Files
urbanLifeline/dify/api/tests/unit_tests/models/test_dataset_models.py
2025-12-01 17:21:38 +08:00

1342 lines
41 KiB
Python

"""
Comprehensive unit tests for Dataset models.
This test suite covers:
- Dataset model validation
- Document model relationships
- Segment model indexing
- Dataset-Document cascade deletes
- Embedding storage validation
"""
import json
import pickle
from datetime import UTC, datetime
from unittest.mock import MagicMock, patch
from uuid import uuid4
from models.dataset import (
AppDatasetJoin,
ChildChunk,
Dataset,
DatasetKeywordTable,
DatasetProcessRule,
Document,
DocumentSegment,
Embedding,
)
class TestDatasetModelValidation:
"""Test suite for Dataset model validation and basic operations."""
def test_dataset_creation_with_required_fields(self):
"""Test creating a dataset with all required fields."""
# Arrange
tenant_id = str(uuid4())
created_by = str(uuid4())
# Act
dataset = Dataset(
tenant_id=tenant_id,
name="Test Dataset",
data_source_type="upload_file",
created_by=created_by,
)
# Assert
assert dataset.name == "Test Dataset"
assert dataset.tenant_id == tenant_id
assert dataset.data_source_type == "upload_file"
assert dataset.created_by == created_by
# Note: Default values are set by database, not by model instantiation
def test_dataset_creation_with_optional_fields(self):
"""Test creating a dataset with optional fields."""
# Arrange & Act
dataset = Dataset(
tenant_id=str(uuid4()),
name="Test Dataset",
data_source_type="upload_file",
created_by=str(uuid4()),
description="Test description",
indexing_technique="high_quality",
embedding_model="text-embedding-ada-002",
embedding_model_provider="openai",
)
# Assert
assert dataset.description == "Test description"
assert dataset.indexing_technique == "high_quality"
assert dataset.embedding_model == "text-embedding-ada-002"
assert dataset.embedding_model_provider == "openai"
def test_dataset_indexing_technique_validation(self):
"""Test dataset indexing technique values."""
# Arrange & Act
dataset_high_quality = Dataset(
tenant_id=str(uuid4()),
name="High Quality Dataset",
data_source_type="upload_file",
created_by=str(uuid4()),
indexing_technique="high_quality",
)
dataset_economy = Dataset(
tenant_id=str(uuid4()),
name="Economy Dataset",
data_source_type="upload_file",
created_by=str(uuid4()),
indexing_technique="economy",
)
# Assert
assert dataset_high_quality.indexing_technique == "high_quality"
assert dataset_economy.indexing_technique == "economy"
assert "high_quality" in Dataset.INDEXING_TECHNIQUE_LIST
assert "economy" in Dataset.INDEXING_TECHNIQUE_LIST
def test_dataset_provider_validation(self):
"""Test dataset provider values."""
# Arrange & Act
dataset_vendor = Dataset(
tenant_id=str(uuid4()),
name="Vendor Dataset",
data_source_type="upload_file",
created_by=str(uuid4()),
provider="vendor",
)
dataset_external = Dataset(
tenant_id=str(uuid4()),
name="External Dataset",
data_source_type="upload_file",
created_by=str(uuid4()),
provider="external",
)
# Assert
assert dataset_vendor.provider == "vendor"
assert dataset_external.provider == "external"
assert "vendor" in Dataset.PROVIDER_LIST
assert "external" in Dataset.PROVIDER_LIST
def test_dataset_index_struct_dict_property(self):
"""Test index_struct_dict property parsing."""
# Arrange
index_struct_data = {"type": "vector", "dimension": 1536}
dataset = Dataset(
tenant_id=str(uuid4()),
name="Test Dataset",
data_source_type="upload_file",
created_by=str(uuid4()),
index_struct=json.dumps(index_struct_data),
)
# Act
result = dataset.index_struct_dict
# Assert
assert result == index_struct_data
assert result["type"] == "vector"
assert result["dimension"] == 1536
def test_dataset_index_struct_dict_property_none(self):
"""Test index_struct_dict property when index_struct is None."""
