dify
This commit is contained in:
151
dify/api/tasks/batch_create_segment_to_index_task.py
Normal file
151
dify/api/tasks/batch_create_segment_to_index_task.py
Normal file
@@ -0,0 +1,151 @@
|
||||
import logging
|
||||
import tempfile
|
||||
import time
|
||||
import uuid
|
||||
from pathlib import Path
|
||||
|
||||
import click
|
||||
import pandas as pd
|
||||
from celery import shared_task
|
||||
from sqlalchemy import func
|
||||
|
||||
from core.model_manager import ModelManager
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from extensions.ext_storage import storage
|
||||
from libs import helper
|
||||
from libs.datetime_utils import naive_utc_now
|
||||
from models.dataset import Dataset, Document, DocumentSegment
|
||||
from models.model import UploadFile
|
||||
from services.vector_service import VectorService
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@shared_task(queue="dataset")
|
||||
def batch_create_segment_to_index_task(
|
||||
job_id: str,
|
||||
upload_file_id: str,
|
||||
dataset_id: str,
|
||||
document_id: str,
|
||||
tenant_id: str,
|
||||
user_id: str,
|
||||
):
|
||||
"""
|
||||
Async batch create segment to index
|
||||
:param job_id:
|
||||
:param upload_file_id:
|
||||
:param dataset_id:
|
||||
:param document_id:
|
||||
:param tenant_id:
|
||||
:param user_id:
|
||||
|
||||
Usage: batch_create_segment_to_index_task.delay(job_id, upload_file_id, dataset_id, document_id, tenant_id, user_id)
|
||||
"""
|
||||
logger.info(click.style(f"Start batch create segment jobId: {job_id}", fg="green"))
|
||||
start_at = time.perf_counter()
|
||||
|
||||
indexing_cache_key = f"segment_batch_import_{job_id}"
|
||||
|
||||
try:
|
||||
dataset = db.session.get(Dataset, dataset_id)
|
||||
if not dataset:
|
||||
raise ValueError("Dataset not exist.")
|
||||
|
||||
dataset_document = db.session.get(Document, document_id)
|
||||
if not dataset_document:
|
||||
raise ValueError("Document not exist.")
|
||||
|
||||
if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != "completed":
|
||||
raise ValueError("Document is not available.")
|
||||
|
||||
upload_file = db.session.get(UploadFile, upload_file_id)
|
||||
if not upload_file:
|
||||
raise ValueError("UploadFile not found.")
|
||||
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
suffix = Path(upload_file.key).suffix
|
||||
file_path = f"{temp_dir}/{next(tempfile._get_candidate_names())}{suffix}" # type: ignore
|
||||
storage.download(upload_file.key, file_path)
|
||||
|
||||
df = pd.read_csv(file_path)
|
||||
content = []
|
||||
for _, row in df.iterrows():
|
||||
if dataset_document.doc_form == "qa_model":
|
||||
data = {"content": row.iloc[0], "answer": row.iloc[1]}
|
||||
else:
|
||||
data = {"content": row.iloc[0]}
|
||||
content.append(data)
|
||||
if len(content) == 0:
|
||||
raise ValueError("The CSV file is empty.")
|
||||
|
||||
document_segments = []
|
||||
embedding_model = None
|
||||
if dataset.indexing_technique == "high_quality":
|
||||
model_manager = ModelManager()
|
||||
embedding_model = model_manager.get_model_instance(
|
||||
tenant_id=dataset.tenant_id,
|
||||
provider=dataset.embedding_model_provider,
|
||||
model_type=ModelType.TEXT_EMBEDDING,
|
||||
model=dataset.embedding_model,
|
||||
)
|
||||
|
||||
word_count_change = 0
|
||||
if embedding_model:
|
||||
tokens_list = embedding_model.get_text_embedding_num_tokens(
|
||||
texts=[segment["content"] for segment in content]
|
||||
)
|
||||
else:
|
||||
tokens_list = [0] * len(content)
|
||||
|
||||
for segment, tokens in zip(content, tokens_list):
|
||||
content = segment["content"]
|
||||
doc_id = str(uuid.uuid4())
|
||||
segment_hash = helper.generate_text_hash(content)
|
||||
max_position = (
|
||||
db.session.query(func.max(DocumentSegment.position))
|
||||
.where(DocumentSegment.document_id == dataset_document.id)
|
||||
.scalar()
|
||||
)
|
||||
segment_document = DocumentSegment(
|
||||
tenant_id=tenant_id,
|
||||
dataset_id=dataset_id,
|
||||
document_id=document_id,
|
||||
index_node_id=doc_id,
|
||||
index_node_hash=segment_hash,
|
||||
position=max_position + 1 if max_position else 1,
|
||||
content=content,
|
||||
word_count=len(content),
|
||||
tokens=tokens,
|
||||
created_by=user_id,
|
||||
indexing_at=naive_utc_now(),
|
||||
status="completed",
|
||||
completed_at=naive_utc_now(),
|
||||
)
|
||||
if dataset_document.doc_form == "qa_model":
|
||||
segment_document.answer = segment["answer"]
|
||||
segment_document.word_count += len(segment["answer"])
|
||||
word_count_change += segment_document.word_count
|
||||
db.session.add(segment_document)
|
||||
document_segments.append(segment_document)
|
||||
|
||||
assert dataset_document.word_count is not None
|
||||
dataset_document.word_count += word_count_change
|
||||
db.session.add(dataset_document)
|
||||
|
||||
VectorService.create_segments_vector(None, document_segments, dataset, dataset_document.doc_form)
|
||||
db.session.commit()
|
||||
redis_client.setex(indexing_cache_key, 600, "completed")
|
||||
end_at = time.perf_counter()
|
||||
logger.info(
|
||||
click.style(
|
||||
f"Segment batch created job: {job_id} latency: {end_at - start_at}",
|
||||
fg="green",
|
||||
)
|
||||
)
|
||||
except Exception:
|
||||
logger.exception("Segments batch created index failed")
|
||||
redis_client.setex(indexing_cache_key, 600, "error")
|
||||
finally:
|
||||
db.session.close()
|
||||
Reference in New Issue
Block a user