map": [{{"metadata_field_name": "year", "metadata_field_value": "2024", "comparison_operator": "="}, {{"metadata_field_name": "rating", "metadata_field_value": "9", "comparison_operator": ">"}}]}}
</example>
### User Input
{{"input_text" : "{input_text}", "metadata_fields" : {metadata_fields}}}
### Assistant Output
""" # noqa: E501