# Arrange
dataset = Dataset(
tenant_id=str(uuid4()),
name="Test Dataset",
data_source_type="upload_file",
created_by=str(uuid4()),
)
# Act
result = dataset.index_struct_dict
# Assert
assert result is None
def test_dataset_external_retrieval_model_property(self):
"""Test external_retrieval_model property with default values."""
# Arrange
dataset = Dataset(
tenant_id=str(uuid4()),
name="Test Dataset",
data_source_type="upload_file",
created_by=str(uuid4()),
)
# Act
result = dataset.external_retrieval_model
# Assert
assert result["top_k"] == 2
assert result["score_threshold"] == 0.0
def test_dataset_retrieval_model_dict_property(self):
"""Test retrieval_model_dict property with default values."""
# Arrange
dataset = Dataset(
tenant_id=str(uuid4()),
name="Test Dataset",
data_source_type="upload_file",
created_by=str(uuid4()),
)
# Act
result = dataset.retrieval_model_dict
# Assert
assert result["top_k"] == 2
assert result["reranking_enable"] is False
assert result["score_threshold_enabled"] is False
def test_dataset_gen_collection_name_by_id(self):
"""Test static method for generating collection name."""
# Arrange
dataset_id = "12345678-1234-1234-1234-123456789abc"
# Act
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
# Assert
assert "12345678_1234_1234_1234_123456789abc" in collection_name
assert "-" not in collection_name.split("_")[-1]
class TestDocumentModelRelationships:
"""Test suite for Document model relationships and properties."""
def test_document_creation_with_required_fields(self):
"""Test creating a document with all required fields."""
# Arrange
tenant_id = str(uuid4())
dataset_id = str(uuid4())
created_by = str(uuid4())
# Act
document = Document(
tenant_id=tenant_id,
dataset_id=dataset_id,
position=1,
data_source_type="upload_file",
batch="batch_001",
name="test_document.pdf",
created_from="web",
created_by=created_by,
)
# Assert
assert document.tenant_id == tenant_id
assert document.dataset_id == dataset_id
assert document.position == 1
assert document.data_source_type == "upload_file"
assert document.batch == "batch_001"
assert document.name == "test_document.pdf"
assert document.created_from == "web"
assert document.created_by == created_by
# Note: Default values are set by database, not by model instantiation
def test_document_data_source_types(self):
"""Test document data source type validation."""
# Assert
assert "upload_file" in Document.DATA_SOURCES
assert "notion_import" in Document.DATA_SOURCES
assert "website_crawl" in Document.DATA_SOURCES
def test_document_display_status_queuing(self):
"""Test document display_status property for queuing state."""
# Arrange
document = Document(
tenant_id=str(uuid4()),
dataset_id=str(uuid4()),
position=1,
data_source_type="upload_file",
batch="batch_001",
name="test.pdf",
created_from="web",
created_by=str(uuid4()),
indexing_status="waiting",
)
# Act
status = document.display_status
# Assert
assert status == "queuing"
def test_document_display_status_paused(self):
"""Test document display_status property for paused state."""
# Arrange
document = Document(
tenant_id=str(uuid4()),
dataset_id=str(uuid4()),
position=1,
data_source_type="upload_file",
batch="batch_001",
name="test.pdf",
created_from="web",
created_by=str(uuid4()),
indexing_status="parsing",
is_paused=True,
)
# Act
status = document.display_status
# Assert
assert status == "paused"
def test_document_display_status_indexing(self):
"""Test document display_status property for indexing state."""
# Arrange
for indexing_status in ["parsing", "cleaning", "splitting", "indexing"]:
document = Document(
tenant_id=str(uuid4()),
dataset_id=str(uuid4()),
position=1,
data_source_type="upload_file",
batch="batch_001",
name="test.pdf",
created_from="web",
created_by=str(uuid4()),
indexing_status=indexing_status,
)
# Act
status = document.display_status
# Assert
assert status == "indexing"
def test_document_display_status_error(self):
"""Test document display_status property for error state."""
# Arrange
document = Document(
tenant_id=str(uuid4()),
dataset_id=str(uuid4()),
position=1,
data_source_type="upload_file",
batch="batch_001",
name="test.pdf",
created_from="web",
created_by=str(uuid4()),
indexing_status="error",
)
# Act
status = document.display_status
# Assert
assert status == "error"
def test_document_display_status_available(self):
"""Test document display_status property for available state."""
# Arrange
document = Document(
tenant_id=str(uuid4()),
dataset_id=str(uuid4()),
position=1,
data_source_type="upload_file",
batch="batch_001",
name="test.pdf",
created_from="web",
created_by=str(uuid4()),
indexing_status="completed",
enabled=True,
archived=False,
)
# Act
status = document.display_status
# Assert
assert status == "available"
def test_document_display_status_disabled(self):
"""Test document display_status property for disabled state."""
# Arrange
document = Document(
tenant_id=str(uuid4()),
dataset_id=str(uuid4()),
position=1,
data_source_type="upload_file",
batch="batch_001",
name="test.pdf",
created_from="web",
created_by=str(uuid4()),
indexing_status="completed",
enabled=False,
archived=False,
)
# Act
status = document.display_status
# Assert
assert status == "disabled"
def test_document_display_status_archived(self):
"""Test document display_status property for archived state."""
# Arrange
document = Document(
tenant_id=str(uuid4()),
dataset_id=str(uuid4()),
position=1,
data_source_type="upload_file",
batch="batch_001",
name="test.pdf",
created_from="web",
created_by=str(uuid4()),
indexing_status="completed",
archived=True,
)
# Act
status = document.display_status
# Assert
assert status == "archived"
def test_document_data_source_info_dict_property(self):
"""Test data_source_info_dict property parsing."""
# Arrange
data_source_info = {"upload_file_id": str(uuid4()), "file_name": "test.pdf"}
document = Document(
tenant_id=str(uuid4()),
dataset_id=str(uuid4()),
position=1,
data_source_type="upload_file",
batch="batch_001",
name="test.pdf",
created_from="web",
created_by=str(uuid4()),
data_source_info=json.dumps(data_source_info),
)
# Act
result = document.data_source_info_dict
# Assert
assert result == data_source_info
assert "upload_file_id" in result
assert "file_name" in result
def test_document_data_source_info_dict_property_empty(self):
"""Test data_source_info_dict property when data_source_info is None."""
# Arrange
document = Document(
tenant_id=str(uuid4()),
dataset_id=str(uuid4()),
position=1,
data_source_type="upload_file",
batch="batch_001",
name="test.pdf",
created_from="web",
created_by=str(uuid4()),
)
# Act
result = document.data_source_info_dict
# Assert
assert result == {}
def test_document_average_segment_length(self):
"""Test average_segment_length property calculation."""
# Arrange
document = Document(
tenant_id=str(uuid4()),
dataset_id=str(uuid4()),
position=1,
data_source_type="upload_file",
batch="batch_001",
name="test.pdf",
created_from="web",
created_by=str(uuid4()),
word_count=1000,
)
# Mock segment_count property
with patch.object(Document, "segment_count", new_callable=lambda: property(lambda self: 10)):
# Act
result = document.average_segment_length
# Assert
assert result == 100
def test_document_average_segment_length_zero(self):
"""Test average_segment_length property when word_count is zero."""
# Arrange
document = Document(
tenant_id=str(uuid4()),
dataset_id=str(uuid4()),
position=1,
data_source_type="upload_file",
batch="batch_001",
name="test.pdf",
created_from="web",
created_by=str(uuid4()),
word_count=0,
)
# Act
result = document.average_segment_length
# Assert
assert result == 0
class TestDocumentSegmentIndexing:
"""Test suite for DocumentSegment model indexing and operations."""
def test_document_segment_creation_with_required_fields(self):
"""Test creating a document segment with all required fields."""
# Arrange
tenant_id = str(uuid4())
dataset_id = str(uuid4())
document_id = str(uuid4())
created_by = str(uuid4())
# Act
segment = DocumentSegment(
tenant_id=tenant_id,
dataset_id=dataset_id,
document_id=document_id,
position=1,
content="This is a test segment content.",
word_count=6,
tokens=10,
created_by=created_by,
)
# Assert
assert segment.tenant_id == tenant_id
assert segment.dataset_id == dataset_id
assert segment.document_id == document_id
assert segment.position == 1
assert segment.content == "This is a test segment content."
assert segment.word_count == 6
assert segment.tokens == 10
assert segment.created_by == created_by
# Note: Default values are set by database, not by model instantiation
def test_document_segment_with_indexing_fields(self):
"""Test creating a document segment with indexing fields."""
# Arrange
index_node_id = str(uuid4())
index_node_hash = "abc123hash"
keywords = ["test", "segment", "indexing"]
# Act
segment = DocumentSegment(
tenant_id=str(uuid4()),
dataset_id=str(uuid4()),
document_id=str(uuid4()),
position=1,
content="Test content",
word_count=2,
tokens=5,
created_by=str(uuid4()),
index_node_id=index_node_id,
index_node_hash=index_node_hash,
keywords=keywords,
)
# Assert
assert segment.index_node_id == index_node_id
assert segment.index_node_hash == index_node_hash
assert segment.keywords == keywords
def test_document_segment_with_answer_field(self):
"""Test creating a document segment with answer field for QA model."""
# Arrange
content = "What is AI?"
answer = "AI stands for Artificial Intelligence."
# Act
segment = DocumentSegment(
tenant_id=str(uuid4()),
dataset_id=str(uuid4()),
document_id=str(uuid4()),
position=1,
content=content,
answer=answer,
word_count=3,
tokens=8,
created_by=str(uuid4()),
)
# Assert
assert segment.content == content
assert segment.answer == answer
def test_document_segment_status_transitions(self):
"""Test document segment status field values."""
# Arrange & Act
segment_waiting = DocumentSegment(
tenant_id=str(uuid4()),
dataset_id=str(uuid4()),
document_id=str(uuid4()),
position=1,
content="Test",
word_count=1,
tokens=2,
created_by=str(uuid4()),
status="waiting",
)
segment_completed = DocumentSegment(
tenant_id=str(uuid4()),
dataset_id=str(uuid4()),
document_id=str(uuid4()),
position=1,
content="Test",
word_count=1,
tokens=2,
created_by=str(uuid4()),
status="completed",
)
# Assert
assert segment_waiting.status == "waiting"
assert segment_completed.status == "completed"
def test_document_segment_enabled_disabled_tracking(self):
"""Test document segment enabled/disabled state tracking."""
# Arrange
disabled_by = str(uuid4())
disabled_at = datetime.now(UTC)
# Act
segment = DocumentSegment(
tenant_id=str(uuid4()),
dataset_id=str(uuid4()),
document_id=str(uuid4()),
position=1,
content="Test",
word_count=1,
tokens=2,
created_by=str(uuid4()),
enabled=False,
disabled_by=disabled_by,
disabled_at=disabled_at,
)
# Assert
assert segment.enabled is False
assert segment.disabled_by == disabled_by
assert segment.disabled_at == disabled_at
def test_document_segment_hit_count_tracking(self):
"""Test document segment hit count tracking."""
# Arrange & Act
segment = DocumentSegment(
tenant_id=str(uuid4()),
dataset_id=str(uuid4()),
document_id=str(uuid4()),
position=1,
content="Test",
word_count=1,
tokens=2,
created_by=str(uuid4()),
hit_count=5,
)
# Assert
assert segment.hit_count == 5
def test_document_segment_error_tracking(self):
"""Test document segment error tracking."""
# Arrange
error_message = "Indexing failed due to timeout"
stopped_at = datetime.now(UTC)
# Act
segment = DocumentSegment(
tenant_id=str(uuid4()),
dataset_id=str(uuid4()),
document_id=str(uuid4()),
position=1,
content="Test",
word_count=1,
tokens=2,
created_by=str(uuid4()),
error=error_message,
stopped_at=stopped_at,
)
# Assert
assert segment.error == error_message
assert segment.stopped_at == stopped_at
class TestEmbeddingStorage:
"""Test suite for Embedding model storage and retrieval."""
def test_embedding_creation_with_required_fields(self):
"""Test creating an embedding with required fields."""
# Arrange
model_name = "text-embedding-ada-002"
hash_value = "abc123hash"
provider_name = "openai"
# Act
embedding = Embedding(
model_name=model_name,
hash=hash_value,
provider_name=provider_name,
embedding=b"binary_data",
)
# Assert
assert embedding.model_name == model_name
assert embedding.hash == hash_value
assert embedding.provider_name == provider_name
assert embedding.embedding == b"binary_data"
def test_embedding_set_and_get_embedding(self):
"""Test setting and getting embedding data."""
# Arrange
embedding_data = [0.1, 0.2, 0.3, 0.4, 0.5]
embedding = Embedding(
model_name="text-embedding-ada-002",
hash="test_hash",
provider_name="openai",
embedding=b"",
)
# Act
embedding.set_embedding(embedding_data)
retrieved_data = embedding.get_embedding()
# Assert
assert retrieved_data == embedding_data
assert len(retrieved_data) == 5
assert retrieved_data[0] == 0.1
assert retrieved_data[4] == 0.5
def test_embedding_pickle_serialization(self):
"""Test embedding data is properly pickled."""
# Arrange
embedding_data = [0.1, 0.2, 0.3]
embedding = Embedding(
model_name="text-embedding-ada-002",
hash="test_hash",
provider_name="openai",
embedding=b"",
)
# Act
embedding.set_embedding(embedding_data)
# Assert
# Verify the embedding is stored as pickled binary data
assert isinstance(embedding.embedding, bytes)
# Verify we can unpickle it
unpickled_data = pickle.loads(embedding.embedding) # noqa: S301
assert unpickled_data == embedding_data
def test_embedding_with_large_vector(self):
"""Test embedding with large dimension vector."""
# Arrange
# Simulate a 1536-dimension vector (OpenAI ada-002 size)
large_embedding_data = [0.001 * i for i in range(1536)]
embedding = Embedding(
model_name="text-embedding-ada-002",
hash="large_vector_hash",
provider_name="openai",
embedding=b"",
)
# Act
embedding.set_embedding(large_embedding_data)
retrieved_data = embedding.get_embedding()
# Assert
assert len(retrieved_data) == 1536
assert retrieved_data[0] == 0.0
assert abs(retrieved_data[1535] - 1.535) < 0.0001 # Float comparison with tolerance
class TestDatasetProcessRule:
"""Test suite for DatasetProcessRule model."""
def test_dataset_process_rule_creation(self):
"""Test creating a dataset process rule."""
# Arrange
dataset_id = str(uuid4())
created_by = str(uuid4())
# Act
process_rule = DatasetProcessRule(
dataset_id=dataset_id,
mode="automatic",
created_by=created_by,
)
# Assert
assert process_rule.dataset_id == dataset_id
assert process_rule.mode == "automatic"
assert process_rule.created_by == created_by
def test_dataset_process_rule_modes(self):
"""Test dataset process rule mode validation."""
# Assert
assert "automatic" in DatasetProcessRule.MODES
assert "custom" in DatasetProcessRule.MODES
assert "hierarchical" in DatasetProcessRule.MODES
def test_dataset_process_rule_with_rules_dict(self):
"""Test dataset process rule with rules dictionary."""
# Arrange
rules_data = {
"pre_processing_rules": [
{"id": "remove_extra_spaces", "enabled": True},
{"id": "remove_urls_emails", "enabled": False},
],
"segmentation": {"delimiter": "\n", "max_tokens": 500, "chunk_overlap": 50},
}
process_rule = DatasetProcessRule(
dataset_id=str(uuid4()),
mode="custom",
created_by=str(uuid4()),
rules=json.dumps(rules_data),
)
# Act
result = process_rule.rules_dict
# Assert
assert result == rules_data
assert "pre_processing_rules" in result
assert "segmentation" in result
def test_dataset_process_rule_to_dict(self):
"""Test dataset process rule to_dict method."""
# Arrange
dataset_id = str(uuid4())
rules_data = {"test": "data"}
process_rule = DatasetProcessRule(
dataset_id=dataset_id,
mode="automatic",
created_by=str(uuid4()),
rules=json.dumps(rules_data),
)
# Act
result = process_rule.to_dict()
# Assert
assert result["dataset_id"] == dataset_id
assert result["mode"] == "automatic"
assert result["rules"] == rules_data
def test_dataset_process_rule_automatic_rules(self):
"""Test dataset process rule automatic rules constant."""
# Act
automatic_rules = DatasetProcessRule.AUTOMATIC_RULES
# Assert
assert "pre_processing_rules" in automatic_rules
assert "segmentation" in automatic_rules
assert automatic_rules["segmentation"]["max_tokens"] == 500
class TestDatasetKeywordTable:
"""Test suite for DatasetKeywordTable model."""
def test_dataset_keyword_table_creation(self):
"""Test creating a dataset keyword table."""
# Arrange
dataset_id = str(uuid4())
keyword_data = {"test": ["node1", "node2"], "keyword": ["node3"]}
# Act
keyword_table = DatasetKeywordTable(
dataset_id=dataset_id,
keyword_table=json.dumps(keyword_data),
)
# Assert
assert keyword_table.dataset_id == dataset_id
assert keyword_table.data_source_type == "database" # Default value
def test_dataset_keyword_table_data_source_type(self):
"""Test dataset keyword table data source type."""
# Arrange & Act
keyword_table = DatasetKeywordTable(
dataset_id=str(uuid4()),
keyword_table="{}",
data_source_type="file",
)
# Assert
assert keyword_table.data_source_type == "file"
class TestAppDatasetJoin:
"""Test suite for AppDatasetJoin model."""
def test_app_dataset_join_creation(self):
"""Test creating an app-dataset join relationship."""
# Arrange
app_id = str(uuid4())
dataset_id = str(uuid4())
# Act
join = AppDatasetJoin(
app_id=app_id,
dataset_id=dataset_id,
)
# Assert
assert join.app_id == app_id
assert join.dataset_id == dataset_id
# Note: ID is auto-generated when saved to database
class TestChildChunk:
"""Test suite for ChildChunk model."""
def test_child_chunk_creation(self):
"""Test creating a child chunk."""
# Arrange
tenant_id = str(uuid4())
dataset_id = str(uuid4())
document_id = str(uuid4())
segment_id = str(uuid4())
created_by = str(uuid4())
# Act
child_chunk = ChildChunk(
tenant_id=tenant_id,
dataset_id=dataset_id,
document_id=document_id,
segment_id=segment_id,
position=1,
content="Child chunk content",
word_count=3,
created_by=created_by,
)
# Assert
assert child_chunk.tenant_id == tenant_id
assert child_chunk.dataset_id == dataset_id
assert child_chunk.document_id == document_id
assert child_chunk.segment_id == segment_id
assert child_chunk.position == 1
assert child_chunk.content == "Child chunk content"
assert child_chunk.word_count == 3
assert child_chunk.created_by == created_by
# Note: Default values are set by database, not by model instantiation
def test_child_chunk_with_indexing_fields(self):
"""Test creating a child chunk with indexing fields."""
# Arrange
index_node_id = str(uuid4())
index_node_hash = "child_hash_123"
# Act
child_chunk = ChildChunk(
tenant_id=str(uuid4()),
dataset_id=str(uuid4()),
document_id=str(uuid4()),
segment_id=str(uuid4()),
position=1,
content="Test content",
word_count=2,
created_by=str(uuid4()),
index_node_id=index_node_id,
index_node_hash=index_node_hash,
)
# Assert
assert child_chunk.index_node_id == index_node_id
assert child_chunk.index_node_hash == index_node_hash
class TestDatasetDocumentCascadeDeletes:
"""Test suite for Dataset-Document cascade delete operations."""
def test_dataset_with_documents_relationship(self):
"""Test dataset can track its documents."""
# Arrange
dataset_id = str(uuid4())
dataset = Dataset(
tenant_id=str(uuid4()),
name="Test Dataset",
data_source_type="upload_file",
created_by=str(uuid4()),
)
dataset.id = dataset_id
# Mock the database session query
mock_query = MagicMock()
mock_query.where.return_value.scalar.return_value = 3
with patch("models.dataset.db.session.query", return_value=mock_query):
# Act
total_docs = dataset.total_documents
# Assert
assert total_docs == 3
def test_dataset_available_documents_count(self):
"""Test dataset can count available documents."""
# Arrange
dataset_id = str(uuid4())
dataset = Dataset(
tenant_id=str(uuid4()),
name="Test Dataset",
data_source_type="upload_file",
created_by=str(uuid4()),
)
dataset.id = dataset_id
# Mock the database session query
mock_query = MagicMock()
mock_query.where.return_value.scalar.return_value = 2
with patch("models.dataset.db.session.query", return_value=mock_query):
# Act
available_docs = dataset.total_available_documents
# Assert
assert available_docs == 2
def test_dataset_word_count_aggregation(self):
"""Test dataset can aggregate word count from documents."""
# Arrange
dataset_id = str(uuid4())
dataset = Dataset(
tenant_id=str(uuid4()),
name="Test Dataset",
data_source_type="upload_file",
created_by=str(uuid4()),
)
dataset.id = dataset_id
# Mock the database session query
mock_query = MagicMock()
mock_query.with_entities.return_value.where.return_value.scalar.return_value = 5000
with patch("models.dataset.db.session.query", return_value=mock_query):
# Act
total_words = dataset.word_count
# Assert
assert total_words == 5000
def test_dataset_available_segment_count(self):
"""Test dataset can count available segments."""
# Arrange
dataset_id = str(uuid4())
dataset = Dataset(
tenant_id=str(uuid4()),
name="Test Dataset",
data_source_type="upload_file",
created_by=str(uuid4()),
)
dataset.id = dataset_id
# Mock the database session query
mock_query = MagicMock()
mock_query.where.return_value.scalar.return_value = 15
with patch("models.dataset.db.session.query", return_value=mock_query):
# Act
segment_count = dataset.available_segment_count
# Assert
assert segment_count == 15
def test_document_segment_count_property(self):
"""Test document can count its segments."""
# Arrange
document_id = str(uuid4())
document = Document(
tenant_id=str(uuid4()),
dataset_id=str(uuid4()),
position=1,
data_source_type="upload_file",
batch="batch_001",
name="test.pdf",
created_from="web",
created_by=str(uuid4()),
)
document.id = document_id
# Mock the database session query
mock_query = MagicMock()
mock_query.where.return_value.count.return_value = 10
with patch("models.dataset.db.session.query", return_value=mock_query):
# Act
segment_count = document.segment_count
# Assert
assert segment_count == 10
def test_document_hit_count_aggregation(self):
"""Test document can aggregate hit count from segments."""
# Arrange
document_id = str(uuid4())
document = Document(
tenant_id=str(uuid4()),
dataset_id=str(uuid4()),
position=1,
data_source_type="upload_file",
batch="batch_001",
name="test.pdf",
created_from="web",
created_by=str(uuid4()),
)
document.id = document_id
# Mock the database session query
mock_query = MagicMock()
mock_query.with_entities.return_value.where.return_value.scalar.return_value = 25
with patch("models.dataset.db.session.query", return_value=mock_query):
# Act
hit_count = document.hit_count
# Assert
assert hit_count == 25
class TestDocumentSegmentNavigation:
"""Test suite for DocumentSegment navigation properties."""
def test_document_segment_dataset_property(self):
"""Test segment can access its parent dataset."""
# Arrange
dataset_id = str(uuid4())
segment = DocumentSegment(
tenant_id=str(uuid4()),
dataset_id=dataset_id,
document_id=str(uuid4()),
position=1,
content="Test",
word_count=1,
tokens=2,
created_by=str(uuid4()),
)
mock_dataset = Dataset(
tenant_id=str(uuid4()),
name="Test Dataset",
data_source_type="upload_file",
created_by=str(uuid4()),
)
mock_dataset.id = dataset_id
# Mock the database session scalar
with patch("models.dataset.db.session.scalar", return_value=mock_dataset):
# Act
dataset = segment.dataset
# Assert
assert dataset is not None
assert dataset.id == dataset_id
def test_document_segment_document_property(self):
"""Test segment can access its parent document."""
# Arrange
document_id = str(uuid4())
segment = DocumentSegment(
tenant_id=str(uuid4()),
dataset_id=str(uuid4()),
document_id=document_id,
position=1,
content="Test",
word_count=1,
tokens=2,
created_by=str(uuid4()),
)
mock_document = Document(
tenant_id=str(uuid4()),
dataset_id=str(uuid4()),
position=1,
data_source_type="upload_file",
batch="batch_001",
name="test.pdf",
created_from="web",
created_by=str(uuid4()),
)
mock_document.id = document_id
# Mock the database session scalar
with patch("models.dataset.db.session.scalar", return_value=mock_document):
# Act
document = segment.document
# Assert
assert document is not None
assert document.id == document_id
def test_document_segment_previous_segment(self):
"""Test segment can access previous segment."""
# Arrange
document_id = str(uuid4())
segment = DocumentSegment(
tenant_id=str(uuid4()),
dataset_id=str(uuid4()),
document_id=document_id,
position=2,
content="Test",
word_count=1,
tokens=2,
created_by=str(uuid4()),
)
previous_segment = DocumentSegment(
tenant_id=str(uuid4()),
dataset_id=str(uuid4()),
document_id=document_id,
position=1,
content="Previous",
word_count=1,
tokens=2,
created_by=str(uuid4()),
)
# Mock the database session scalar
with patch("models.dataset.db.session.scalar", return_value=previous_segment):
# Act
prev_seg = segment.previous_segment
# Assert
assert prev_seg is not None
assert prev_seg.position == 1
def test_document_segment_next_segment(self):
"""Test segment can access next segment."""
# Arrange
document_id = str(uuid4())
segment = DocumentSegment(
tenant_id=str(uuid4()),
dataset_id=str(uuid4()),
document_id=document_id,
position=1,
content="Test",
word_count=1,
tokens=2,
created_by=str(uuid4()),
)
next_segment = DocumentSegment(
tenant_id=str(uuid4()),
dataset_id=str(uuid4()),
document_id=document_id,
position=2,
content="Next",
word_count=1,
tokens=2,
created_by=str(uuid4()),
)
# Mock the database session scalar
with patch("models.dataset.db.session.scalar", return_value=next_segment):
# Act
next_seg = segment.next_segment
# Assert
assert next_seg is not None
assert next_seg.position == 2
class TestModelIntegration:
"""Test suite for model integration scenarios."""
def test_complete_dataset_document_segment_hierarchy(self):
"""Test complete hierarchy from dataset to segment."""
# Arrange
tenant_id = str(uuid4())
dataset_id = str(uuid4())
document_id = str(uuid4())
created_by = str(uuid4())
# Create dataset
dataset = Dataset(
tenant_id=tenant_id,
name="Test Dataset",
data_source_type="upload_file",
created_by=created_by,
indexing_technique="high_quality",
)
dataset.id = dataset_id
# Create document
document = Document(
tenant_id=tenant_id,
dataset_id=dataset_id,
position=1,
data_source_type="upload_file",
batch="batch_001",
name="test.pdf",
created_from="web",
created_by=created_by,
word_count=100,
)
document.id = document_id
# Create segment
segment = DocumentSegment(
tenant_id=tenant_id,
dataset_id=dataset_id,
document_id=document_id,
position=1,
content="Test segment content",
word_count=3,
tokens=5,
created_by=created_by,
status="completed",
)
# Assert
assert dataset.id == dataset_id
assert document.dataset_id == dataset_id
assert segment.dataset_id == dataset_id
assert segment.document_id == document_id
assert dataset.indexing_technique == "high_quality"
assert document.word_count == 100
assert segment.status == "completed"
def test_document_to_dict_serialization(self):
"""Test document to_dict method for serialization."""
# Arrange
tenant_id = str(uuid4())
dataset_id = str(uuid4())
created_by = str(uuid4())
document = Document(
tenant_id=tenant_id,
dataset_id=dataset_id,
position=1,
data_source_type="upload_file",
batch="batch_001",
name="test.pdf",
created_from="web",
created_by=created_by,
word_count=100,
indexing_status="completed",
)
# Mock segment_count and hit_count
with (
patch.object(Document, "segment_count", new_callable=lambda: property(lambda self: 5)),
patch.object(Document, "hit_count", new_callable=lambda: property(lambda self: 10)),
):
# Act
result = document.to_dict()
# Assert
assert result["tenant_id"] == tenant_id
assert result["dataset_id"] == dataset_id
assert result["name"] == "test.pdf"
assert result["word_count"] == 100
assert result["indexing_status"] == "completed"
assert result["segment_count"] == 5
assert result["hit_count"] == 10